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摘要 

資料分類是被廣泛使用的資料探勘技術。資料分類從已標記的資料去學習出分類

器，用以去預測無標記資料的可能標記。在資料分類演算法中，支持向量機器具

有目前最佳的效能。資料隱私是使用資料探勘技巧的關鍵議題。在本論文中，我

們研究如何在使用支持向量機器時達成對資料隱私的保護，並且探討如何有效率

的產生支持向量機器分類器。 

 

在當前的雲端運算趨勢中，運算外包漸為流行。因為支持向量機器的訓練演算法

牽涉到大量的運算，將運算外包到外部的服務提供者可幫助僅具備有限運算資源

的資料所有人。因為資料可能內含敏感的資訊，資料隱私是運算外包中被嚴重關

切的問題。除了資料本身，從資料所產生的分類器亦是資料所有人的私有資產。

現有的支持向量機器的隱私保存技巧在安全性上較弱。在第二章中，我們提出了

高安全性的具備隱私保存的支持向量機器外包方法。在所提出的方法中，資料經

由隨機線性轉換所打亂，因此相較於現有的作品，有較強的安全性。服務提供者

從打亂的資料去產生支持向量機器分類器，而且所產生的分類器亦是打亂的形式，

服務提供者無法存取。 

 

在第三章，我們探討使用支持向量機器分類器所固有的違反隱私問題。支持向量

機器訓練分類器的方法是藉由解決最佳化問題來決定訓練資料集中的那些資料個

體做為支持向量。支持向量是提供必要資訊用以組成支持向量機器分類器的資料

個體。因為支持向量是從訓練資料集中所取出的完整個體，釋出支持向量機器分

類器供公眾或他人使用將會揭露支持向量的私密內容。我們提出一個對支持向量

機器分類器作後處理的方法，用以轉換其至具有隱私保存的支持向量機器分類器，

來避免揭露支持向量的私密內容。此方法精確的去近似高斯核心函數支持向量機

器分類器的決策函數，而不去洩漏個別支持向量的內容。具備隱私保存的支持向



量機器分類器可以在不違反個別資料隱私的情況下去釋出支持向量機器分類器的

預測能力。 

 

支持向量機器的效率亦是個重要的議題。因為對於大規模的資料，支持向量機器

的解法收斂得很慢。在第四章，我們利用在第三章所發展的核心近似技術，用以

設計一個高效率的支持向量機器訓練演算法。雖然核心函數給支持向量機器帶來

了強大的分類能力，但是在訓練過程亦導致了額外的運算成本。相對的，訓練線

性支持向量機器有較快的解法。我們使用核心近似技術由明確的低維度特徵值的

內積去計算核心值，以利用高效率的線性支持向量機器解法去訓練非線性支持向

量機器。此法不僅是一個高效率的訓練方法，還能直接獲得具備隱私保存的支持

向量機器分類器，亦即其分類器沒有揭露任何的資料個體。 

 

我們做了廣泛的實驗用以驗證所提出的方法。實驗結果顯示，具備隱私保存的支

持向量機器外包方法、具備隱私保存的支持向量機器分類器，以及基於核心近似

的高效率支持向量機器訓練方法，皆可達到相似於一般支持向量機器分類器的分

類精確度，並且具備了隱私保存及高效率的特性。 

 

 

關鍵詞：資料探勘，分類，支持向量機器，核心函數，隱私保存，外包 



Abstract

Data classification is a widely used data mining technique which learns classifiers from

labeled data to predict the labels of unlabeled instances. Among data classification algo-

rithms, the support vector machine (SVM) shows the state-of-the-art performance. Data

privacy is a critical concern in applying the data mining techniques. In this dissertation,

we study how to achieve privacy-preservation in utilizing the SVM as well as how to

efficiently generate the SVM classifier.

Outsourcing has become popular in current cloud computing trends. Since the training

algorithm of the SVM involves intensive computations, outsourcing to external service

providers can benefit the data owner who possesses only limited computing resources. In

outsourcing, the data privacy is a critical concern since there may be sensitive information

contained in the data. In addition to the data, the classifier generated from the data is also

private to the data owner. Existing privacy-preserving SVM outsourcing technique is

weak in security. In Chapter 2, we propose a secure privacy-preserving SVM outsourcing

scheme. In the proposed scheme, the data are perturbed by random linear transformation

which is stronger in security than existing works. The service provider generates the SVM

classifier from the perturbed data where the classifier is also in perturbed form and cannot

be accessed by the service provider.

In Chapter 3, we study the inherent privacy violation problem in the SVM classifier.

The SVM trains a classifier by solving an optimization problem to decide which instances

of the training dataset are support vectors, which are the necessarily informative instances

to form the SVM classifier. Since support vectors are intact tuples taken from the training

dataset, releasing the SVM classifier for public use or other parties will disclose the private

content of support vectors. We propose an approach to post-process the SVM classifier

to transform it to a privacy-preserving SVM classifier which does not disclose the private

content of support vectors. It precisely approximates the decision function of the Gaussian

kernel SVM classifier without exposing the individual content of support vectors. The



privacy-preserving SVM classifier is able to release the prediction ability of the SVM

classifier without violating the individual data privacy.

The efficiency of the SVM is also an important issue since for large-scale data, the

SVM solver converges slowly. In Chapter 4, we design an efficient SVM training algo-

rithm based on the kernel approximation technique developed in Chapter 3. The kernel

function brings powerful classification ability to the SVM, but it incurs additional com-

putational cost in the training process. In contrast, there exist faster solvers to train the

linear SVM. We capitalize the kernel approximation technique to compute the kernel

evaluation by the dot product of explicit low-dimensional features to leverage the effi-

cient linear SVM solver for training a nonlinear kernel SVM. In addition to an efficient

training scheme, it obtains a privacy-preserving SVM classifier directly, i.e., its classifier

does not disclose any individual instance.

We conduct extensive experiments over our studies. Experimental results show that

the privacy-preserving SVM outsourcing scheme, the privacy-preserving SVM classifier,

and the efficient SVM training scheme based on kernel approximation achieve similar

classification accuracy to a normal SVM classifier while obtains the properties of privacy-

preservation and efficiency respectively.

Keywords: Data mining, classification, support vector machines, kernel function, privacy-

preserving, outsourcing
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Chapter 1

Introduction

1.1 Motivation

The popularity of electronic data held by commercial corporations has increased the con-

cern on the privacy protection of personal information. The advent of cloud computing

paradigm, which stores data and performs computations in remote servers, further raises

the concerns on data privacy. Data mining [11], an important and widely used information

technology, has been viewed as a threat to the sensitive content of data. This has led to

research for privacy-preserving data mining techniques [2, 4, 32].

Data classification, an important and frequently used data mining technique, has re-

ceived a significant amount of research efforts over decades [20]. The classification al-

gorithm trains a classifier from the labeled data for predicting the labels of future data.

There have been various privacy-preserving classification schemes [1,4]. Among the data

classification techniques, the support vector machine (SVM) [6, 55] is a statistically ro-

bust classification algorithm which shows the state-of-the-art performance. The SVM

finds an optimal separating hyperplane which maximizes the margin between two classes

of data in the kernel-induced high-dimensional feature space. The SVM, as a powerful

classification algorithm, has also attracted lots of attention from researchers who studied

privacy-preserving data mining techniques [9, 26]. However, some critical privacy issues

in utilizing the SVM are still not addressed in the literature.

In this dissertation, we consider on two kinds of privacy concerns of utilizing the SVM

1



and provide the solutions for privacy-preserving outsourcing of the SVM and the release

of the classifier utility without violating individual privacy. In addition to the privacy

aspects, we also consider the efficiency issue of using the SVM since training the SVM is

a computationally intensive task.

In the first part of this dissertation, we design a privacy-preserving outsourcing scheme

of the SVM. Current trends of information technology industry have been towards cloud

computing. Since training the SVM is very computationally intensive, outsourcing the

computations of SVM training to cloud computing service providers can benefit the data

owner who possesses only limited computing resources. In outsourcing, data privacy is

a critical concern since the service provider may be malicious or compromised. Both the

data and the classifier generated from the data are valuable assets of the data owner, whose

access should be protected.

The second part is for privacy-preserving release of the utility of the SVM classifier

without violating the individual data privacy. Since the classifier learned by the SVM

contains some intact instances of training data, releasing the SVM classifier to public

or other parties will disclose the content of some training instances. Our objective is

to release the SVM classifier without revealing the training data while preserving the

classifier utility for predicting labels. We design a scheme to release a privacy-preserving

form of the SVM classifier, which is a kind of aggregate information of data, without

disclosing the individual content.

In the third part of this dissertation, we consider on the efficiency issue of using the

SVM, which is also a critical concern since training the SVM on large-scale data is usually

very time-consuming. Although the kernel trick brings powerful classification ability to

the SVM, it incurs additional computational cost in the training process. We design a

kernel approximation method which approximates the kernel function by the dot product

of explicit low-dimensional features to leverage the efficient linear SVM solver to train a

nonlinear kernel SVM.

These three parts act different roles in utilizing the SVM for efficient data classifica-

tion with privacy-preservation.

2



In the complete privacy-preserving scenario, the first part is a front-end privacy-

preserving scheme for outsourcing the SVM training, and the second part is a back-end

privacy-preserving scheme for releasing the prediction ability of the built classifier. The

front-end scheme protects the data from the external service provider in training, and the

back-end scheme protects the data from the classifier users in testing. In both parts, the

training data of the data owner are not revealed. The external service provider builds the

SVM classifier for the data owner without accessing the actual training data, and then

the data owner releases the prediction utility of the SVM classifier for others without

disclosing the training data included in the classifier.

The third part of the dissertation is not merely en efficient training scheme of the SVM.

It extends the work of the second part to generate a privacy-preserving SVM classifier

directly and efficiently. With the efficient training scheme of the third part, there is no

need to train an SVM classifier first and then post-processes it to a privacy-preserving

form. It generates a privacy-preserving classifier directly, which provides an efficient way

to locally train a privacy-preserving SVM classifier.

1.2 Overview of the Dissertation

1.2.1 Privacy-Preserving Outsourcing of the SVM

The support vector machine (SVM) is a popular classification algorithm. Since training

the SVM is very time-consuming, outsourcing the computations of solving the SVM to

external service providers benefits the data owner who is not familiar with the techniques

of the SVM or has only limited computing resources. In outsourcing, the data privacy

is a critical concern for some legal or commercial reasons since there may be sensitive

information contained in the data. Existing privacy-preserving data mining works are

either not appropriate to outsourcing the SVM or weak in security.

In Chapter 2, we propose a scheme for privacy-preserving outsourcing of the SVM,

which perturbs the data by random linear transformation. The service provider solves

the SVM from the perturbed data without knowing the actual content of the data, and

3



the generated SVM classifier is also perturbed, which can only be recovered by the data

owner. Both the privacy of data and generated classifiers are protected. The proposed

scheme is stronger in security than existing techniques, and incurs very little additional

communication and computation cost. The experimental results show that the proposed

scheme imposes very little overhead on the data owner, and the classification accuracy is

similar to a normal SVM classifier.

1.2.2 Privacy-Preserving Release of the SVM Classifier

The SVM trains a classifier by solving an optimization problem to decide which instances

of the training dataset are support vectors, which are the necessarily informative instances

to form the SVM classifier. Since support vectors are intact tuples taken from the train-

ing dataset, releasing the SVM classifier for public use or shipping the SVM classifier

to clients will disclose the private content of support vectors. This violates the privacy-

preserving requirements for some legal or commercial reasons. The problem is that the

classifier learned by the SVM inherently violates the privacy. This privacy violation prob-

lem will restrict the applicability of the SVM. To the best of our knowledge, there has

not been work extending the notion of privacy-preservation to tackle this inherent privacy

violation problem of the SVM classifier.

In Chapter 3, we exploit this privacy violation problem, and propose an approach to

post-process the SVM classifier to transform it to a privacy-preserving classifier which

does not disclose the private content of support vectors. The post-processed SVM clas-

sifier without exposing the private content of training data is called Privacy-Preserving

SVM Classifier (abbreviated as PPSVC). The PPSVC is designed for the commonly used

Gaussian kernel function. It precisely approximates the decision function of the Gaussian

kernel SVM classifier without exposing the sensitive attribute values possessed by sup-

port vectors. By applying the PPSVC, the SVM classifier is able to be publicly released

while preserving privacy. We prove that the PPSVC is robust against adversarial attacks.

The experiments on real datasets show that the classification accuracy of the PPSVC is

comparable to the original SVM classifier.
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1.2.3 Efficient Training of the SVM with Kernel Approximation

Training support vector machines with nonlinear kernel functions on large-scale data are

usually very time-consuming. In contrast, there exist faster solvers to train the linear

SVM. Although the kernel trick brings powerful classification ability to the SVM, it incurs

additional computational cost in the training process.

In Chapter 4, we capitalize the kernel approximation technique developed in PPSVC

of Chapter 3 to leverage the linear SVM solver to efficiently train a nonlinear kernel

SVM. We approximate the infinite-dimensional implicit feature mapping of the Gaussian

kernel function by a low-dimensional explicit feature mapping. By explicitly mapping

data to the low-dimensional features, efficient linear SVM solvers can be applied to train

the Gaussian kernel SVM, which leverages the efficiency of linear SVM solvers to train

a nonlinear kernel SVM. Experimental results show that the proposed technique is very

efficient and achieves similar classification accuracy to a normal nonlinear SVM solver.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 shows our work for se-

cure privacy-preserving outsourcing of the SVM. In Chapter 3, we present the privacy-

preserving SVM classifier which releases the classifier utility without exposing the con-

tent of support vectors. In Chapter 4, we devise an algorithm to efficiently train the SVM

based on the technique developed for the privacy-preserving SVM classifier. Chapter 5

concludes this dissertation.
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Chapter 2

Secure Support Vector Machines

Outsourcing with Random Linear

Transformation

2.1 Introduction

Current trends of information technology industry have been towards cloud computing.

Major companies like Google and Microsoft are constructing infrastructures to provide

cloud computing services. The cloud computing service providers have powerful, scal-

able, and elastic computing abilities, and are expert in the management of large-scale

software and hardware resources. The maturity of cloud computing technologies has

built a promising environment for outsourcing computations to cloud computing ser-

vice providers. This benefits small companies to run larger applications in the cloud-

computing environment. Compared with performing computations in-house, outsourcing

can help save much hardware, software and personnel investments and help them focus

on their core business.

The data mining technique [11], which discovers useful knowledge from collected

data, is an important information technology and has been widely employed in vari-

ous fields. Data mining algorithms are usually very computationally intensive, and the
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datasets for performing data mining can be very large, for example, the transactional

data of chain stores, the browsing histories of websites, and the anamneses of patients.

To execute data mining algorithms on large-scale data will require many computational

resources and may consume a lot of time. The data owner who collects the data may

not possess sufficient computing resources to execute data mining algorithms efficiently.

With only limited computing resources, performing data mining for large-scale data may

consume a lot of time or it may even not be able to tackle the tasks. Investing on new

powerful computing devices is a heavy burden for smaller organizations and is not effi-

cient in cost benefit. Therefore, outsourcing data mining tasks to cloud computing service

providers which have abundant hardware and software resources could be a reasonable

choice for the data owner instead of executing all by itself.

Data privacy is a critical concern in outsourcing the data mining tasks. Outsourcing

unavoidably gives away the access of the data, including the content of data and the out-

put of operations performed on the data like aggregate statistics and data mining models.

Both the data and data mining results are valuable asset of the data owner, but the external

service providers may not be trustworthy or be malicious. The interest of the data owner

will be hurt if the data or the data mining results are leaked to its commercial competi-

tors. Leaking the data may even violate the laws. For instance, HIPAA laws require the

medical data not to be released without appropriate anonymization [21], and the leakage

of personal information is also prohibited by laws in many countries. Therefore, the data

privacy needs to be appropriately protected when outsourcing the data mining, and the

privacy of the generated data mining results is also considered important. This causes the

issue of outsourcing the computations of data mining without giving access of the actual

data to the service providers.

The support vector machine (SVM) [55] is a classification algorithm which yields

state-of-the-art performance. However, training the SVM is very time-consuming due to

the intensive computations involved in solving the quadratic programming optimization

problems, and there are usually hundreds of SVM subproblems to be solved in the pa-

rameter search process of training the SVM [22, 46]. Outsourcing the parameter search

7



process to cloud computing environment can capitalize on the clustering of computers to

solve those subproblems concurrently, which will significantly reduce the overall running

time.

There have been studies for privacy-preserving outsourcing of the SVM by geometri-

cally transforming the data with rotation and/or translation [9, 10], which transforms data

to another vector space to perturb the content of instances but preserves the dot prod-

uct or Euclidean distance relationships among all instances. Since the SVMs with com-

mon kernel functions depend only on the dot products or Euclidean distance among all

pairs of instances, the same SVM solutions can be derived from the rotated or translated

data. However, the preservation of the dot product or Euclidean distance relationships is a

weakness in security. If the attacker obtains some original instances from other informa-

tion sources, the mappings of the leaked instances and their transformed ones can be iden-

tified by comparing the mutual distance or dot products among pairs. For n-dimensional

data, if the attacker knows n or more linearly independent instances, after identifying the

mappings, all the transformed instances can be recovered by setting up n linear equations.

The work of [10] defended this security weakness by adding Gaussian noise to degrade

the preserved distance, but this contradicts the objective of the rotational/translational

transformation which aims to preserve the necessary utility of data for training the SVM.

Most existing privacy-preserving SVM works do not address the privacy issues for

outsourcing the SVM. The works of [26,34,35,54,58,59] focused on how to train SVMs

from the data partitioned among different parties without revealing each one’s own data

to others. The work of [31] considered the privacy issues of releasing the built SVM

classifiers. These privacy-preserving SVM works cannot be applied to protect the data

privacy in outsourcing the SVM training to external service providers. General privacy-

preserving data mining techniques mainly focused on releasing data for others to perform

data mining, which either anonymizing data to prevent from being identified [50] or pol-

luting the data by controlled noises in which some aggregate statistics are derivable [4]. In

these techniques, data are not hidden but only protected in degraded forms, and distorted

data mining models are able to be built.
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Figure 2.1: Privacy-preserving outsourcing of the SVM.

In this chapter, we discuss the data privacy issues in outsourcing the SVM, and design

a scheme for training the SVM from the data perturbed by random linear transformation.

Unlike the geometric transformation, the random linear transformation transforms the

data to a random vector space which does not preserve the dot product and Euclidean

distance relationships among instances, and hence is stronger in security. The proposed

scheme enables the data owner to send the perturbed data to the service provider for out-

sourcing the SVM without disclosing the actual content of the data, where the service

provider solves SVMs from the perturbed data. Since the service provider may be un-

trustworthy, the perturbation protects the data privacy by avoiding unauthorized access

to the sensitive content. In addition to the content of data itself, the resulted classifier is

also the asset of the data owner. In our scheme, not only the data privacy is protected,

the classifier generated from the perturbed data is also in perturbed form, which can only

be recovered by the data owner. The service provider cannot use the perturbed classifier

to do testing except the perturbed data sent from the data owner for privacy-preserving

outsourcing of the testing.

Figure 2.1 shows the application scenario of the proposed scheme for outsourcing

the SVM with privacy-preservation. The left side of the figure demonstrates the training

phase. The data owner randomly transforms the training data and sends the perturbed
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data to the service provider. The service provider derives the perturbed SVM classifier

from the perturbed training data and sends it back to the data owner. Then the data owner

can recover the perturbed SVM classifier to a normal SVM classifier for performing test-

ing. The proposed scheme not only allows to solve an SVM problem from the perturbed

training data, but also includes the whole parameter search process by cross-validation

for choosing an appropriate parameter combination to train the SVM. The testing can

also be outsourced to the service provider, which is shown on the right side of Figure 2.1.

The data owner sends the perturbed testing data to the service provider, and the service

provider can use the generated perturbed SVM classifier to test the perturbed testing data,

which predicts labels of the testing data.

In privacy-preserving outsourcing of the data mining, the additional computational

cost imposed on the data owner should be minimized and the redundant communication

cost should also not be too much, or the data owner rather performs data mining by itself

than outsourcing. In the proposed scheme for privacy-preserving outsourcing of the SVM,

the data sent to the service provider is perturbed by a random linear transformation. Since

the linear transformation can be executed very fast, it incurs very little computational

overhead to the data owner. The redundant communication cost for training is about 10%

of the original data size, and none for testing.

The following summarizes our contributions:

• We propose a scheme for outsourcing the SVM with the data perturbed by random

linear transformation, in which both the data and the generated SVM classifiers are

perturbed. The scheme does not preserve the dot product and Euclidean distance

relationships among the data and hence is stronger in security than existing works.

• We address the inherent security weakness of revealing the kernel matrix to the

service provider, and tackle this issue by using a perturbed secure kernel matrix.

We also analyze the robustness of the secure kernel matrix in the situation of under

attack.

• Extensive experiments are conducted to evaluate the efficiency of the proposed
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outsourcing scheme and its classification accuracy. The results show that we can

achieve similar accuracy to a normal SVM classifier. We also compare the classifi-

cation accuracy with the popular anonymous data publishing technique k-anonymity.

The rest of this chapter is organized as follows: In Section 2.2, we survey related

works of privacy-preserving outsourcing and privacy-preserving data mining techniques.

Then in Section 2.3, we review the SVM for preliminaries, and we discuss the secu-

rity weakness of outsourcing the SVM with data perturbed by geometric transformations.

Section 2.4 describes our proposed scheme, which solves the SVM from randomly trans-

formed data for privacy-preserving outsourcing of the SVM. Section 2.5 analyzes the

security of the proposed scheme. Then in Section 2.6, we enhance the security by apply-

ing redundancies in the perturbation. Section 2.7 shows the experimental results. Finally,

we conclude the chapter in Section 2.8.

2.2 Related Work

Data privacy is a critical concern in outsourcing the computations if the content of the data

is sensitive. It seems to be a paradox to generate useful results without touching the actual

content of the data, and seeing the generated results is also prohibited. Some operations

can be performed on encrypted data to generate encrypted results without knowing their

actual content by utilizing the homomorphic encryptions [17,38]. The fully homomorphic

encryption scheme [16] developed a theoretical framework which enables arbitrary func-

tions to be homomorphically operated on encrypted data with appropriate encryptions.

The scheme is theoretically applicable for privacy-preserving delegation of computations

to external service providers. However, its computational overhead is very high, which is

still far from practical use.

The research of privacy-preserving data mining techniques have developed various

schemes for releasing modified data to provide the utilization of the data for other parties

to perform data mining tasks without revealing the sensitive or actual content of the data

[4, 50]. A popular approach for releasing modified data for data mining is perturbing
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the data by adding random noises [4, 14]. The data are individually perturbed by noises

randomly drawn from a known distribution, and data mining algorithms are performed

on the reconstructed aggregate distributions of the noisy data. The work of [4] addressed

on learning decision trees from noise-perturbed data, and the work of [14] addressed on

mining association rules.

Generating pseudo-data which mimic the aggregate properties of the original data is

also a way for performing privacy-preserving data mining. The work of [1] proposed a

condensation-based approach, where data are first clustered into groups, and then pseudo-

data are generated from those clustered groups. Data mining algorithms are performed on

the generated synthetic data instead of the original data.

The anonymous data publishing techniques such as k-anonymity [45,50] and l-diversity

[33] have been successfully utilized in privacy-preserving data mining. Anonymous data

publishing techniques modifies quasi-identifier values to reduce the risk of being iden-

tified with the help of external information sources. The k-anonymity [50] makes each

quasi-identifier value be able to indistinguishably map into at least k-records by generaliz-

ing or suppressing the values in quasi-identifier attributes. The l-diversity [33] enhances

the k-anonymity by making each sensitive value appear no more than m/l times in a

quasi-identifier group with m tuples. The work of [23] studied the performance of the

SVM built upon the data anonymizing by the k-anonymity technique and enhanced the

performance with the help of additional statistics of the generalized attributes.

The techniques of releasing modified data for data mining can partly fulfill the ob-

jective of privacy-preserving outsourcing of data mining tasks which aims to let external

service providers build data mining models for the data owner without revealing the actual

content of the data. However, there are some privacy issues in outsourcing data mining

with such techniques.

The first issue is that the data privacy is still breached since the modified data disclose

the content in degraded precision or anonymized forms. The data perturbed by noises

drawn from certain distributions to preserve aggregate statistics can be accurately recon-

structed to their original content [2]. The k-anonymity techniques also breach the privacy
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due to the disclosure of generalized quasi-identifier values, and other non-quasi-identifier

attributes are kept intact. In addition to these disclosures, it also incurs the risk of being

identified from the help of external information sources. Furthermore, the distortion of

data in k-anonymity may degrade the performance of data mining tasks.

The other issue is that the built data mining models are also disclosed if such tech-

niques are adopted for outsourcing. Privacy-preserving outsourcing of data mining usu-

ally requires protecting the access of both the data and the generated data mining models.

An important family of privacy-preserving data mining algorithms is distributed meth-

ods [32, 39]. The purpose of such techniques is for performing data mining on the data

partitioned among different parties without compromising the data privacy of each party.

The dataset may either be horizontally partitioned, vertically partitioned, or arbitrarily

partitioned, where protocols are designed to exchange the necessary information among

parties to compute aggregate results to build data mining models on the whole data with-

out revealing the actual content of each party’s own data to others. This method capi-

talizes the secure multi-party computations from cryptography. For example, the works

of [25, 53] designed protocols for privacy-preserving association rule mining on the data

partitioned among different parties, and the work of [32] considered for building decision

trees.

Several privacy-preserving SVM works [26, 54, 58, 59] also belong to this family. In

the works of [54, 58, 59], training data owners cooperatively compute the Gram matrix to

build the SVM problem without revealing their each own data to others by utilizing the

secure multi-party integer sum. The work of [26] utilizes homomorphic encryptions to

design a private two-party protocol for training the SVM. In these distributed methods,

at the end of running the protocols, each party will hold a share of the learned SVM

classifier, where testing must be cooperatively performed by all involved parties.

Non-cryptographic techniques are also proposed for privacy-preserving SVMs on par-

titioned data. The works of [34,35] adopt the reduced SVM [28] with random reduced set

for cooperatively building the kernel matrix to share among parties without revealing each

party’s actual data. Our random linear transformation-based outsourcing scheme also uti-
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lizes the RSVM with random vectors as the reduced set, which has been used in [34, 35]

for privately computing the kernel matrix on the data partitioned among different parties.

However, the way the RSVM is employed with random vectors in our work is different

from [34, 35]. In our privacy-preserving SVM outsourcing scheme, we capitalize on ran-

dom vectors to prevent the inherent weakness in the full kernel matrix and enable the

computation of the kernel matrix from randomly transformed training data.

Existing privacy-preserving SVM works mostly focused on the distributed data sce-

nario or other privacy issues. For example, the work of [31] considered the problem of

releasing a built SVM classifier without revealing the support vectors, which are a subset

of the training data. To the best of our knowledge, currently only the works of [9, 10] ad-

dress the privacy-preserving outsourcing of the SVM, in which geometric transformations

are utilized to hide the actual content of data but preserve their dot product or Euclidean

distance relationships for solving the SVM. The SVM classifiers built from the geomet-

rically transformed data are also in geometrically transformed forms, which can only be

recovered by the data owner. However, protecting the data by geometric transformations

is weak in security as we have mentioned in the introduction.

Although privacy-preserving outsourcing of data mining can also be viewed as a form

of distributed privacy-preserving data mining, the above-mentioned distributed privacy-

preserving SVM works are designed for cooperatively constructing data mining models

on separately held data. They are not applicable to the scenario of privacy-preserving

outsourcing of data mining where the whole data are owned by a single party, and that

party wants to delegate the computations of data mining to an external party to construct

data mining models but the external party is prohibited from the access of both the actual

data and the generated models. These issues of outsourcing the data mining tasks are

seldom addressed in the literature of privacy-preserving data mining.

A privacy-preserving data mining technique dedicated to outsourcing is the work of

[56]. It designed a scheme for privacy-preserving outsourcing of the association rule

mining, in which the items in the database are substituted by ciphers to send to external

service providers. The cipher-substituted items protect the actual content of data but
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preserve the counts of itemsets for performing association rule mining. The association

rules obtained by the service provider are also in ciphered forms, which can only be

recovered by the data owner itself.

There have been many works considering for outsourcing the database queries with

privacy-preservation. For example, the works of [3,19] proposed schemes for performing

comparison operations and SQL queries on encrypted databases, and the work of [57]

proposed a scheme for performing k-nearest neighbor queries on randomly transformed

database. Outsourcing data mining with privacy-preservation is less discussed since there

are usually complex operations involved in data mining algorithms.

2.3 Preliminary

In this section, we first briefly review the SVM. Then we discuss the related work which

perturbs the data by geometric transformations to outsource the SVM, and show the se-

curity weakness of utilizing this scheme.

2.3.1 Review of the SVM

The SVM [55] is a statistically robust learning method with state-of-the-art performance

on classification. The SVM trains a classifier by finding an optimal separating hyperplane

which maximizes the margin between two classes of data. Without loss of generality,

suppose there are m instances of training data. Each instance consists of a (xi, yi) pair

where xi ∈ Rn denotes the n features of the i-th instance and yi ∈ {+1,−1} is its class

label. The SVM finds the optimal separating hyperplane w · x + b = 0 by solving the

quadratic programming optimization problem:

arg min
w,b,ξ

1

2
||w||2 + C

m∑
i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, ...,m.
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Minimizing 1
2
||w||2 in the objective function means maximizing the margin between two

classes of data. Each slack variable ξi denotes the extent of xi falling into the erroneous

region, and C > 0 is the cost parameter which controls the trade-off between maximizing

the margin and minimizing the slacks. The decision function is f(x) = w · x + b, and

the testing instance x is classified by sign(f(x)) to determine which side of the optimal

separating hyperplane it falls into.

The SVM’s optimization problem is usually solved in dual form to apply the kernel

trick:

argmin
α

1

2
αTQα−

m∑
i=1

αi

subject to
m∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, ...,m

(2.1)

where Q is called kernel matrix with Qi,j = yiyjk(xi,xj), i = 1, . . . ,m, j = 1, . . . ,m.

The function k(xi,xj) is called kernel function, which implicitly maps xi and xj into

a high-dimensional feature space and computes their dot product there. By applying

the kernel trick, the SVM implicitly maps data into the kernel induced high-dimensional

space to find an optimal separating hyperplane. Commonly used kernel functions include

Gaussian kernel k(x,y) = exp(−g||x − y||2) with g > 0, polynomial kernel k(x,y) =

(gx · y + r)d with g > 0, and the neural network kernel k(x,y) = tanh(gx · y + r),

where g, r, and d are kernel parameters. The original dot product is called linear kernel

k(x,y) = x · y. The corresponding decision function of the dual form SVM is

f(x) =
m∑
i=1

αiyik(xi,x) + b, (2.2)

where αi, i = 1, . . . ,m are called supports, which denote the weights of each instance to

compose the optimal separating hyperplane in the feature space.

Without appropriate choices on the cost and kernel parameters, the SVM will not

achieve good classification performance. A process of parameter search (also called

model selection) is required to determine a suitable parameter combination of the cost and
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kernel parameters for training the SVM. Practitioners usually evaluate the performance of

a parameter combination by measuring its average accuracy of cross-validation [22, 46],

and the search of parameter combinations is often done in a brute-force way. For ex-

ample, with the Gaussian kernel, the guide of LIBSVM [7, 22] suggests performing a

grid-search with exponential growth on the combinations of (C, g). The parameter com-

bination which results in the highest average cross-validation accuracy will be selected to

train an SVM classifier on the full training data.

The parameter search process can be very time-consuming since there are usually

hundreds of parameter combinations to try, and for each parameter combination, with

c-fold cross-validation, there are c SVMs to be trained on c−1
c

of the training data. For

example, the default search range of LIBSVM’s parameter search tool for Gaussian kernel

is C = 2−5 to 215 and g = 2−15 to 23, both stepped in 22, where 5-fold cross-validation is

used. There are 11× 10 = 110 parameter combinations to be tested in its default setting,

and hence there are totally 5 × 110 = 550 SVMs to be trained in the parameter search

process.

If the training dataset is large, training an SVM is already costly, and the parameter

search process even involves training hundreds of SVMs along with hundreds of testings.

Due to the heavy computational load, for a data owner who has only limited computing

resources, it is reasonable to outsource the SVM training to an external service provider.

It is noted that the SVM problems in the parameter search process are independent, and

hence the parameter search process can be easily parallelized in cloud computing envi-

ronment. Since the service provider may be untrusted or malicious, the actual content of

the data needs appropriate protections to preserve the data privacy.

2.3.2 Privacy-Preserving Outsourcing of SVM with Geometric Per-

turbations and Its Security Concerns

Perturbing the data by geometric transformations like rotating or translating the attribute

vectors of instances can be utilized for privacy-preserving outsourcing of the SVM [9,10].

Since SVMs with common kernel functions rely only on the the dot product or Euclidean
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distance relationships among instances, and such relationships of data are completely

preserved in the their geometrically perturbed forms, the SVM problems constructed from

the original instances can be equivalently derived from the geometrically perturbed ones.

The geometric perturbation works as follows: Consider the dataset {(xi, yi)|i =

1, . . . ,m} with m instances. The content of each attribute vector xi ∈ Rn is deemed to be

sensitive, while the class labels yi’s are usually not. Let M denote an n×n rotation matrix,

where the content of M , i.e., the angle of rotation, is kept secret. The data are perturbed by

multiplying all instances with the matrix M . Although the content of instances is modi-

fied in their perturbed versions Mxi, i = 1, . . . ,m, the dot products of all pairs of original

instances are retained: Mxi · Mxj = (Mxi)
TMxj = xT

i M
TMxj = xT

i Ixj = xT
i xj ,

1 ≤ i, j ≤ m, where MT = M−1 since the rotation matrix is an orthogonal matrix,

whose transpose is equal to its inverse. The Euclidean distances are also preserved

since the square of the Euclidean distance can be computed from the dot products by

||xi − xj||2 = xi · xi − 2xi · xj + xj · xj . In addition to rotation, the translation pertur-

bation also preserves the Euclidean distance relationship of data. The translation pertur-

bation is done by adding a random vector to all instances, which moves all instances in a

certain distance and the same direction, where the relative distance among instances are

the same in the translated data. The translation perturbation can be applied together with

the rotation perturbation.

Since the dot product or Euclidean distance relationships are preserved in the geomet-

rically perturbed data, the SVM problem (2.1) derived from the geometrically perturbed

dataset is equivalent to that derived from the original dataset. Therefore, the data owner

can outsource the computations of solving the SVM without revealing the actual content

of data by sending the geometrically perturbed dataset to the service provider, and the ser-

vice provider can construct the SVM problem which is equivalent to the one constructed

from the original dataset. The service provider sends back the solution of the SVM to

the data owner after solving the SVM problem, and the data owner gets the classifier by

pairing the returned solution, which composed of the supports of each instance and the

bias term, with the original data to make up the decision function (2.2).
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Although perturbing with geometric transformations preserves the required utilities

of data like the dot product or Euclidean distance relationships for forming the SVM

problems with common kernel functions, the perturbation preserving such utilities suffers

from the dot product or distance inference attacks.

Suppose the attacker, i.e., the service provider, obtains some of the original instances

from external information sources. Since the Euclidean distance or dot product relations

are preserved in the perturbed dataset, the mappings of the leaked instances and their

perturbed ones can be inferred by comparing the Euclidean distance or dot products of

all pairs of leaked instances to that of all pairs of the perturbed instances. In general, the

same dot product or Euclidean distance happening to different pairs of instances is in low

probability. Hence the corresponding pairs of the leaked instances in the perturbed dataset

are usually able to be identified by comparing Euclidean distance/dot product. Once the

pairs in the perturbed dataset are all recognized, the exact mappings of leaked instances

and their corresponding perturbed instances can be deduced by tracking the Euclidean

distance/dot product between pairs.

In the perturbation preserving dot products, for n-dimensional data, if n or more lin-

early independent instances are known and the mappings to their perturbed ones are suc-

cessfully determined, all other perturbed instances, whose original content is unknown to

the attacker, can be recovered by setting up n equations as the following lemma shows:

Lemma 1 For n-dimensional data, the perturbation preserving the dot product can be

broken if the content of n linearly independent instances and the mappings of their per-

turbed ones are known.

Proof 1 Let x1, . . . ,xm ∈ Rn denote a set of instances, and c1, . . . , cm are their corre-

sponding perturbed instances, where xi · xj = ci · cj for any 1 ≤ i, j ≤ m. Without loss

of generality, assume that the attacker have obtained n linearly independent instances

x1, . . . ,xn, and identified that c1, . . . , cn are the corresponding perturbed instances by

inferring the dot product relations. Then any other perturbed instances cu, n < u ≤ m
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can be recovered to the original xu’s by solving the n simultaneous linear equations:

xi · xu = ci · cu for i = 1, . . . , n.

The perturbation which preserves the Euclidean distance can be broken in a similar

way given that n+ 1 linearly independent instances are leaked and the mappings of their

perturbed ones are identified.

In addition to the perturbation preserving Euclidean distance or dot product relation-

ships, allowing the service provider to construct the kernel matrix Q of the SVM problem

(2.1) also possesses the risk as well as preserving the Euclidean distance or dot product

in the perturbed instances since such utilities of data can be derived from the elements of

the kernel matrix.

Lemma 2 For SVMs with common kernel functions, revealing the kernel matrix is inse-

cure as preserving the Euclidean distance or dot product relationships of data

Proof 2 The elements of the kernel matrix are the kernel values between all pairs of

instances. With the linear kernel, the kernel matrix contains the dot products between

all pairs of instances, including the dot products of an instance with itself. With the

Gaussian kernel, the Euclidean distance of two instances can be derived from computing

the natural logarithm of their kernel value and then dividing it by the kernel parameter.

The polynomial kernel and the neural network kernel are based on dot products. The dot

product between instances can be derived by computing the d-th root and the tanh−1,

respectively.

2.4 Secure SVM Outsourcing with Random Linear Trans-

formation

In this section, we design a secure scheme which outsources SVMs to a potentially ma-

licious external service provider with the data perturbed by random linear transforma-

tion. This random linear transformation-based scheme overcomes the security weakness

20



of the geometric transformation since the Euclidean distance and dot product relation-

ships among instances are not preserved, which endows the scheme with the resistance

to distance/dot product inference attacks and hence provides stronger security in data pri-

vacy. Our random linear transformation-based privacy-preserving outsourcing scheme

includes both the training and testing phases, as well as the parameter search process for

the training.

2.4.1 Secure Kernel Matrix with the Reduced SVM

Since the full kernel matrix Q of the conventional SVM formulation (2.1) with common

kernel functions is built upon the dot products or Euclidean distance among all training

instances, if the service provider needs to build the full kernel matrix to solve SVM prob-

lems, there will be similar security weakness like the rotationally/translationally trans-

formed data. We avoid the use of the full kernel matrix by applying the reduced SVM

(RSVM) with random reduced set [27, 28, 34, 35] for solving SVMs, which helps to pre-

vent the disclosure of dot product/Euclidean distance relationships among instances and

also plays an important role in our scheme for the utilization of random linear transfor-

mation to perturb the data in outsourcing the SVM.

The Reduced SVM with Random Reduced Set

In the following, we first briefly describe the RSVM, and then explain the RSVM with

completely random vectors as the reduced set. The RSVM is a SVM scaling up method,

which utilizes a reduced kernel matrix. Each element of the reduced kernel matrix is

computed from an instance in the training dataset and an instance in the reduced set,

which can be a subset of the training dataset. The number of instances in the reduced

set is typically 1% to 10% of the size of the training dataset [27, 28]. Hence the reduced

kernel matrix is much smaller than a full kernel matrix and can easily fit into the main

memory.

Without loss of generality, let xi ∈ Rn, i = 1, . . . ,m denote the instances of the

training dataset, and yi ∈ {1,−1}, i = 1, . . . ,m are their corresponding labels. Let
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R = {rj|rj ∈ Rn, j = 1, . . . , m̄} denotes the reduced set, where m̄ << m. The original

RSVM paper adopted a subset of the training dataset as the reduced set [28]. The reduced

kernel matrix K is an m× m̄ matrix where

Ki,j = k(xi, rj), i = 1, . . . ,m, j = 1, . . . , m̄. (2.3)

The RSVM problem is formulated as

argmin
v,b,ξ

1

2
(||v||2 + b2) + C

m∑
i=1

ξ2i

subject to yi(Kv + b) ≥ 1− ξi, i = 1, . . . ,m

(2.4)

where ξi, i = 1, . . . ,m are slack variables, and C is the cost parameter. The solutions

of the optimization problem, v = (v1, . . . , vm̄)
T , b, and the vectors of the reduced set

constitute the decision function

f(x) =
m̄∑
j=1

vjk(x, rj) + b. (2.5)

The optimization problem of the RSVM can be solved by a normal linear SVM solver

[30] or the smooth SVM [29] used in the original RSVM paper [28]. Empirical studies

showed that the RSVM can achieve similar classification performance to a conventional

SVM [27, 28, 30].

An interesting property of the RSVM is that the reduced set R is not necessary to

be a subset of the training dataset [27]. Completely random vectors can act as the in-

stances of the reduced set [34, 35]. In the RSVM, the instances of the reduced set work

as pre-defined support vectors. Unlike the conventional SVM which selects the instances

near the optimal separating hyperplane as support vectors, the RSVM fits the optimal

separating hyperplane to pre-defined support vectors by determining appropriate support

values [27]. A larger value of the cost parameter C is usually required to let the RSVM

fit well to the pre-defined support vectors [28, 30].

If random vectors are adopted as the reduced set, then an element in the reduced kernel
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matrix is the kernel evaluation between an instance in the training dataset and a random

vector in the reduced set but not the kernel evaluation between the training instances

like the kernel matrix of a conventional SVM. Therefore, revealing the reduced kernel

matrix with random vectors as the reduced set does not reveal the information of the dot

product or Euclidean distance relationships among instances. This constitutes the secure

kernel matrix, which avoids the security weakness from disclosing the kernel matrix of a

conventional SVM given that the random vectors of the reduced set are kept secret, i.e.,

revealing the secure kernel matrix to the service provider for solving the RSVM problem

will not incur the risk of disclosing dot product or Euclidean distance relationships of the

training data.

Note that just building and sending the secure kernel matrix to the service provider is

not appropriate for outsourcing the SVM training since a reduced kernel matrix is com-

puted from a fixed kernel parameter, while there are various SVMs with different kernel

parameters to be trained in the parameter search process. The data owner will be imposed

much computation load as well as much communication cost to build and send many se-

cure kernel matrices with different kernel parameters to the service provider. Our goal is

to outsource the SVM training which must minimize as much load of the data owner as

possible.

In the following, we first discuss the robustness of the secure kernel matrix, and then

in next subsection, we design a scheme which enables the service provider to build the

secure kernel matrix from the data perturbed by random linear transformation.

Robustness of the Secure Kernel Matrix

In the following, we prove that the service provider who has the secure kernel matrix

K along with some leaked training instances obtained from some external information

sources is not able to derive the content of both the random vectors in the reduced set and

the remaining secret training instances.

Lemma 3 The service provider cannot obtain the content of random vectors of the re-

duced set from the secure kernel matrix with leaked training instances.
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Proof 3 Suppose the service provider has obtained m− 1 training instances and at least

n of them are linearly independent, where m is the number of training instances and n is

the dimensions of the data and m > n. If the service provider is able to know which ele-

ments of the matrix K the n linearly independent leaked training instances involve with,

it can derive the content of rj’s by first inferring the underlying dot product/Euclidean

distance of the kernel values and then utilizing the leaked instances and the inferred dot

product/Euclidean distance to set up equations to derive the content of rj’s. However, the

service provider cannot identify which elements the leaked instances are involved because

this requires the knowledge of the random vectors. In the case of m < n, it is straight-

forward that the random vectors of the reduced set cannot be derived due to insufficient

number of linearly independent instances to set up simultaneous equations.

Without knowing the content of the random vectors in the reduced set, the service

provider cannot derive the content of secret training instances from the secure kernel

matrix even if there is only one training instance not leaked.

Corollary 1 The service provider cannot derive the content of unknown training in-

stances even if m− 1 of all m training instances are leaked.

Proof 4 Since each element of the secure kernel matrix K consists of Ki,j = k(xi, rj),

i.e., it is evaluated from a training instance and a secret random vector, to derive any xi

from elements of K, the content of rj’s is required. However, the service provider cannot

obtain the content of random vectors in the reduced set as shown in Lemma 3. Hence the

service provider is not able to derive the content of remaining secret training instances.

As shown in Lemma 3 and Corollary 1, as long as the random vectors of the reduced

set are kept secret, the secure kernel matrix is robust in security even if part of training

instances are leaked.
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2.4.2 Building the Secure Kernel Matrix from Data Perturbed by

Random Linear Transformation

After we are able to permit the service provider to have the secure kernel matrix for solv-

ing the RSVM, in the following, we show how to enable the service provider to build

the secure kernel matrix from the data perturbed by random linear transformation. The

random linear transformation does not preserve the dot product or distance relationships

between training instances and hence is stronger in privacy preservation. Then the data

owner can outsource the SVM by sending the random linearly transformed training in-

stances to the service provider, and then the service provider builds a secure kernel matrix

without knowing the actual content of the training data where the secure kernel matrix

built by the service provider is exactly the same with the one built from the original train-

ing data.

The data owner will send the perturbed training instances as well as the perturbed

random vectors of the reduced set to the service provider for computing secure kernel

matrices. A secure kernel matrix K is computed from training instances and random

vectors of the reduced set by Ki,j = k(xi, rj), i = 1, . . . ,m, j = 1, . . . , m̄. Our objective

is to let the service provider compute the same K from perturbed training instances and

random vectors, while the perturbation scheme should not allow the security weakness of

the geometric perturbation schemes, i.e., the dot product and Euclidean distance among

training instances should not be preserved. The perturbation scheme needs to preserve

the kernel evaluations between a training instance and a random vector for computing

secure kernel matrices. We utilize the random linearly transformation perturbation for

computing the dot product of two differently transformed instances [57]. Note that the

attribute vectors xi’s of training instances are usually considered sensitive, but the class

labels yi’s are usually not.

Let M be a nonsingular n × n matrix composed of random values. We perturb the

instances of the training dataset by a random linear transformation L : Rn → Rn, where

the matrix M works as the random linear operator. All training instances are perturbed by
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the random linear transformation1

ci = L(xi) = Mxi for i = 1, . . . ,m (2.6)

Unlike the geometric perturbation, the random linear transformation does not preserve

the Euclidean distance and dot products between training instances since the vector space

is randomly transformed. Hence the security weakness of the rotational or translational

transformation does not exist in the data perturbed by random linear transformation. The

random vectors rj , j = 1, . . . , m̄ of the reduced set are also perturbed by another random

linear transformation L′ : Rn → Rn with (MT )−1 as the random linear operator:

sj = L′(rj) = (MT )−1rj for j = 1, . . . , m̄ (2.7)

The perturbed training instances ci, i = 1, . . . ,m and perturbed random vectors of

the reduced set sj , j = 1, . . . , m̄ are then sent to the service provider for building secure

kernel matrices.

The dot product between an instance xi and a random vector rj can be equivalently

computed from the dot product of ci and sj by cTi sj = (Mxi)
T (MT )−1rj = xT

i M
T (MT )−1rj

= xT
i Irj = xT

i rj . Therefore, for the dot product-based kernel functions including the lin-

ear kernel k(xi, rj) = xi · rj , polynomial kernel k(xi, rj) = (gxi · rj + r)d, and neural

network kernel k(xi, rj) = tanh(gxi ·rj + r) , the kernel evaluations between an instance

and a random vector can be equivalently derived from the perturbed training instances

and random vectors.

For Gaussian kernel k(xi, rj) = exp(−g||xi − rj||2) which is based on the Euclidean

distance, a slight modification is needed to add another two dimensions to the original

instances xi ∈ Rn as x′
i = (xi,1, xi,2, . . . , xi,n, 1,−1

2
||xi||2)T before applying the trans-

formation. The random vectors rj’s of the reduced set are also added by another two

dimensions as r′j = (rj,1, rj,2, . . . , rj,n,−1
2
||rj||2, 1)T . Then the corresponded random

matrix for random linear transformation is a nonsingular (n + 2) × (n + 2) matrix M .

1It is not necessary to put the whole matrix M in the main memory. The computation can be decomposed
to Mx = x1M:,1 + · · ·+ xnM:,n, where M:,i is the i-th column of M .
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Similarly, the data are perturbed by ci = Mx′
i, and the random vectors are perturbed by

sj = (MT )−1r′j . The Euclidean distance between xi and rj in the Gaussian kernel can be

equivalently computed from ci and sj by −2cTi sj = −2x′T
i M

T (MT )−1r′j = −2x′T
i Ir

′
j =

−2x′T
i r

′
j = ||xi||2 − 2xT

i rj + ||rj||2 = ||xi − rj||2.

Therefore, for common kernel functions based on dot product or Euclidean distance,

the kernel evaluations between an instance in the training dataset and an instance in the

reduced set can be equivalently computed from their perturbed versions.

Lemma 4 The RSVM problem (2.4) with dot product-based and Euclidean distance-

based kernel functions constructed from the training instances (xi, yi), i = 1, . . . ,m and

the random vectors rj , j = 1, . . . , m̄ can be equivalently obtained from the random linear

transformation-perturbed training instances and random vectors ci, i = 1, . . . ,m and sj ,

j = 1, . . . , m̄ along with labels yi, i = 1, . . . ,m.

Proof 5 Since the dot product of any (ci, sj) pair is equal to the dot product or Euclidean

distance of the corresponding (xi, rj) pair, for dot product or Euclidean distance-based

kernel functions, the value of k(xi, rj) can be equivalently computed from ci’s and sj’s.

Then the secure kernel matrix K composed of Ki,j = k(xi, rj), i = 1, . . . ,m, j =

1, . . . , m̄ can be equivalently obtained from ci, i = 1, . . . ,m and sj , j = 1, . . . , m̄.

Accompanying with the labels yi, i = 1, . . . ,m (and the cost parameter C), a completely

the same RSVM problem (2.4) can be built.

From Lemma 4, since the same RSVM problem can be built from the perturbed data,

the same solutions v and b for the decision function (2.5) can be obtained. Therefore, the

data owner can perform privacy-preserving outsourcing of training by perturbing the data

and the reduced set with (2.6) and (2.7) and then send the perturbed data with labels and

perturbed reduced set to the service provider. Since the service provider can derive the

same secure kernel matrix K of (2.4) from the perturbed data ci’s and sj’s, i.e., the RSVM

optimization problem derived from the perturbed data is the same to the one derived from

the original data. Therefore, the service provider can obtain the same solutions vj , j =

1, . . . , m̄ and b of the decision function (2.5) for sending back to the data owner. Then the
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data owner gets the classifier by pairing the solutions to the reduced set {rj|j = 1, . . . , m̄}

to constitute the decision function.

In this scheme of building the RSVM problem from randomly transformed data, the

service provider can solve for the RSVM problem to get the coefficients of the reduced

set and the bias term in the decision function, but cannot obtain an integral decision func-

tion because the service provider does not know the actual content of the reduced set rj ,

j = 1, . . . , m̄ for constituting the decision function. It only has perturbed version of the

reduced set, which cannot be utilized for testing. Testing with the perturbed reduced set

will result in an unmeaningful value. Hence not only the privacy of the data, the privacy

of the classifier generated from the data is also protected.

2.4.3 Performing Parameter Search Process on Randomly Transformed

Data

The parameter search process is to determine an appropriate combination of the cost and

kernel parameters for training the SVM. The parameter search is usually performed by

cross-validation on training data, which involves several training and testing of SVMs on

subsets of training data with different parameter combinations.

To train intermediate classifiers with different parameter combinations for evaluating

the accuracy in cross-validation, the service provider can construct the RSVM problems

with different parameter combinations by building secure kernel matrices on subsets of the

perturbed training instances with different kernel parameters accompanied with different

cost parameters.

The other part in the cross-validation is classifying the remaining part of the perturbed

training instances by the intermediate classifiers for measuring the accuracy. There are

two issues involved with this. Since the service provider does not have actual decision

functions but only the solutions of the RSVM problem, it does not have the complete

classifier resulted from the perturbed data for testing. Also, the training data for testing in

the cross-validation are also in perturbed form.

However, the service provider can use the solutions and the perturbed reduced set
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{sj|j = 1, . . . , m̄} to build the perturbed decision function for testing on the perturbed

training instances in cross-validation:

f ′(x) =
m̄∑
j=1

vjk(x, sj) + b. (2.8)

Lemma 5 Testing the perturbed training instances ci, i = 1, . . . ,m by the perturbed

decision function f ′(x) is equivalent to testing the original training instances xi, i =

1, . . . ,m by the actual decision function f(x).

Proof 6 With the linear kernel k(xi, rj) = xT
i rj , the perturbed decision function f ′(x)

classifies a perturbed training instance ci = Mxi as

f ′(ci) =
m̄∑
j=1

vjk(ci, sj) + b

=
m̄∑
j=1

vj((Mxi)
T sj) + b

=
m̄∑
j=1

vj(x
T
i M

T (MT )−1rj) + b

=
m̄∑
j=1

vj(x
T
i rj) + b

=
m̄∑
j=1

vjk(xi, rj) + b = f(xi)

The Gaussian kernel, polynomial kernel, and neural network kernel can be processed in

similar ways by calculating the kernel evaluations like the step of deriving secure kernel

matrices from perturbed training data.

Classifying the perturbed training instance ci = Mxi with the perturbed decision

function f ′(x) is equivalent to classifying the original training instance xi by the actual

decision function f(x) where the same decision values will be generated. Hence the ser-

vice provider can perform cross-validation by training perturbed intermediate classifiers

from subsets of perturbed training instances with various parameter combinations and

then use the perturbed intermediate classifiers to classify remaining subsets of perturbed
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training instances for evaluating accuracy.

It is noted that the service provider cannot use the perturbed decision functions to

classify the data other than those perturbed by the data owner. The perturbed decision

functions utilize the perturbed reduced set sj = (MT )−1rj , j = 1, . . . , m̄ to compose the

intermediate classifiers instead of the actual reduced set rj , j = 1, . . . , m̄. Therefore, the

perturbed decision function f ′(x) requires the testing instances xi’s being transformed to

Mxi’s to annihilate the effect of (MT )−1 multiplying to rj’s. If the testing instance is not

perturbed by M , the perturbed decision function f ′(x) cannot generate a useful decision

value. Hence for the service provider, because it does not know the content of the random

matrix M , the applicability of the perturbed decision function is restricted to classify only

the perturbed data sent from the data owner for performing cross-validation. Thus the

privacy of the classifiers built from the data of the data owner is still protected.

Note that the ability of the perturbed decision function to classify the perturbed train-

ing instances does not breach the privacy of the training instances. Although the service

provider can calculate their decision values, the service provider is not aware of which

things it is classifying, i.e., it knows nothing about the actual training instances. Hence

the service provider cannot recognize what training instances own those decision values.

The following summarizes the whole scheme of privacy-preserving outsourcing of the

SVM training based on random linear transformation. The data owner generates random

vectors as the reduced set for the RSVM, perturbs the training instances by a random

matrix M , perturbs the random vectors by (MT )−1, and then sends the perturbed train-

ing instances and perturbed random vectors to the service provider. Upon receiving the

perturbed data, the service provider performs the cross-validation-based parameter search

process by computing secure kernel matrices from part of perturbed training instances to

train intermediate classifiers and using the intermediate classifiers to test on remaining

perturbed training instances for evaluating the performance of various parameter com-

binations. The parameter combination which achieves the best average cross-validation

accuracy will be adopted to form a final RSVM problem on complete perturbed training

instances, and then the solutions vj , j = 1, . . . , m̄ and b of the final RSVM problem along
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with the adopted kernel parameters will be returned to the data owner for composing a

decision function with the original random vectors.

The random linear transformation is utilized to protect the data privacy in the initial

stage before forming the SVM problem, and the RSVM with random vectors as the re-

duced set is utilized to prevent the security weakness in the intermediate computations.

This two-layer protection overcomes the security weakness existing in the conventional

SVM formulations and the geometric transformation-based schemes [9, 10] for outsourc-

ing the SVM training with privacy-preservation.

2.4.4 Privacy-Preserving Outsourcing of Testing

The perturbed decision function f ′(x) in (2.8) also enables privacy-preserving outsourc-

ing of the testing tasks. Since classifying the perturbed instance Mx by the perturbed

decision function f ′(x) is equivalent to classifying the original instance x by the original

decision function f(x), the data owner can perturb the testing instances by the random

matrix M the same with the one perturbing training instances, and then send the perturbed

testing instances to the service provider for outsourcing the testing tasks.

Outsourcing the testing tasks is not limited to outsourcing to the service provider who

generates the SVM classifier from perturbed training data. The testing task can be out-

sourced to another party by sending to whom the perturbed decision function, including

the perturbed reduced set, and the perturbed testing instances for performing testings.

When outsourcing the testing task, the random matrix for perturbation can be changed

for higher security concerns. It is done by perturbing the testing instances by another

random matrix M ′ and perturbing the random vectors of the reduced set by corresponded

(M ′T )−1, i.e., the random matrix M for perturbation in outsourcing the testing can be ar-

bitrarily changed by providing that the testing instances and random vectors are perturbed

by the pair M and (MT )−1 respectively.

Although the decision function of the SVM is very simple and can be computed fast,

since there are slower exponent computations involved in common kernel functions, ran-

domly transforming the testing data for outsourcing the testing is still able to save some
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computational load of the data owner. We will validate this claim in the experiment.

2.4.5 Computational Complexity and Communication Cost

The computational cost of utilizing the random linear transformation is similar to utiliz-

ing geometric transformations [9,10]. Compared to simply outsourcing the SVM training

without protecting the data, the additional computational cost imposed on the data owner

for protecting data privacy includes: (1) Generating an n × n random matrix for pertur-

bation, which costs O(n2). (2) Perturbing m n-dimensional training instances by matrix

multiplications, which costs O(m ·n2). (3) Generating and perturbing m̄ random vectors,

which costs O(m̄ · n2). Hence the totally additional computational cost imposed on the

data owner is O((m+ m̄+ 1)n2) ≈ O(mn2). For outsourcing the testing, the additional

computational cost is to perturb the testing instances, which costs O(n2) for each instance.

Compared to the geometric transformation-based scheme, applying the rotational trans-

formation costs O(mn2), and applying the translational transformation vector costs O(mn).

Hence the additional computational cost of using the geometric transformation is about

O(mn2), which is similar to using our random linear transformation-based scheme.

The communication cost of sending the random linear transformation-perturbed in-

stances is same to sending the original instances, both are O(mn). The additional com-

munication cost of using our random linear transformation-based scheme is to send the

perturbed random vectors of the reduced set in the training phase, which incurs O(m̄n)

redundant communication cost.

2.5 Security Analysis of the Outsourcing Scheme

In this section, we analyze the security issues of the random linear transformation-based

SVM outsourcing scheme. We consider on the dot product-based kernel functions in

the following discussions. For the Euclidean distance-based kernel functions, it can be

applied in a similar way. Without loss of generality, suppose that the service provider

has known the content of m − 1 training instances from external information sources.
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We prove that the service provider cannot rely on the leaked instances in connection with

the secure kernel matrix and perturbed data to derive the remaining one secret training

instance.

Corollary 2 The service provider cannot recover the random matrix M from the leaked

m− 1 training instances.

Proof 7 If the service provider can successfully determine the correspondence between

original instances xi’s and perturbed ones ci’s of n or more linearly independent xi’s, the

n×n random matrix M for perturbation can be derived by solving n equations. However,

since the distance and dot product between the training instances are not preserved in

the random linear transformation-based perturbation, the service provider is not able

to determine the correspondence between the original instances and the perturbed ones.

Hence the service provider cannot setup equations to derive the random matrix M .

Corollary 3 The service provider cannot recover the content of the perturbed reduced

set.

Proof 8 The service provider knows the dot product between any pair of ci and sj , i =

1, . . . ,m, j = 1, . . . , m̄. If the service provider knows m̄ linearly independent xi’s and

their corresponding ci’s, all the rj’s can be recovered from sj’s by solving m̄ equations.

But the service provider cannot not know the correspondence between any ci and xi, as

we have discussed in (2). Hence the service provider cannot setup equations to recover

the original content of the reduced set rj , j = 1, . . . , m̄. Also, since the service provider

cannot recover the reduced set, it cannot recover the random matrix M from the perturbed

reduced set.

Corollary 4 The service provider cannot recover the remaining one training instance.

Proof 9 Since the correspondence between the original training instances and the per-

turbed ones cannot be determined, as the reasons given in Corollary 2, and the dot prod-

uct relationships are not preserved, the remaining one training instance cannot be re-

covered by setting up equations. Although the service provider knows the dot products
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between the remaining one training instance and the random vectors of the reduced set,

it does not know the original content of the random vectors. Hence the remaining one

training instance also cannot be recovered from the perturbed random vectors.

The security of our scheme depends on the property of the random linear transformation-

based perturbation, which does not preserve the dot product and Euclidean distance rela-

tionships among the training instances and hence is resistant to the distance/dot product

inference attacks. For the geometric perturbation-based schemes [9, 10], if n or more lin-

early independent instances are leaked, the correspondence between the original instances

and the geometric-perturbed ones can be determined from the distance and dot product

relationships, and then all other instances can be recovered by setting up equations.

The security of outsourcing the testing is similar. Since the service provider does not

know the original content of the perturbed reduced set, it cannot recover the content of

the perturbed testing instances from the dot product or Euclidean distance between the

perturbed testing instances and the perturbed reduced set.

2.6 Enhancing Security with Redundancy

In this section, we show how to add redundancies to the perturbation for enhancing the

security of the privacy-preserving outsourcing scheme.

We consider the risk of being linked between the leaked instances and their perturbed

ones. Suppose the data owner wants to incrementally add new training instances to the

perturbed training dataset which has already been sent to the service provider, to comply

with the perturbation of the previously sent perturbed training dataset, the new training

instances are required to be perturbed by the same random matrix which perturbs the orig-

inal training dataset. If only a few new perturbed instances are sent to the service provider,

and the service provider obtains the actual instances of those newly added perturbed in-

stances from some external information sources, the service provider will have a good

chance to recognize their mappings by applying brute-force attacks. This can happen

on the situation when the data owner sends some new perturbed transactions to the ser-
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vice provider, the service provider acquires those new transactions from the compromised

customers of the data owner.

Although the random linear transformation is resistant to the distance/dot product

inference attacks, if there are only a few new transactions, the brute-force attack can

focus on the rather small new set and will have a higher possibility to succeed since the

combinations of a few leaked instances and a few new perturbed instances are not too

many. If the service provider recognizes the mappings of n or more linearly independent

training instances for n-dimensional data, then it can recover all other perturbed training

instances by setting up simultaneous linear equations.

A naı̈ve approach to prevent the mappings of new training instances being recognized

is simply adding new instances to the existing training dataset and perturbing the whole

new training dataset by another random matrix, and then sending the newly perturbed

training dataset along with the newly perturbed reduced set to the service provider. This

can ensure the large space of mappings to resist the brute-force attack. However, doing

this is costly in both computation and communication costs, especially when the training

dataset is very large.

In the following, we introduce a secure but less costly perturbation by using redundant

perturbations on the reduced set, which ensures that the brute-force attack is not able to

derive the mappings of incrementally added perturbed training instances.

Let p denote the number of new instances. When the data owner wants to add new

training instances {xm+1, . . . ,xm+p} to the existing perturbed training dataset {c1, . . . , cm}

in the service provider where ci = Mxi, i = 1, . . . ,m, the data owner generates another

new random matrix M1 to perturb the new instances as cm+i = M1xm+i, i = 1, . . . , p,

and uses the corresponding matrix to perturb the original reduced set again to generate

another perturbed version of the reduced set as s1j = (MT
1 )

−1rj , j = 1, . . . , m̄. Then the

data owner sends the perturbed new instances cm+i, i = 1, . . . , p and the newly perturbed

version of the reduced set s1j =, j = 1, . . . , m̄ to the service provider.

The service provider can derive the kernel evaluations between the new training in-

stances and the reduced set k(xm+i, rj), i = 1, . . . , p, j = 1, . . . , m̄ based on the dot
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product of cm+i, i = 1, . . . , p and s1j , j = 1, . . . , m̄. In conjunction with the original

secure kernel matrix, the service provider can then build a complete secure kernel matrix

on the whole training dataset including the newly added ones.

If p ≥ n, where n is the dimensions of the data, the data owner partitions the new

instances to q = ⌈ p
n−1

⌉ groups, where each group has at most n − 1 instances, and gen-

erates q different random matrices Mi, i = 1, . . . , q for perturbing each group of new

instances and their corresponding perturbed versions of the reduced set sij = (MT
i )

−1rj ,

i = 1, . . . , q, j = 1, . . . , m̄. Then all groups of perturbed new instances and correspond-

ing perturbed versions of the reduced set are sent to the service provider for building the

secure kernel matrix.

In the above scheme of incrementally adding new training instances to the perturbed

training dataset in the service provider, each group of new training instances are perturbed

by different random matrices, and the number of instances in each group is smaller than

the dimensions of the data. This ensures that the service provider cannot break the per-

turbations even if the service provider obtains the actual content of new instances from

external information sources. Because for breaking an n × n random linear transforma-

tion by brute-force attacks, at least n linearly independent instances are required to setting

up simultaneous equations. However, in each group of linear transformation, there are at

most n − 1 instances. Without enough linearly independent instances, there will be infi-

nite number of solutions. Hence all the random linear transformations in the incremental

addition of perturbed training data cannot be broken.

This approach provides security guarantees on the incremental addition of new train-

ing instances. The redundant communication cost of using this scheme is sending addi-

tional perturbed versions of the reduced set. Compared to the naı̈ve approach which sends

the complete newly perturbed training dataset, it can save much communication cost be-

cause typically the size of the reduced set is smaller than 10% of the training dataset.

For large dataset, the reduced set can be very small, simply 1% of the number of training

instances is appropriate given that the size of the reduced set is larger than some toler-

ance [28].
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The communication cost of the secure incremental approach is (p + m̄⌈ p
n−1

⌉)n for

sending the p perturbed new training instances and ⌈ p
n−1

⌉ groups of new perturbed ver-

sions of the reduced set. The naı̈ve approach requires sending a new perturbation of the

whole training dataset and the reduced set, which costs (m + p + m̄)n. If the size of the

reduced set m̄ is small or the dimensions of the data n is large, the secure incremental

approach can help to save much communication cost.

2.7 Experimental Analysis

In the experiments, we first compare the the classification performance between a con-

ventional SVM and the RSVM with random vectors as the reduced set to evaluate the

effectiveness of the proposed scheme on classification. Then we measure the computa-

tional time imposed on the data owner of using our privacy-preserving outsourcing SVM

scheme, and compare with the computational time of training the SVM locally to demon-

strate the computational load saved from using the outsourcing scheme. Finally, we com-

pare the classification performance with the SVM trained from the anonymized data since

the anonymous data publishing technique [50] is suitable for revealing the datasets where

only the identities of instances are concerned.

Since training SVMs on large datasets is very time consuming, for the ease of ex-

periments, we choose the datasets with moderate size for performing experiments. The

difference in the scale of consuming time between outsourcing and local training is clear

to demonstrate the efficacy of our scheme. The datasets used in the experiments are avail-

able at the UCI machine learning repository [5]. We select some medical datasets and

bank credit datasets, which have stronger privacy concerns, to evaluate the effectiveness

of the scheme. The medical datasets include Wisconsin breast cancer, Pima Indian di-

abetes, Liver disorder, Statlog heart disease, which contain medical records of patients.

The bank credit datasets are Australian credit and German credit numeric version, in

which personal information of bank customers is contained. Besides, we also adopt some

datasets which has less concern in data privacy, including the Ionosphere, which collects

the radar data of free electrons in the ionosphere, and some other datasets in the LIBSVM
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website [7], including Fourclass and Svmguide3. The statistics of the datasets are shown

in Table 2.1. The programs of random linear transformation and the RSVM are written in

Matlab. The experimental platform is a PC featured with an Intel Core 2 Q6600 CPU and

4GB RAM, running Windows XP.

Table 2.1: Dataset Statistics
Dataset Number of instances Number of attributes
Heart 270 13
Breast 683 10

Australian credit 690 14
Liver 345 6

German credit 1000 24
Diabetes 768 8

Ionosphere 351 34
Fourclass 862 2

Svmguide3 1243 22

2.7.1 Utility of Classification

In this section, we compare the classification performance between a conventional SVM

implementation, the LIBSVM [7], and the RSVM with random reduced set to show the

effectiveness of our scheme on classification.

We solve the L2-norm RSVM problem (the (2.4) of Section 2.4.1) by the smooth

SVM method [28,29,30]. Randomly generated vectors are adopted as the reduced set for

training the RSVM. The size of the reduced set is set to 10% of the size of the training

dataset. The adopted kernel function in both the RSVM and the LIBSVM is the Gaussian

kernel function. The cost/kernel parameters for training the RSVM and LIBSVM are

respectively determined by applying the grid search using cross-validation, where the

search range is the default of LIBSVM’s parameter search tool [7, 22].

Figure 2.2 shows the experimental results of comparing the classification performance.

The reported accuracy is the 5-fold cross-validation average. It is seen that the classifi-

cation accuracy of the RSVM with random vectors as the reduced set is similar to a

conventional SVM, which validates that our scheme is effective for classification.
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Figure 2.2: Comparison of the classification accuracy between the RSVM with random
reduced set and a conventional SVM.

2.7.2 Efficiency of Outsourcing

To demonstrate the benefits of outsourcing, we measure the computational overhead im-

posed on the data owner with using the privacy-preserving outsourcing scheme, and com-

pare it with the computational time of training the SVM locally by the data owner itself

to show how much computational cost can be saved from utilizing the privacy-preserving

outsourcing scheme.

Table 2.2 shows the comparison of the required computing time of the data owner

with and without utilizing the outsourcing. The SVM training includes the parameter

search process and training the final classifier by the selected parameter combination.

The search range adopted here is also the default of the LIBSVM’s parameter search

tool [7,22]. The training time of both the RSVM and the LIBSVM is listed for reference.

Note that we do not aim to compare the training time between the two training methods

since they are different implementations of the SVM. When using the outsourcing scheme

for the dataset with m instances in n-attribute, to perturb the data, the data owner needs to

generate an n× n random matrix for transformation, generate ⌈m/10⌉ random vectors in

n-dimensional for the reduced set of the RSVM, and transform the m training instances

and ⌈m/10⌉ random vectors by matrix multiplication. It is seen that these computations

can be executed very fast. On all of the datasets, they are done within 0.5 millisecond.

However, locally training the SVM takes at least several seconds to complete, which

costs the data owner more than 10,000 times of computing time than the outsourcing.
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The difference in the scale of computing time between outsourcing and locally training

is very large. This validates the claim that the proposed privacy-preserving outsourcing

scheme incurs merely little computational overhead to the data owner. The computational

load of the data owner can be significantly reduced, which clearly justify the efficacy of

the privacy-preserving outsourcing scheme.

Table 2.2: Time comparison of training SVMs with/without outsourcing
Privacy- Locally Locally

Dataset preserving Training Training
Outsourcing (RSVM) (LIBSVM)

Heart Disease 0.12 ms 2.9 s 6.5 s
Australian. credit 0.17 ms 9.7 s 40.4 s

German credit 0.35 ms 19.7 s 141.9 s
Breast cancer 0.14 ms 9.8 s 12.4 s

Diabetes 0.13 ms 10.8 s 123.4 s
Liver disorder 0.07 ms 2.6 s 32.3 s

Ionosphere 0.29ms 3.2s 9.4s
Fourclass 0.12ms 11.7s 35.9s

Svmguide3 0.49ms 28.5s 155.2s

Scalability of Random Linear Transformation

We measure the computing time of the perturbation with random linear transformation

on large-scale synthetic datasets to evaluate the scalability. The number of the instances

of the synthetic datasets ranges from 10000 to 50000, where the dimensionality of those

datasets are in 500 and 1000-dimensional, respectively. The computing time of the ran-

dom linear transformation is shown in Figure 2.3. It is seen that the random linear trans-

formation scales well with the increase of instances. Randomly transforming 50000 in-

stances in 1000-dimensional takes less than 5 seconds to complete.

Efficiency of Outsourcing the Testing

The overhead imposed on the data owner for outsourcing the testing is randomly trans-

forming the testing instances. We randomly generate 10000 testing instances for each

dataset to compare the time of outsourcing testing and local testing, where classifiers of

each dataset are the ones trained above. The results are reported in Table 2.3. It is seen
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Figure 2.3: Computing time of perturbing data by random linear transformation.

that the outsourcing scheme can save tens to hundreds of times of computational load

for the data owner. Since the SVM testing is already efficient, the difference between

outsourcing the testing and the local testing is not as significant as the cases of training.

Table 2.3: Time comparison of testing 10,000 instances with/without outsourcing
Privacy- Locally Locally

Dataset preserving Testing Testing
Outsourcing (RSVM) (LIBSVM)

Heart Disease 1.40 ms 43.29 ms 233.20 ms
Australian credit 1.46 ms 111.35 ms 1380.08 ms
German credit 3.13 ms 195.74 ms 1606.66 ms
Breast cancer 1.23 ms 103.21 ms 113.17 ms

Diabetes 0.96 ms 109.69 ms 816.05 ms
Liver disorder 0.39 ms 46.79 ms 430.28 ms

Ionosphere 5.22ms 79.49ms 269.06ms
Fourclass 0.17ms 106.61ms 265.85ms

Svmguide3 3.09ms 233.19ms 1302.06ms

2.7.3 Utility Comparison with k-Anonymity

In this section, we compare the classification performance between the RSVM with ran-

dom reduced set with the SVM classifiers trained from anonymous data anonymized by

the k-anonymity technique [23,49]. If only the identities of data are concerned, the anony-

mous data publishing technique can be adopted for sending the anonymized data to service

provider for outsourcing the SVM.

There are three of the above datasets containing quasi-identifier attributes: Statlog

heart has {age, sex}, Pima Indian diabetes has {age, number of pregnant, body mass in-

dex}, and German credit has {purpose, credit amount, personal status and sex, present
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residence since, age, job}. Value generalization hierarchies are first built on the quasi-

identifiers of each dataset, and then the Datafly algorithm [49] is performed to achieve

k-anonymity. Since the SVM is a value-based algorithm, for numerical attributes, each

generalized range is represented by the mean value, and for categorical data, the gener-

alized category is represented by exhibiting all children categories [23]. The cost/kernel

parameters to train the SVMs from anonymized data are determined by grid-search using

cross-validation.

The performance comparison between the RSVM with random reduced set and the

SVMs trained from k-anonymized data with k = 32 and k = 128 is shown in Figure

2.4. The reported accuracy is 5-fold cross-validation average. On German credit dataset,

the accuracy of applying the k-anonymity technique with k = 32 is similar to the RSVM

with random reduced set, but it falls down when k = 128 due to the severer distortion

of the quasi-identifier values. On the Heart and Diabetes datasets, k = 32 is enough to

significantly distort their quasi-identifier values and thus results in lower accuracy.
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Figure 2.4: Classification performance comparison between the RSVM with random re-
duced set and the SVMs trained from k-anonymized data.

It is seen that the distortion of quasi-identifiers to achieve k-anonymity will hurt the

performance of the SVM, and the performance may get worse when a large k is applied

for better identity protection. Compared with outsourcing the SVM by k-anonymity, our

scheme hardly hurts the performance of the SVM, and provides better protection to the

data privacy since all attributes are perturbed by the random linear transformation.
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2.8 Summary

We propose a privacy-preserving outsourcing scheme of the SVM which protects the data

by the random linear transformation. It provides higher security on the data privacy than

existing works while achieves similar classification accuracy to a normal SVM classifier.

The random linear transformation-based outsourcing scheme protects both the privacy of

data and generated classifiers, and imposes very little overhead on the data owner.
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Chapter 3

On the Design and Analysis of the

Privacy-Preserving SVM Classifier

3.1 Introduction

There is an increasing degree of concern on the privacy protection of personal information

recently due to the popularity of electronic data held by commercial corporations. Data

mining techniques [11] have been viewed as a threat to the sensitive content of personal

information. This kind of privacy issue has led to research for privacy-preserving data

mining techniques [2, 4, 32]. One of the important data mining tasks is classification.

The classification algorithm learns a classification model (i.e., the classifier) from labeled

training data for the future use of classifying unseen data. There have been many privacy-

preserving schemes designed for various classification algorithms [1, 4]. The support

vector machine (SVM) [6, 55], a powerful classification algorithm with state-of-the-art

performance, has also attracted lots of attention from researchers who studied privacy-

preserving data mining techniques [9, 26, 54, 58, 59].

However, a problem has still not been addressed in existing privacy-preserving SVM

work: the classifier learned by the SVM contains some intact instances of the training

data. The classification model of the SVM inherently violates the privacy. Revealing

the classifier will also reveal the private content of some individuals in the training data.

44



Consequently the classifier learned by the SVM cannot be publicly released or be shipped

to clients with privacy-preservation.

There is a significant difference between the SVM and other popular classification al-

gorithms: the classifier learned by the SVM contains some intact instances of the training

data. The subset of the training data kept in the SVM classifier are called support vec-

tors, which are the informative entries making up the classifier. The support vectors are

intact instances taken from the training data. The inclusion of those intact instances of

the training data prevents the SVM classifier from being public releasing or shipping to

client users since the release of the SVM classifier will disclose individual privacy which

may violate the privacy-preservation requirements for some legal or commercial reasons.

For instance, HIPAA laws require the medical data not to be released without appropriate

anonymization [21]. The leakage of personal information is also prohibited by laws in

many countries.

Most popular classification algorithms do not suffer from such direct violation of in-

dividual privacy. For example, in the decision tree classifier, each node of the decision

tree stands for an attribute and denotes splitting points of the attribute values for proceed-

ing to the next level [42]. The naı̈ve Bayesian classifier consists of prior probabilities of

each class and class conditional independent probabilities of each value [20]. The neu-

ral network classifier possesses simply a set of weights and biases, accompanied with an

activation function [20]. Unlike the SVM classifier which contains some intact training

instances, these classifiers merely have aggregate statistics of the training data. Disclos-

ing aggregate statistics also breaches the privacy in some extent since the actual content

of some training instances may be derived from the aggregate statistics with the help

of external information sources [36]. However, the direct privacy violation of the SVM

classifier which discloses some intact training instances without any extent of protection

is much severer. As long as the privacy-preserving issue is considered, this is the fun-

damental difference between the SVM and other popular classification algorithms. The

classifier of the SVM inherently violates the privacy. It incorporates a subset of training

data. Hence releasing the classifier will violate the privacy of individuals. The other ex-
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ample of the classification algorithm which also directly violates individual privacy in its

classification model is the k-nearest neighbor (kNN) classifier, which requires all training

instances being kept in the classifier [20].

The violation of privacy in the classification model will restrict the applicability of

the SVM. Consider an application scenario as follows: A hospital, or a medical institute,

has collected a large amount of medical records. The institute intends to capitalize those

collected medical records to learn an SVM classifier for predicting whether a patient is

subject to a disease or not. Due to the inclusion of some medical records in the classifier,

releasing the classifier to other hospitals or research institutes will expose the sensitive

information of some patients. This violation of privacy limits the applicability of the

learned SVM classifier. Although the identifier field of each record has been removed,

the identity of individual data may still be recognized from quasi-identifiers like gender,

blood type, age, date of birth, and zip code [48].

There is also an increasing trend to outsource IT services to external service providers.

Major IT companies like Google and Microsoft are constructing infrastructures to run

Software as a Service. This benefits small companies to run applications in the cloud-

computing environment. Outsourcing can save much hardware, software and personnel

investments, but data privacy is a critical concern in outsourcing since the external service

providers may be malicious or compromised. For using SVM classifiers in the cloud-

computing environment, the private information of the training data should not be dis-

closed to unauthorized parties. Fig. 3.1 illustrates a general application scenario: the

training data owner trains a classifier, and then publishes or ships the classifier to client

users, or puts to the cloud-computing environment.

Although the anonymous data publishing technique k-anonymity [49] can be applied

to data mining tasks [23], the performance may be degraded due to the distortion of

data caused by generalized and suppressed quasi-identifiers. Furthermore, k-anonymity

actually breaches privacy since the identity may be recognized from generalized quasi-

identifiers and unmodified attributes with the help of external information sources.

Existing works which studied the privacy-preserving SVMs [9, 26, 54, 58, 59] mainly
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Figure 3.1: Application scenario: Releasing the learned SVM classifier to clients or out-
sourcing to cloud-computing service providers without exposing the sensitive content of
the training data.

focused on privacy-preservation at training time. The privacy violation of the classifica-

tion model of the SVM and releasing the SVM classifier has not been addressed. The

methods proposed in [26, 54, 58, 59] aim to prevent the training data from being revealed

to each other when the training data are separately held by several parties. Testing must be

cooperatively done by the holders of the training data. The work of [9] considered a sce-

nario that the training data owner delivers the perturbed training data to an untrustworthy

3rd-party to learn an SVM classifier.

To the best of our knowledge, there has not been work extending the notion of privacy-

preservation to the release of the SVM classifier. In this chapter, we propose the Privacy-

Preserving SVM Classifier (abbreviated as PPSVC) to protect the sensitive content of

support vectors in the SVM classifier. The PPSVC is designed for the SVM classifier

trained with the commonly used Gaussian kernel function. It post-processes the SVM

classifier to destroy the attribute values of support vectors, and outputs a function which

precisely approximates the decision function of the original SVM classifier to act as a

privacy-preserving SVM classifier. Fig. 3.2 shows the concept of the PPSVC. The sup-

port vectors in the decision function of the SVM classifier are transformed to a Taylor

polynomial of linear combinations of monomial feature mapped support vectors, where

the sensitive content of individual support vectors are destroyed by the linear combination.

We prove that the PPSVC is robust against adversarial attacks, and in the experiments, we

verified with real data that the PPSVC can achieve comparable classification accuracy to
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the original SVM classifier.

Figure 3.2: The PPSVC post-processes the SVM classifier to transform it to a privacy-
preserving SVM classifier which does not disclose the private content of the training data.

The PPSVC can be viewed as a general scheme which is able to offer a proper com-

promise between the approximating precision and the computational complexity of the

resulted classifier. A higher degree of approximation will result in a classifier with close

classification accuracy to the original at the cost of higher computational complexity. The

PPSVC with a low approximation degree, i.e., low computational complexity, is enough

to precisely approximate the SVM classifier and hence achieves comparable classification

accuracy. In the experiments, we demonstrate that the Taylor polynomial in the PPSVC

with degree ≤ 5 is able to obtain almost the same accuracy with the original SVM classi-

fier.

The privacy-preserving release of the SVM classifier enabled by PPSVC can benefit

the users other than the data owner without compromising privacy. For example, in addi-

tion to learning an SVM from the medical records, learning from the financial transactions

collected by a bank is useful to predict the credit of customers, and learning a spam filter

from a mail server or learning a network intrusion detector from network server’s logs are

also important applications of classification. The privacy violation of the SVM classifier

will restrict its use only to the ones who can collect the data, but collecting the data is

usually an expensive task or can only be performed by professional institutes. Since the

PPSVC makes available the release of the SVM classifier without violating privacy, the

SVM classifiers are not restricted to be utilized by the data owners, but can benefit the

users who are not able to collect a large amount of training data.

The following summarizes our contributions:

• We address the privacy violation problem of releasing or publishing the SVM clas-

sifier. We propose the PPSVC, which precisely approximates the decision function
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of the Gaussian kernel SVM classifier in a privacy-preserving form. The PPSVC

is realized by transforming the original decision function of the SVM classifier to

an infinite series of linear combinations of monomial feature mapped support vec-

tors in which the infinite series is then approximated by a Taylor polynomial. The

releasable PPSVC benefits the classifier users with the good classification perfor-

mance of the SVM without violating the individual privacy of the training data.

• We study the SVM kernel parameter’s influence on the approximating precision

of the PPSVC, and provide a simple but subtle strategy for selecting the kernel

parameter for obtaining good approximating precision in PPSVC. We also study

the security issue of the PPSVC by considering the adversarial attack with the help

of external information sources.

• Extensive experiments are conducted to evaluate the performance of the PPSVC.

Experimental results on real data show that the PPSVC can achieve almost the

same accuracy with the original SVM classifier. The effect of the kernel parameter

selecting strategy is also experimented and the results validate the claim that it does

not apparently affect the classification performance.

The rest of this chapter is organized as follows: Section 3.2 briefly reviews the related

work of the privacy-preserving data mining and privacy-preserving SVMs. Section 3.3

reviews the SVM and discusses the privacy violation of its classification model. Section

3.4 constructs the PPSVC. In Section 3.5, we discuss the security and approximating

precision issues of the PPSVC. Section 3.6 shows the experimental results. Section 3.7

concludes this chapter.

3.2 Related Work

In this section, we first briefly review some privacy-preserving data mining works, and

then focus on the works related to privacy-preserving SVMs.

The work of [4] utilized a randomization-based perturbation approach to perturb the

data. The data are individually perturbed by adding noise randomly drawn from a known
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distribution. A decision tree classifier is then learned from the reconstructed aggregate

distributions of the perturbed data. In [1], a condensation-based approach is proposed.

Data are first clustered into groups, and then pseudo-data are generated from those clus-

tered groups. Data mining tasks are then done on the generated synthetic data instead of

the original data.

The k-anonymity [49] is an anonymous data publishing technique. It makes each

quasi-identifier value be able to indistinguishably map into at least k-records by general-

izing or suppressing the values in quasi-identifier attributes. The l-diversity [33] enhances

k-anonymity by making each sensitive value appear no more than m/l times in a quasi-

identifier group with m tuples. The k-anonymity has been successfully utilized in data

mining. For example, the work of [23] studied the performance of the SVM built upon

the anonymized data and the anonymized data with additional statistics of the generalized

fields. The distortion of data in k-anonymity may degrade the data mining performance,

and the privacy is actually breached due to the disclosing of generalized values and un-

modified sensitive attributes, which may incur the risk of being identified from the help

of external information sources.

Another family of privacy-preserving data mining algorithms is distributed meth-

ods [39]. The distributed methods perform data mining over the entire dataset which

is separately held by several parties without compromising the data privacy of each party.

The dataset may either be horizontally partitioned, vertically partitioned, or arbitrarily

partitioned. The distributed privacy-preserving data mining algorithm exchanges neces-

sary information between parties to compute aggregate results without sharing the actual

private content with each other. This method capitalizes the secure multi-party compu-

tations from cryptography. Several privacy-preserving SVM works [26, 54, 58, 59] also

belong to this family.

In the following, we detail the works of privacy-preserving SVMs. The works of

[26,54,58,59] designed privacy-preserving protocols to exchange the necessary informa-

tion for training the SVM on the data partitioned among different parties without revealing

the actual content of each one’s data to others. In [54, 58, 59], the secure multi-party in-
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teger sum are utilized in the protocols to cooperatively compute the Gram matrix in the

SVM formulation from the data separately held by several parties. In [26], a privacy-

preserving protocol to perform the kernel adatron algorithm for training the SVM on the

data separately held by different parties is designed based on the additively homomor-

phic public-key cryptosystem. In these distributed methods, at the end of running the

protocols, each party will hold a share of the learned SVM classifier. Testing must be co-

operatively performed by all involved parties since the support vectors, which come from

the training data, are separately held. The goal of these distributed methods is to train an

SVM classifier from the whole data separately held by different parties without compro-

mising each party’s privacy, and is orthogonal to our work for releasing the learned SVM

classifier without violating the privacy of support vectors.

The work of [9] exploits the rotation invariant property of common kernel functions,

and applies the rotation matrix to transform the data for outsourcing the training of the

SVM to an external service provider without revealing the actual content of the data.

The purpose of this work is also orthogonal to our work for privacy-preserving release

of the SVM classifier. The privacy-preserving scheme used in this work for outsourcing

the SVM training is not able to be utilized in privacy-preserving release of the SVM

classifier since it requires the testing data also be rotationally transformed by the same

matrix applying to the training data, but the matrix should be kept secret, or the original

content of the rotationally transformed support vectors can be recovered by multiplying

the inverse of the matrix.

Compared to existing privacy-preserving SVM works where [9] aims at outsourcing

the SVM training without revealing the actual content of data and [26, 54, 58, 59] aim

at cooperatively train the SVM without revealing each one’s own data when data are

separately held, our work addresses the inherent privacy violation problem of the SVM

classifier which incorporates a subset of training data, and design a mathematical trans-

forming method to protect the private content of support vectors to make available the

release of the SVM classifier. Compared to anonymous data publishing techniques, our

scheme achieves better performance and provides stronger privacy protection by hiding
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all the feature values.

3.3 SVM and Privacy-Preservation

We first briefly review the SVM in Section 3.3.1 to give the preliminaries of this work.

Then in Section 3.3.2, we discuss the privacy violation problems of the SVM classifier

that a subset of the training data will inevitably be disclosed.

3.3.1 Review of the SVM

The SVM is a statistically robust learning method based on the structural risk minimiza-

tion [55]. It trains a classifier by finding an optimal separating hyperplane which maxi-

mizes the margin between two classes of data in the kernel induced feature space. Without

loss of generality, suppose that there are m instances of training data. Each instance con-

sists of an (xi, yi) pair where xi ∈ RN is a vector containing attributes of the i-th instance,

and yi ∈ {+1,−1} is the class label for the instance. The objective of the SVM is to

find the optimal separating hyperplane w · x+ b = 0 between the two classes of data. To

classify a testing instance x, the decision function is

f(x) = w · x+ b (3.1)

The corresponding classifier is sgn(f(x)).

The SVM finds the optimal separating hyperplane by solving the following quadratic

programming optimization problem:

arg min
w,b,ξ

1

2
||w||2 + C

m∑
i=1

ξi

subject to

yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, for i = 1, ...,m

(3.2)

In the objective function, minimizing 1
2
||w||2 corresponds to maximizing the margin be-

tween w · x + b = 1 and w · x + b = −1. The constraints aim to put the instances
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Figure 3.3: The SVM maximizes the margin between two classes of data. Squared points
are support vectors.

with positive labels at one side of the margin w · x + b ≥ 1, and the ones with negative

labels at the other side w · x+ b ≤ −1. The variables ξi, i = 1, · · · ,m are called slacks.

Each ξi denotes the extent of xi falling outside its corresponding region. C is called cost

parameter, which is a positive constant specified by the user. The cost parameter denotes

the penalty of slacks. The objective function of the optimization problem is a trade-off

between maximizing the margin and minimizing the slacks. A larger C corresponds to

assigning higher penalty to slacks, which will result in less slacks but a smaller margin.

The value of the cost parameter C is usually determined by cross-validation. Fig. 3.3

gives an example to illustrate the concept of the formulation of the SVM.

The optimization problem of the SVM is usually solved in its dual form derived by

applying the Lagrange multipliers and KKT-conditions [6, 55]. Solving the dual problem

is equivalent to solving the primal problem. The dual form of the SVM’s optimization

problem implies the applicability of the kernel trick since the data vectors of the training

instances {x1,x2, · · · ,xm} and the testing instance x appear only in dot product com-

putations both in the optimization problem and the decision function. A kernel function

K(x,y) implicitly maps the data x and y into some high-dimensional space and com-

putes their dot product there without actually mapping the data [55]. By replacing the

dot products with kernel functions, the kernelized dual form of the SVM’s optimization
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problem is

argmin
α

1

2

m∑
i,j=1

αiαjyiyjK(xi,xj)−
m∑
i=1

αi

subject to
m∑
i=1

αiyi = 0, 0 ≤ αi ≤ C for i = 1, ...,m

(3.3)

Since w =
∑m

i=1 αiyixi in the duality, the kernelized decision function in the dual form

is

f(x) =
m∑
i=1

αiyiK(xi,x) + b (3.4)

The bias term b can be calculated from KKT-complementarity conditions [6, 55] after

solving the optimization problem.

By applying the kernel trick, the SVM implicitly maps data into a high-dimensional

space and finds an optimal separating hyperplane there. The testing is also done in the

kernel induced high-dimensional space by the kernelized decision function. The ker-

nel induced mapping and high-dimensional space are usually called feature mapping

and feature space respectively. The original dot product is called linear kernel, i.e.,

K(x,y) = x · y. With linear kernel, the optimal separating hyperplane is found in the

original space without feature mapping. The feature mapping of nonlinear kernel func-

tions could be very complex and we may not even know the actual mapping. A commonly

used kernel function is Gaussian kernel

K(x,y) = exp(−g||x− y||2) (3.5)

where g > 0 is a parameter. Gaussian kernel represents each instance by a kernel-shaped

function sitting on the instance; each instance is represented by its similarity to all other

instances. The induced mapping of Gaussian kernel is infinite-dimensional [46, 55].

In the decision function of the dual form (3.4), it is seen that only the non-zero αi’s

and the corresponding (xi, yi) pairs are required to be kept in the decision function. Those

(xi, yi) pairs with non-zero αi are called support vectors. They are the instances falling
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outside their corresponding region after solving the optimization problem (the squared

points in Fig. 3.3). Support vectors are the informative points to make up the SVM

classifier. All training data except support vectors are discarded after training. For ease

of exposition, we will denote support vectors, the (xi, yi) pairs with nonzero αi after

training, as (SVi, yi). The number of support vectors is denoted as m′. So in the following

paragraphs the decision function will be represented as

f(x) =
m′∑
i=1

αiyiK(SVi,x) + b (3.6)

3.3.2 Privacy Violation of the SVM Classifiers

From the decision function of the SVM classifier (3.6), we note that the support vectors

existing in the SVM classifier are a subset of the training data. Parts of the training data are

kept in their original content in the decision function for performing kernel evaluations

with the testing instance. Releasing the SVM classifier will violate privacy due to the

inclusion of the sensitive content.

The linear kernel SVM is an exception. The SVM classifier learned with the linear

kernel is inherently privacy-preserving. With the linear kernel, the support vectors incor-

porated in the decision function f(x) =
∑m′

i=1 αiyiSVi · x + b can be linearly combined

to one vector w =
∑m′

i=1 αiyiSVi so

f(x) = w · x+ b (3.7)

Hence the classifier sgn(f(x)) of the linear kernel SVM can be simply represented by a

hyperplane w · x+ b = 0. The w is a linear combination of all support vectors. Sensitive

content of each individual support vector is destroyed by the weighted adding up, and

therefore the classifier does not include individual private information of the training data.

Fig. 3.3 shows a linear kernel SVM classifier. Merely the separating hyperplane w·x+b =

0 is enough to classify the data. No individual support vector (squared points in Fig. 3.3)

needs to be kept in the classifier. Hence the linear kernel SVM classifier is inherently
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Figure 3.4: A Gaussian kernel SVM classifier: All support vectors must be kept in the
classifier, which violates privacy.

privacy-preserving.

Since the linear kernel SVM is only suitable to learn a classifier on linearly separable

data, its usability on classification is limited. For linearly inseparable data, the linear

kernel is inappropriate. A large part of the power of the SVM comes from the kernel trick.

Without applying kernel functions, the SVM is merely a linear separator only suitable to

linearly separable data. By replacing the dot products with kernel functions in the SVM

formulation, data are non-linearly mapped into a high-dimensional feature space, and the

SVM learns a linear classifier there. Since data in high-dimensional space are highly

sparse, it is easy to separate the data there by a linear separator.

However, the inherent privacy-preserving property of the linear kernel SVM classifier

disappears when the nonlinear kernel is applied. In the nonlinear kernel SVM, the w in

the decision function f(x) = w · x+ b cannot be computed explicitly like the linear ker-

nel. The vector w exists in the kernel induced feature space as w =
∑m′

i=1 αiyiΦ(SVi),

where Φ() denotes the feature mapping induced by the kernel function. Since the fea-

ture mapping is done implicitly, the w can only be stated as a linear combination of

kernel evaluations as w =
∑m′

i=1 αiyiK(SVi, ), and the decision function is f(x) =∑m′

i=1 αiyiK(SVi,x) + b. This restriction causes us not able to linearly combine the sup-

port vectors into one vector w. The classifier has all support vectors in their original

content to make possible the kernel evaluations K(SVi,x) between the testing instance

x and each support vector.
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Fig. 3.4 illustrates a Gaussian kernel SVM trained on a small dataset. The three

curves are the points evaluated to f(x) = −1, +1, and 0 in the figure. They correspond

to the hyperplanes w · Φ(x) + b = −1, +1, and 0 in the kernel induced feature space.

The support vectors are the instances falling into wrong region in the feature space. The

curve corresponding to f(x) = 0 is the decision boundary in the original space, which is

the optimal separating hyperplane in the feature space. All support vectors (the squared

points) are required to be kept in the classifier in order to do kernel evaluations with the

testing instance, i.e., the computation of the decision function (3.6), to decide which side

of the separating hyperplane in the feature space the testing instance falls into. Releasing

the classifier will expose the private content of support vectors, which are intact tuples of

a subset of the training data, therefore violating the privacy.

3.4 Privacy-Preserving SVM Classifier

The objective of our work is to construct a method which makes possible the release of the

Gaussian kernel SVM classifier with privacy-preservation. In this section, we construct

the privacy-preserving SVM classifier (PPSVC). The PPSVC precisely approximates the

Gaussian kernel SVM classifier with protection to the private content of support vectors,

and therefore enable the release of the SVM classifier with privacy-preservation.

3.4.1 Construction of the Privacy-Preserving Decision Function

The decision function of the Gaussian kernel SVM classifier is

f(x) =
m′∑
i=1

αiyi exp(−g||SVi − x||2) + b (3.8)

The components of the classifier are the kernel parameter g, the bias term b, support

vectors {(SV1, y1), · · · , (SVm′ , ym′)} and their corresponding supports {α1, · · · , αm′}.

The content of each attribute vector SVi is considered to be sensitive, but the class labels

yi’s are usually not. We intend to destroy the content of all support vectors’ attribute

vectors in the decision function by an irreversible way similar to the effect the linear
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combination causes in the linear kernel SVM classifier, as we have mentioned in Section

3.3.2.

The value of the Gaussian kernel function K(x,y) = exp(−g||x − y||2) depends on

the relative distance between two instances ||x − y||. In the decision function (3.8), the

term ||SVi−x||2 which calculates the square of the distance between the testing instance

x and a support vector SVi can be computed by ||SVi − x||2 = ||SVi||2 − 2(SVi · x) +

||x||2 . So the decision function (3.8) can be equivalently formulated as

f(x) = b+

exp(−g||x||2)
m′∑
i=1

αiyi exp(−g||SVi||2) exp(2gSVi · x) (3.9)

In (3.9), the expanded form of the decision function, there are two terms contain-

ing support vectors: exp(−g||SVi||2) and exp(2gSVi · x) in the summation operator.

The former term depends merely on the magnitude of SVi and hence can be computed

a priori. All exp(−g||SVi||2), i = 1 to m′ can be combined with αiyi to constants

{c1, c2, · · · , cm′} as

ci = αiyi exp(−g||SVi||2) for i = 1 to m′

Then the decision function becomes

f(x) = exp(−g||x||2)
m′∑
i=1

ci exp(2gSVi · x) + b (3.10)

The term exp(−g||x||2) extracted from the summation operator in (3.9) or (3.10) is a

scalar related only to the testing instance x. This term has no connection with the privacy

of the training data. Now the support vectors exist only in the term exp(2gSVi · x) in the

summation operator. We proceed to tackle it by replacing the exponential function with

its infinite series representation:

exp(x) = 1 + x+
x2

2!
+

x3

3!
+ · · · =

∞∑
d=0

xd

d!
(3.11)
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By replacing exp(2gSVi · x) with its infinite series representation exp(2gSVi · x) =∑∞
d=0

(2gSVi·x)d
d!

, the
∑m′

i=1 ci exp(2gSVi · x) of the decision function (3.10) becomes

m′∑
i=1

ci exp(2gSVi · x) =
m′∑
i=1

(
ci

∞∑
d=0

(2gSVi · x)d

d!

)

=
∞∑
d=0

c1(2g)
d(SV1 · x)d

d!
+ · · ·+

∞∑
d=0

cm′(2g)d(SVm′ · x)d

d!

=
∞∑
d=0

(2g)d

d!

(
c1(SV1 · x)d + · · ·+ cm′(SVm′ · x)d

)
=

m′∑
i=1

ci +
∞∑
d=1

(2g)d

d!

(
m′∑
i=1

ci(SVi · x)d
)

(3.12)

It follows that the support vectors exist only in the term (SVi · x)d of the inner sum-

mation operator. We next take a key step by applying the monomial feature mapping.

The form of (x · y)d corresponds to the monomial feature kernel [47], which can

be defined as the dot product of the monomial feature mapped x and y as (x · y)d =

Φd(x) · Φd(y) where Φd() is the order-d monomial feature mapping (The rationale of the

monomial feature mapping will be given in Section 3.4.1).

Thus the (SVi · x)d in (3.12) with monomial feature kernel form can be equivalently

computed by the dot product of the order-d monomial feature mapped support vector SVi

and testing instance x:

(SVi · x)d = Φd(SVi) · Φd(x)

A key step arises from writing the monomial feature kernel as the dot product of

monomial feature mapped instances. By replacing the (SVi · x)d with Φd(SVi) · Φd(x)

in (3.12), we have

m′∑
i=1

ci +
∞∑
d=1

(2g)d

d!

(
m′∑
i=1

ciΦd(SVi) · Φd(x)

)

=
m′∑
i=1

ci +
∞∑
d=1

Φd(x) ·

(
(2g)d

d!

m′∑
i=1

ciΦd(SVi)

)
(3.13)

It is noted that in each order-d monomial feature mapped space, all the order-d mono-
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mial feature mapped support vectors {Φd(SV1), · · · ,Φd(SVm′)} can be linearly com-

bined into one vector:

wd =
(2g)d

d!

m′∑
i=1

ciΦd(SVi) (3.14)

In each wd, all support vectors are mapped into the order-d monomial feature space

and linearly combined, and hence the content of each support vector SVi has been de-

stroyed in the linear combination similar to the w =
∑m′

i=1 αiyiSVi in the linear kernel

SVM classifier (3.7).

We then let

w0 =
m′∑
i=1

ci (3.15)

By substituting both (3.14) and (3.15) into (3.13), which is equivalent to the∑m′

i=1 ci exp(2gSVi · x) of the decision function (3.10), the (3.13) can be represented as

m′∑
i=1

ci +
∞∑
d=1

Φd(x) ·

(
(2g)d

d!

m′∑
i=1

ciΦd(SVi)

)

= w0 +
∞∑
d=1

Φd(x) ·wd (3.16)

By feeding the (3.16) into the decision function (3.10), the decision function becomes:

f(x) = exp(−g||x||2)

(
w0 +

∞∑
d=1

Φd(x) ·wd

)
+ b (3.17)

This is the privacy-preserving form of the decision function of the Gaussian kernel

SVM classifier. In this new form of the decision function, the data which need to be pre-

served in the classifier are wd’s of each order-d instead of support vectors in the original

decision function. The private content of support vectors has been destroyed by the linear

combinations, and the necessary information to perform classification originally provided

from support vectors can be given by wd’s, which are linear combinations of monomial

feature mapped support vectors.

The privacy-preserving decision function (3.17) has an infinite series, which contains

wd, d = 1, . . . ,∞, the linear combinations of monomial feature mapped support vectors
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from order-1 to order-∞, and the monomial feature mapped testing instance Φd(x) from

order-1 to order-∞. The infinite complexity of the privacy-preserving decision function

is surely impractical. However, since the infinite series in the privacy-preserving decision

function is a Taylor series, it can be precisely approximated near the evaluating point by

merely a little number of low-order terms and hence makes possible the practical use.

Later we will study the precision of approximating by the Taylor polynomial both in

theoretical analyses and empirical experiments to show that the privacy-preserving deci-

sion function can be precisely approximated by using merely a few low-order terms of

the infinite series. Before going to the approximation of the privacy-preserving decision

function, we first present the monomial feature mapping.

Monomial Feature Mapping

Lemma 6 below states how monomial feature mapping replaces (x·y)d by the dot product

of Φd(x) and Φd(y), the order-d monomial feature mapped x and y.

Lemma 6 For x,y ∈ RN and d ∈ N, the monomial feature kernel K(x,y) = (x · y)d

generates order-d monomial features of x and y. Suppose x and y are n-dimensional.

The feature map of this kernel can be defined coordinate-wise as

Φm(x) =

√
d!∏n

i=1mi!

n∏
i=1

xmi
i (3.18)

for every m ∈ Nn with
∑n

i=1mi = d. Every such m corresponds to each dimension of

monomial features [46, 47].

Proof 10 All terms in the expansion of (x · y)d = (x1y1 + · · · + xnyn)
d will be in the

form (x1y1)
m1(x2y2)

m2 · · · (xnyn)
mn , where each mi is an integer with 0 ≤ mi ≤ d and∑n

i=1mi = d. By multinomial theorem [18], the coefficient of each

(x1y1)
m1(x2y2)

m2 · · · (xnyn)
mn term is d!

m1!m2!···mn!
. Thus each dimension of the monomial

feature mapped x is
√

d!
m1!m2!···mn!

xm1
1 xm2

2 · · ·xmn
n for every m ∈ Nn with

∑n
i=1mi = d.
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A simple example to illustrate the monomial feature mapping is given as follows. The

order-2 monomial feature kernel of x,y ∈ R2 [47, 55]:

(x · y)2 = ((x1, x2) · (y1, y2))2 = (x1y1 + x2y2)
2

= (x2
1,
√
2x1x2, x

2
2) · (y21,

√
2y1y2, y

2
2)

From Lemma 6, those m’s satisfying
∑2

i=1mi = 2 with 0 ≤ mi ≤ 2 are (2, 0), (1, 1),

and (0, 2). So the order-2 monomial features of x ∈ R2 are x2
1, x1x2, and x2

2. The

corresponding coefficients are 1,
√
2, and 1 from the (3.18) of Lemma 6. Hence the

order-2 monomial feature mapping of x = (x1, x2) (y, respectively) is (x2
1,
√
2x1x2, x

2
2).

The dimensionality of the order-d monomial feature mapping for n-dimensional vec-

tors is stated in Lemma 7 below.

Lemma 7 For x ∈ Rn, the dimensionality of x’s order-d monomial feature mapping is(
d+n−1

d

)
.

Proof 11 From Lemma 6, every m ∈ Nn with
∑n

i=1 mi = d where each mi is an integer

with 0 ≤ mi ≤ d corresponds to one dimension of monomial features. Enumerating all

such m’s is equivalent to finding all integer solutions of the equation m1+m2+· · ·+mn =

d where mi ≥ 0 for i = 1 to n. Enumerating all integer solutions to this equation is

equivalent to enumerating all size-d combinations with repetitions from n kinds of objects

[18], and the number of the combinations with repetitions is
(
d+n−1

d

)
.

To generate the monomial feature mapping, an algorithm to enumerate all size-d com-

binations with repetitions from n kinds of objects is required. Due to the space limit, its

detail is omitted. Notice that the monomial feature mappings do not need to be gener-

ated in testing time. To make a more efficient classifier, those mappings can be generated

off-line, and the classifier simply takes the corresponded mapping to use.
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3.4.2 PPSVC: Approximation of the Privacy-Preserving Decision Func-

tion

The privacy-preserving decision function (3.17), an equivalent of the Gaussian kernel

SVM’s decision function (3.8), contains an infinite series. That infinite series comes from

the exponential function and hence is able to be approximated by a finite number of low-

order terms as well as the approximation of exp(x) by low-order terms of its infinite series

representation (3.11). The approximation of the privacy-preserving decision function is

done by taking the summation of low-order terms from d = 1 to a user-specified approx-

imation degree (denoted as du), and then the approximated privacy-preserving decision

function is

f(x) = exp(−g||x||2)

(
w0 +

du∑
d=1

Φd(x) ·wd

)
+ b (3.19)

This is the decision function of our privacy-preserving SVM classifier (PPSVC). Users

may intend to have an approximated classifier that is able to provide similar decision

boundary like the original one. The higher the user specified approximation degree du is,

the closer to the original decision function the approximated decision function gets. The

approximated privacy-preserving decision function becomes equivalent to the original

Gaussian kernel SVM’s decision function when the du approaches infinity. However, a

high approximation degree du will result in a high computational complexity classifier

due to the high dimensionality of monomial feature mappings. From Lemma 6, it is

seen that for n-dimensional data, the dimensionality of their order-d monomial feature

mapping is
(
d+n−1

d

)
. If the value of du is too big, the monomial feature mapping will

become intractable. However, the property of quick approximation of exp(x) by low-

order terms of its infinite series representation also exists in the PPSVC. We will show

that the PPSVC with a low approximation degree du (usually du ≤ 5) is enough to obtain

precise approximation and hence close classification accuracy both in theoretical reasons

and empirical experiments.

Fig. 3.5 illustrates a series of approximated decision boundaries generated by the

PPSVC from du = 1 to du = 8 to approximate the decision boundary of the Gaussian
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Figure 3.5: The PPSVC’s approximation of the decision boundary from du = 1 to du = 8.
The solid curve in each sub-figure is the original decision boundary, and the dotted curve
is the approximation of the PPSVC. From du = 5, the two curves are almost overlapped
together.

kernel SVM classifier trained in Fig. 3.4. In each sub-figure, the solid curve is the deci-

sion boundary of the original Gaussian kernel SVM classifier, and the dotted curve is the

approximated decision boundary generated by the PPSVC. We can see that after du = 3,

the approximated decision boundary generated by the PPSVC becomes very close to the

original one. After du = 5, the PPSVC provides almost the same decision boundary to the

original. Similar to the approximation of exp(x) by low-order terms of its infinite series

representation, the PPSVC (3.19) well approximates the Gaussian kernel SVM classifier

by low-order terms of the privacy-preserving decision function (3.17).

Figure 3.6 shows the flow of deriving the PPSVC. After training the SVM, there will

be a subset of the training data being selected as support vectors accompanied with the

coefficients (αiyi,SVi), i = 1, . . . ,m′ to form the decision function of the classifier. To

transform and approximate the decision function by the approximated privacy-preserving

decision function (3.19), the support vectors are first mapped to monomial feature space

from order-1 to order-du, where du is pre-determined. Then the approximated privacy-

preserving decision function’s components w0 and wd, which is the linear combination of

the order-d monomial feature mapped support vectors, from d = 1 to du, can be computed

by (3.14) and (3.15).

The components of the original Gaussian kernel SVM classifier are support vectors
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Figure 3.6: The flow diagram of deriving the privacy-preserving SVM classifier (PPSVC).

{SV1, · · · ,SVm′} and their corresponding coefficients {α1y1, · · · , αm′ym′}, the bias

term b, and the kernel parameter g. The b and g are common components in both the orig-

inal SVM classifier and the PPSVC. Compared to the original SVM classifier, the PPSVC

does not incorporate intact tuples of support vectors and their coefficients but the linear

combinations of monomial feature mapped support vectors w0, and w1 to wdu . The wd’s

comprise essential information of support vectors to precisely approximate the Gaussian

kernel SVM classifier without exposing support vectors’ sensitive content, where the at-

tribute values of support vectors have been destroyed by linear combinations. The approx-

imation of the PPSVC is similar to image compression which stores only low-frequency

components to compress images. In the PPSVC, the significant information provided by

support vectors to form a classifier is compressed into low-order wd terms.

3.4.3 Complexity of the PPSVC

The complexity of the resulted privacy-preserving classifier (PPSVC) depends on the di-

mensionality of the monomial feature mappings from d = 1 to du. The dimensionality

of the monomial feature mapping of order-d is
(
d+n−1

d

)
, where n is the dimensionality of

the input data. Hence the complexity of the PPSVC is O(
∑du

d=1

(
d+n−1

d

)
), which is the

summation of dimensions of the monomial feature mappings from order-1 to du. If du is

large, the complexity of the PPSVC will be very high. However, the good approximation

property benefits the PPSVC and a large du is hence unnecessary. We will verify this

claim on real data in the experiments. Most benchmark data with a small du (du ≤ 5) can

get nearly the same classification accuracy to the original SVM classifier. Therefore it is
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empirically suggested to set du = 5 to obtain a good trade-off between the approximating

precision and the complexity of the PPSVC. For a user who intends to have a precise ap-

proximation, he may estimate the resulting complexity and select a du as high as possible

within the tolerable complexity.

If the dimensionality of the data is large (n > 100), the dimensionality of the mono-

mial feature mapping may become intractable. In this case, it needs to apply the feature

selection to select the important features (attributes) which affect the classification per-

formance most, and then use this subset of attributes to train an SVM classifier. The work

of [12] suggests several feature selection strategies which work well with the SVM. For

example, the F-score can be used to measure the discriminative ability of an attribute.

For high-dimensional data, by selecting an appropriate number of attributes with high F-

scores (for instance, select the top 50 attributes) to train an SVM classifier, the PPSVC

can then be well constructed from this classifier.

For the SVM classifier which has a large number of support vectors but the data is in

low dimensional, the PPSVC provides an extra benefit that the complexity of the PPSVC

can be lower than the original SVM classifier. The complexity of the original Gaussian

kernel SVM classifier is O(nm′) where m′ denotes the number of support vectors. For

large-scale training datasets or a small cost parameter C, the SVM may result in a large

number of support vectors. Unlike the original SVM classifier, the complexity of the

PPSVC is independent of the number of support vectors. Thus with a small du, the PPSVC

can be more efficient than the original SVM classifier.

3.5 Security and Approximating Precision of the PPSVC

In this section, we first show the PPSVC’s security on the protection of the private content

of support vectors. Then we discuss the precision issues of the PPSVC’s approximation

to the original SVM classifier.
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3.5.1 Security of the PPSVC Against Adversarial Attacks

Consider the case that an adversarial attacker knows the content of part of support vec-

tors, and he wants to recover the content of remaining support vectors from the compo-

nents of the PPSVC. Without loss of generality, suppose that there are totally m′ support

vectors, and the attacker knows the content of m′ − 1 support vectors. Lemma 8 be-

low proves that by keeping secret the supports αi, i = 1, . . . ,m′ of the support vectors

{(SV1, y1), · · · , (SVm′ , ym′)} of the original SVM classifier, the remaining instance can-

not be recovered from the help of the information disclosed by the PPSVC.

The supports are the optimal solution of the SVM’s optimization problem (3.3). The

support vectors are the instances being assigned non-zero supports to form the optimal

separating hyperplane in the feature space. To obtain the supports, knowing the complete

training data (including the instances with zero support) and the cost and kernel parame-

ters are required. Due to the optimizing property of the SVM’s formulation, if one does

not have completely the same data and parameters, it is in general not able to result in the

same optimal solution. Especially with the Gaussian kernel whose implicit mapping is

infinite-dimensional, a slight difference in the training data may lead to a much different

solution, and hence different supports and support vectors. Reverse engineering from the

approximated decision boundary of the PPSVC is also difficult since the attacker knows

only the content of partial support vectors. Hence it is reasonable to assume that the

attacker who knows only part of training data cannot obtain the supports.

Lemma 8 By keeping secret the supports α1, . . . , αm′ of support vectors, an adversarial

attacker who knows the content of m′−1 support vectors is not able to recover the content

of the remaining one from the components of the PPSVC.

Proof 12 Suppose that the support vectors known by the attacker are

{(SV1, y1), · · · , (SVm′−1, ym′−1)}, and the attacker wants to derive the content of SVm′

from the known instances and the components of the PPSVC.

The components of the PPSVC are w0, w1 to wdu , the kernel parameter g, and the bias

term b. Each wd is the linear combination of the order-d monomial feature mapped sup-

port vectors Φd(SV1),Φd(SV2), · · · ,Φd(SVm′). Let wd,k, k = 1, . . . ,
(
d+n−1

d

)
denote
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the elements of the
(
d+n−1

d

)
-dimensional vector wd, 1 ≤ d ≤ du. Each wd,k corresponds

to a unique monomial feature (md,k,1, . . . ,md,k,n), which satisfies
∑n

j=1 md,k,j = d and

md,k,j ∈ N∪0, j = 1, . . . , n. Let vi,j , j = 1 . . . , n denote the n attribute values of the i-th

support vector SVi, 1 ≤ i ≤ m′. A wd,k, 1 ≤ d ≤ du, 1 ≤ k ≤
(
d+n−1

d

)
is computed by

wd,k =
(2g)d

d!

√
d!

Πn
j=1md,k,j!

m′∑
i=1

ci(Π
n
j=1v

md,k,j

i,j )

First, consider on a single wd,k. Since wd is a linear combination of order-d monomial

feature mapped support vectors and wd,k is the k-th elements of wd, wd,k is the linear

combination of the k-th monomial features of order-d monomial feature mapped support

vectors. The coefficient paired with SVi in the linear combination is ci, 1 ≤ i ≤ m′. Since

wd,k is a linear combination of the k-th monomial features of SV1, . . . ,SVm′ respectively,

to derive the k-th monomial feature of SVm′ from the wd,k when SV1, . . . ,SVm′−1 are

known, the coefficients c1, . . . , cm′ in the linear combination are required. The coefficients

ci’s come from ci = αiyi exp(−g||SVi||2), i = 1, . . . ,m′. Since the supports αi, i =

1, . . . ,m′ are kept secret, the attacker does not know the coefficients c1, . . . , cm′ in the

linear combination. Hence the content of SVm cannot be derived from a wd,k.

The following considers on all wd,k’s to show that the content of SVm′ cannot be

derived from eliminating the ci’s between wd,k’s with the help of known instances

SV1, . . . ,SVm′−1. Without loss of generality, suppose m′ = 2, i.e., there are two support

vectors {SV1,SV2} ∈ Rn, where the content of SV1 = (v1,1, . . . , v1,n) is known by the

attacker, and the attacker intends to obtain the content of SV2 = (v2,1, . . . , v2,n). The

following discussion in this m′ = 2 case can be generalized to m′ > 2 where m′ − 1 of

total m′ support vectors are known by the attacker. Let c1 and c2 denote the corresponding

coefficients of SV1 and SV2 respectively. Then wd,k is computed by

wd,k =
(2g)d

d!

√
d!

Πn
j=1md,k,j!

(c1Π
n
j=1v

md,k,j

1,j + c2Π
n
j=1v

md,k,j

2,j )

where (md,k,1, . . . ,md,k,n) corresponds to the (d, k) pair.

Since v1,j , j = 1, . . . , n are known, it is able to obtain the formulas having the same
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c1-paired terms by multiplying or dividing some wd,k’s by some Πn
j=1v

qj
1,j with certain

(q1, . . . , qn). Then the terms paired with c1 are identical and hence can be eliminated by

subtraction between the formulas. For example, let n = 2, i.e., the data is 2-dimensional.

Then w1,1 = 2g(c1v1,1+c2v2,1), and w1,2 = 2g(c1v1,2+c2v2,2). Then, w1,1v1,2−w1,2v1,1 =

2gc2(v2,1v1,2 − v2,2v1,1). With another formula which has eliminated c1-paired terms, the

coefficient c2 can then be eliminated by division between the two formulas.

However, although the coefficients ci, i = 1, . . . ,m′ can be eliminated, the v2,j ,

j = 1, . . . , n, i.e., the components of SV2, are not able to be derived by eliminating ci’s.

The reasons are explained as follows: In a wd,k formula, the two terms Πn
j=1v

md,k,j

1,j and

Πn
j=1v

md,k,j

2,j with the same (md,k,1, . . . ,md,k,n) are consistent monomial features of SV1

and SV2 respectively, and each wd,k formula corresponds to a unique (md,k,1, . . . ,md,k,n).

To make the formulas from different wd,k’s have identical c1-paired terms, the c2-paired

terms from different wd,k formulas will be multiplied by Πn
j=1v

qj
1,j with different

(q1, . . . , qn)’s. For any two wd,k’s, w(d,k)1 and w(d,k)2 where (d, k)1 ̸= (d, k)2, let (m(d,k)1,1+

q1,1, · · · ,m(d,k)1,n+q1,n) = (m(d,k)2,1+q2,1, · · · ,m(d,k)2,n+q2,n). The (q1,1, · · · , q1,n) will

not be equal to (q2,1, · · · , q2,n) since (m(d,k)1,1, · · · ,m(d,k)1,n) ̸= (m(d,k)2,1, · · · ,m(d,k)2,n).

There will be identical c1-paired terms in w(d,k)1Π
n
j=1v

q1,j
1,j and w(d,k)2Π

n
j=1v

q2,j
1,j , but the c2-

paired terms will become c2(Π
n
j=1v

m(d,k)1,j

2,j Πn
j=1v

q1,j
1,j ) and c2(Π

n
j=1v

m(d,k)2,j

2,j Πn
j=1v

q2,j
1,j ) re-

spectively, where (m(d,k)1,1, . . . ,m(d,k)1,n) ̸= (m(d,k)2,1, . . . ,m(d,k)2,n) and (q1,1, . . . , q1,n) ̸=

(q2,1, . . . , q2,n). Eliminating the identical c1-paired terms by subtraction will result in the

combination of Πn
j=1v

md,k,j

2,j with different (md,k,1, . . . ,md,k,n)’s where the coefficients in

the combination are Πn
j=1v

qj
1,j with different (q1, . . . , qn)’s as

w(d,k)1Π
n
j=1v

q1,j
1,j − w(d,k)2Π

n
j=1v

q2,j
1,j

=c2(Π
n
j=1v

m(d,k)1,j

2,j Πn
j=1v

q1,j
1,j − Πn

j=1v
m(d,k)2,j

2,j Πn
j=1v

q2,j
1,j )

(The factor (2g)d

d!

√
d!

Πn
j=1md,k,j !

of wd,k is omitted for simplicity since it can be removed by di-

vision.). Since (m(d,k)1,1, . . . ,m(d,k)1,n) ̸= (m(d,k)2,1, . . . ,m(d,k)2,n) and (q1,1, . . . , q1,n) ̸=

(q2,1, . . . , q2,n), the terms Πn
j=1v

m(d,k)1,j

2,j and Πn
j=1v

m(d,k)2,j

2,j from SV2 cannot be separated

from the terms Πn
j=1v

q1,j
1,j and Πn

j=1v
q2,j
1,j from SV1. For example, in w1,1v1,2 − w1,2v1,1 =
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2gc2(v2,1v1,2 − v2,2v1,1) illustrated above, v2,1 and v2,2 cannot be separated from v1,1 and

v1,2. Therefore, the value of either Πn
j=1v

m(d,k)1,j

2,j or Πn
j=1v

m(d,k)2,j

2,j , i.e., the monomial fea-

tures of SV2, cannot be derived. The above discussion can be extended in a similar way

to m′ > 2 support vectors where m′ − 1 are known by the attacker. This concludes the

proof that removing the coefficients ci’s cannot extract the content of SVm′ .

3.5.2 Approximating Precision Issues of the PPSVC

The PPSVC is an approximation of the Gaussian kernel SVM classifier. It approximates

the exponential function

exp(2gSVi · x) (3.20)

by a Taylor polynomial. Therefore, in addition to the degree of the Taylor polynomial,

there is also another factor affecting the approximating precision of the PPSVC: the eval-

uating point of the exponential function in (3.20). The infinite series representation of

(3.20) adopted in the PPSVC is a Taylor series of exp(x) at zero. According to the Taylor

theorem, the Taylor series at 0 evaluated at x will be equal to the original function if x is

sufficiently close to 0. If the evaluating point of the exponential function (3.20) is distant

too far from zero, the approximation of the PPSVC will be degraded.

This potential precision problem can be prevented by taking a careful look at the

guidelines of the practical use of the SVM [22, 46] and the properties of the SVM with

Gaussian kernel. One of the factors which influence the evaluating point of the expo-

nential function (3.20) is the dot product between the testing instance x and the support

vector SVi. The guidelines of the practical use of the SVM [22, 46] suggest scaling the

value of each attribute to appropriate range like [0, 1] or [−1, 1] in the pre-processing step

to prevent the effect that greater numeric range attributes may dominate those in smaller

range. Scaling the data also avoids numerical difficulty and prevents overflow. The other

factor is the value of the kernel parameter g of the Gaussian kernel function. The value

of g is usually suggested to be small [46]. One reason is to prevent the numerical values

from getting extremely large as the dimension of data increases. The other reason is that

large g may cause the overfitting problem. The Gaussian kernel function represents each
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Figure 3.7: The approximation of exp(x) by its 5-order Taylor polynomial at 0.

instance by a bell-shaped function sitting on the instance, which represents its similarity

to all other instances. Large g means that the instance is more dissimilar to others. The

kernel memorizes the data and becomes local, and the resulting classifier tends to overfit

the data [46]. To prevent the overfitting problem and numerical difficulty, a simple strat-

egy is setting g = 1/n where n denotes the dimensions of data. g = 1/n is also the

default setting of LIBSVM [7]. With scaling the attribute values of data to [−1, 1] and

setting g = 1/n, the argument of the exponential function (3.20) is at most in ±2 dis-

tance from the defined point 0 of the Taylor series. Fig. 3.7 shows the approximation of

exponential function by a 5-order Taylor polynomial at 0. In the evaluating points within

[−2, 2], the value of the 5-order Taylor polynomial is almost overlapped with the actual

value of the exponential function.

It is noted that the values of both the kernel parameter g and the cost parameter C

of the SVM are usually chosen by cross-validation to select an appropriate parameter

combination to train the SVM [46]. LIBSVM [7, 22] suggests grid-search on the combi-

nations of (C, g) in exponential growth using cross-validation. For example, the default

grid-search range of LIBSVM is C = 2−5 to 215 and g = 2−15 to 23. In order to have a

good approximating precision in the PPSVC, we constrain the upper bound of g’s search

range to be 1/n, which will keep the evaluating point of (3.20)’s Taylor polynomial being

within ±2 from 0.

This constraint on g’s grid-search range will not apparently affect the classification

performance since the value of g chosen by grid-search using cross-validation is usually

very small and does not exceed 1/n. It comes from that Gaussian kernel with large g

is prone to overfit the data, which usually results in poor accuracy in cross-validation.
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We validate this claim by experimenting on real data to show that the classification per-

formance does not vary much when the 1/n upper bound is imposed to g in grid-search

using cross-validation. The experimental results are shown in Section 3.6.2.

With scaling data to [−1, 1] suggested by the SVM practitioner’s guidelines and con-

straining the g to be smaller than 1/n, the evaluating point of (3.20)’s Taylor polynomial

at 0 can be guaranteed within ±2, and therefore the potential precision problem which

may be caused by the far evaluating point of the Taylor polynomial is prevented.

3.6 Experimental Analysis

In this section, we evaluate the effectiveness of the PPSVC by comparing the classification

accuracy between the original SVM classifier and its privacy-preserving approximation by

the PPSVC. We also evaluate the influence of the kernel parameter upper bound suggested

in Section 3.5.2, and study the scalability of the PPSVC. Additionally, we compare the

classification performance with the anonymous data publishing technique k-anonymity.

3.6.1 Approximating the SVM Classifier

The objective of the PPSVC is to precisely approximate the SVM classifier without com-

promising the privacy of the training instances which are selected as support vectors. We

test the approximation ability of the PPSVC by comparing the accuracy between the origi-

nal SVM classifiers and their corresponding PPSVCs with different approximation degree

du.

We consider several public real datasets available in the UCI machine learning repos-

itory [5] to evaluate the performance of the PPSVC. We select some medical datasets to

test the effectiveness of the PPSVC on medical applications as we have mentioned in Sec-

tion 3.1. The classifiers trained from such medical datasets are for predicting whether a

patient is subject to a specific disease. The Wisconsin breast cancer dataset, which con-

tains clinical cases of breast cancer detection, is for predicting whether the organization

is benign or malignant. The liver disorders dataset contains various blood tests and drink
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behavior records to learn a classifier for predicting liver disorders from excessive alcohol

consumption. The Pima Indian diabetes dataset are medical records of female Pima Indian

heritage, which are used to learn classifiers to predict if a patient is subject to diabetes,

and the Statlog heart dataset is a heart disease database. We also select two credit datasets

to test the effectiveness of the PPSVC for predicting the credit of customers. The Stat-

log Australian credit approval dataset is for credit card applications. The Statlog German

credit dataset is for classifying people to good or bad credit risks. This dataset comes with

two formats, where one contains both categorical and numeric attributes, and the other is

pure numeric. We adopt the pure numeric version for the ease of using with the SVM.

Two physical datasets, ionosphere and sonar, are also selected to test the effectiveness of

the PPSVC on various applications. Targets of the radar data in the ionosphere dataset

are free electrons in the ionosphere. The label indicates if the signal shows evidence of

some type of structure in the ionosphere. The sonar dataset is for training a classifier to

discriminate whether the sonar signals bounced off metal or rock. For the ease of exper-

iments, the chosen datasets are all binary classes. For multi-class problems, the popular

one-against-one or one-against-all methods [7] can also be applied to the PPSVC. The

statistics of the datasets are given in the table below.

Dataset Heart Ionosphere Liver Diabetes
# instances 270 351 345 768
# attributes 13 34 6 8

Dataset Australian German Sonar Breast
# instances 690 1000 208 683
# attributes 14 24 60 10

All attribute values have been scaled to [−1, 1] or [0, 1] in preprocessing steps to pre-

vent different value range and numerical difficulty. We use LIBSVM [7] as our tool to

train the SVM classifiers. The value of the cost parameter C and the kernel parameter g to

train the SVM are determined by applying the grid-search using cross-validation, where

the upper-bound of g’s search range is the reciprocal of the number of attributes of each

dataset, as we have discussed in Section 3.5.2. The SVM classifiers trained by LIBSVM

are then transformed to PPSVCs to protect the support vectors. The experimental results

are shown in Figure 3.8 for comparing the classification accuracy between the original
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Figure 3.8: Classification Accuracy of the original SVM classifier and PPSVCs with
du = 1 to 5.

SVM classifier and PPSVCs with du = 1 to du = 5. The classification accuracy reported

in the figure is the 5-fold cross-validation average.

It is seen that the PPSVC with du = 1 usually does not have good approximation to

the original SVM classifier. Because with du = 1, the approximation of the infinite series

in the privacy-preserving decision function is similar to that of approximating exp(x) by

1 + x. This linear approximation usually cannot achieve good precision.

On medical datasets, except the liver disorder dataset, the PPSVC achieves the same

accuracy with the original SVM classifier in du=2 on the breast cancer, heart disease,

and diabetes datasets. The PPSVC can handle these problems well in low approximation

degree. On the liver disorder dataset, the PPSVC achieves the same accuracy until du = 5.

Since the two classes of instances in this dataset are highly overlapped, a bit of difference

in the decision boundary will result in much variation in the classifying results. This

causes it to require higher precision in the approximation of the decision boundary to

obtain a better classifying performance.

On the credit datasets German and Australian, the PPSVC in low approximation de-

gree is enough to give very good approximation. In these datasets, many attributes are

indicator variables which are transformed from original categorical attributes in prepro-

cessing. The values of the indicator variables in two classes of instances are separated

clearly, which leaves only a few instances in the region close to the decision boundary.

Hence a rough approximation is enough to achieve similar classifying accuracy. Note that

the better accuracy obtained by PPSVC with du = 1 in Australian does not represent that
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the PPSVC achieves better performance. It is caused by the poor linear approximation in

du = 1, where some overlapped instances are accidentally classified to their correct labels

by the imprecise approximating decision boundary.

On physical problems, the ionosphere dataset achieves satisfying approximation in

du = 2. The sonar dataset needs du = 4 to obtain similar accuracy. This may come

from the larger kernel parameter determined by cross-validation on this dataset, which

has touched the upper bound 1
#attributes . Larger kernel parameter will result in lower ap-

proximating precision, and hence it requires higher approximation degree.

In general, with du = 2, the classification accuracy resulted by the PPSVC soon gets

close to the original SVM classifier. With du = 3, the PPSVC gets almost the same

classification accuracy to the original SVM classifier on most datasets. On all datasets,

the PPSVC gets the same classification accuracy to the original SVM classifier with du ≤

5. This verifies our claim that the PPSVC can precisely approximate the original SVM

classifier by a low approximation degree du, and hence results in a classifier with moderate

complexity. The PPSVC in low approximation degree can effectively approximate the

SVM classifier and possess privacy-preserving property which protects the private content

of support vectors.

3.6.2 Effect of the Constraint on Kernel Parameter

The following tests the influence of constraining the searching upper bound of the kernel

parameter g on the above datasets. In order to have a better approximating precision in

the PPSVC, an upper bound 1
#attributes is imposed to the grid search range of the kernel

parameter g in the parameter search process of training the SVM. We have discussed the-

oretically in Section 3.5.2 that this constraint will not apparently affect the classification

performance. Fig. 3.9 shows the comparison of classification accuracy between the SVM

classifiers trained by grid-search selected parameters with and without the 1
#attributes upper

bound constraint on g. The accuracy shown in the figure is the 5-fold cross-validation

average.

It is seen that the accuracy is similar between the two parameter selection schemes.
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The reason is that the value of g chosen by grid-search using cross-validation is usually

very small and not bigger than 1
#attributes . The results validate the claim that the constraint

of g’s upper bound imposed by the PPSVC almost does not affect the classification per-

formance.

3.6.3 Scalability to Large-Scale Datasets

In the following, we test the scalability of the PPSVC on large-scale synthetic datasets.

The datasets are 10-dimensional, sized from 1000 to 10000 instances. Two classes of

data are in equal size, and on each dimension, the values of the two classes follow a nor-

mal distribution at mean ±0.5 respectively, and both have variance 0.6 to cause partial

overlapping. The parameters for training the SVM are the default of LIBSVM. Fig. 3.10

shows the comparison of the classifier complexity between the original SVM classifier

and the PPSVCs with du = 1 to du = 5. The horizontal axis denotes the size of datasets,

and the vertical axis denotes the complexity of classifiers in the unit of the number of

double-precision floating point numbers. It is seen that the classifier complexity of the

original SVM classifier increases with the size of the dataset since its complexity is pro-

portional to the number of support vectors, while the number of support vectors increases

with the size of the dataset. On the contrary, the complexity of the PPSVC is indepen-

dent of the number of support vectors. With a small du, the PPSVC is well scalable to

large-scale datasets which may result in a large number of support vectors.
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Figure 3.10: Comparison of classifier complexity between the original SVM classifier
and the PPSVC.

3.6.4 Performance Comparison with k-Anonymity

In this section, we compare the performance of the PPSVC with the anonymous data pub-

lishing technique k-anonymity [23, 49]. Since the application scenario of the PPSVC is

similar to classifying unanonymized data using SVM classifiers built upon anonymized

data [23], we evaluate the performance of k-anonymity by using the SVM classifiers

trained from anonymized training data to classify the unanonymized testing data. We

compare the accuracy on three of the above datasets which include quasi-identifier at-

tributes: Statlog heart has {age, sex}, Pima Indian diabetes has {age, number of pregnant,

body mass index}, and German credit has {purpose, credit amount, personal status and

sex, present residence since, age, job}. Value generalization hierarchies are first built on

quasi-identifiers of each dataset. Then the Datafly algorithm [49] is adopted to achieve

k-anonymity. Since the SVM is a value-based algorithm, for numerical attributes, each

generalized range is represented by the mean value, and for categorical data, the general-

ized category is represented by exhibiting all children categories [23]. The cost parameter

and the Gaussian kernel parameter to train the SVMs are determined by cross-validation.

The performance comparison between training SVMs from k-anonymized training data

with k = 32 and k = 128 and the PPSVC with du = 5 is shown in Fig. 3.11. The reported

accuracy is 5-fold cross-validation average.

The PPSVCs with du = 5 achieve almost the same accuracy with the original SVM

classifiers on these datasets as reported in preceding subsections. On diabetes and German
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Figure 3.11: Performance comparison with k-anonymity.

datasets, the accuracy of applying the k-anonymity technique with k = 32 is a bit lower

than the PPSVC, and it further falls down when k = 128. On heart dataset, since the

size of this dataset is smaller (270 instances), k = 32 is enough to significantly distort

its quasi-identifier values. It is seen that the distortion of data to achieve k-anonymity

will slightly hurt the performance of the SVM, and the performance may get worse when

a large k is needed for better privacy protection. Comparing the PPSVC to applying k-

anonymity on the SVM, the PPSVC hardly hurt the performance of the SVM, and can

provide better protection on the data privacy since all attribute values are hidden.

3.7 Summary

In this chapter, we propose the PPSVC to tackle the privacy violation problem of the clas-

sification model of the SVM, which includes some intact instances of the training data

called support vectors. The PPSVC post-processes the Gaussian kernel SVM classifier

to transform it to a privacy-preserving classifier which precisely approximates the SVM

classifier and does not disclose the private content of support vectors. We prove its se-

curity against adversarial attacks, and the precision issue is also addressed to guarantee

a good approximation. The experimental results validate our claim that the PPSVC can

achieve similar classification accuracy to the original SVM classifier. By protecting the

sensitive content of support vectors, the resulted privacy-preserving SVM classifier can

be publicly released or be shipped to clients without violating privacy.
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Chapter 4

Efficient Kernel Approximation for

Large-Scale Support Vector Machine

Classification

4.1 Introduction

The support vector machine (SVM) [55] is a statistically robust classification algorithm

which yields state-of-the-art performance. The SVM applies the kernel trick to implicitly

map data to a high-dimensional feature space and finds an optimal separating hyperplane

there [46,55]. The rich features of kernel functions provide good separating ability to the

SVM. With the kernel trick, the SVM does not really map the data but achieves the effect

of performing classification in the high-dimensional feature space.

The expense of the powerful classification performance brought by the kernel trick

is that the resulting decision function can only be represented as a linear combination of

kernel evaluations with the training instances but not an actual separating hyperplane:

f(x) =
m∑
i=1

αiyiK(xi,x) + b

where xi ∈ Rn and yi ∈ {1,−1}, i = 1, . . . ,m are feature vectors and labels of n-

dimensional training instances, αi’s are corresponding weights of each instance, b is the
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bias term, and K is a nonlinear kernel function. Although only those instances near the

optimal separating hyperplane will get nonzero weights to become support vectors, for

large-scale datasets, the amount of support vectors can still be very large.

The formulation of the SVM is a quadratic programming optimization problem. Due

to the O(m2) space complexity for training on a dataset with m instances, there is a

scalability issue in solving the optimization problem since it may not fit into memory.

Decomposition methods such as the sequential minimal optimization (SMO) [40] and

LIBSVM [7] are popular approaches to solve this scalability problem. Decomposition

methods are very efficient for moderate-scale datasets and result in good classification

accuracy, but they still suffer from slow convergence for large-scale datasets. Since in

the iteration of the optimization, the computing cost increases linearly with the number

of support vectors. Large number of support vectors will incur many kernel evaluations,

where the computational cost is O(mn) in each iteration. This heavy computational load

causes the decomposition methods converge slowly, and hence decomposition methods

are still challenged to handle large-scale data. Furthermore, too many support vectors

will cause inefficiency in testing.

In contrast, without using the kernel function, the linear SVM has much more efficient

techniques to solve, such as LIBLINEAR [15] and SVMperf [24]. The linear SVM obtains

an explicit optimal separating hyperplane for the decision function

f(x) = w · x+ b

where only a weight vector w ∈ Rn and the bias term b are required to be maintained

in the optimization of the linear SVM. Therefore, the computation load in each iteration

of the optimization is only O(n), which is less than that of nonlinear SVMs. Compared

to nonlinear SVMs, the linear SVM can be much more efficient on handling large-scale

datasets. For example, for the Forest cover type dataset [5], training by LIBLINEAR takes

merely several seconds to complete, while training by LIBSVM with nonlinear kernel

function consumes several hours. Despite the efficiency of the linear SVM for large-scale

data, the applicability of the linear SVM is constrained. It is only appropriate to the
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tasks with linearly separable data such as text classification. For ordinary classification

problems, the accuracy of the linear kernel SVM is usually lower than that of nonlinear

ones.

An approach of leveraging the efficient linear SVM solvers to train the nonlinear SVM

is explicitly listing the features induced by the nonlinear kernel function:

K(x,y) = ϕ(x) · ϕ(y)

where ϕ(x) and ϕ(y) are explicit features of x and y induced by the kernel function K.

The explicitly feature mapped instances ϕ(xi), i = 1, . . . ,m are utilized as the input of

the linear SVM solver. If the number of features is not too much, it can be very fast to train

the nonlinear SVM in this way. For example, the work of [8] explicitly lists the features of

low-degree polynomial kernel function and uses the explicit features to feed into a linear

SVM solver. However, the technique of explicitly listing the feature mapping is merely

applicable to the kernel function which induces low-dimensional feature mapping, for

example, the low-degree polynomial kernel function [8]. It is difficult to utilize on high-

degree polynomial kernel functions since the induced mapping is very high-dimensional,

and is not applicable to the commonly used Gaussian kernel function, whose implicit

feature mapping is infinite-dimensional. Restricting the polynomial kernel function to

low-degree loses some power of the nonlinearity, and the polynomial kernel function is

less widely used than the Gaussian kernel function since in the same cost of computation,

its accuracy is usually lower than using the Gaussian kernel function [8].

The feature mapping of the Gaussian kernel function can be uniformly approximated

by random Fourier features [43,44]. However, the random Fourier features are dense, and

a large number of random Fourier features are needed to reduce the variation. Too many

features will lower the efficiency of the linear SVM solver, and require much storage

space. If there are not enough amount of random Fourier features, the large variation will

degrade the precision of approximation and result in poor accuracy. Although the linear

SVM solver is applicable to the very high-dimensional text data, the features of text data

are sparse, i.e., there are only a few non-zero features in each instance of the text data.
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In this chapter, we propose a compact feature mapping for approximating the feature

mapping of the Gaussian kernel function by Taylor polynomial-based monomial features,

which sufficiently approximates the infinite-dimensional implicit feature mapping of the

Gaussian kernel function by low-dimensional features. Then we can explicitly list the

approximated features of the Gaussian kernel function and capitalize with a linear SVM

solver to train a Gaussian kernel SVM. This technique takes advantage of the efficiency

of the linear SVM solver and achieves close classification performance to the Gaussian

kernel SVM.

We first transform the Gaussian kernel function to an infinite series and show that its

infinite-dimensional feature mapping can be represented as a Taylor series of monomial

features. By keeping only the low-order terms of the series, we obtain a feature mapping

ϕ̄ which consists of a low-degree Taylor polynomial-based monomial features. Then the

Gaussian kernel evaluation can be approximated by the inner product of the explicitly

mapped data:

K(x,y) ≈ ϕ̄(x) · ϕ̄(y).

Hence we can utilize the mapping ϕ̄ to transform data to a low-degree Taylor polynomial-

based monomial features, and then use the transformed data as the input to an efficient

linear SVM solver.

Unlike the uniform approximation of random Fourier features which requires a large

number of features to reduce variations, approximating by Taylor polynomial-based mono-

mial features concentrates the important information of the Gaussian kernel function on

the features of low-degree terms. Therefore, only the monomial features in low-degree

terms of the Taylor polynomial are sufficient to precisely approximate the Gaussian ker-

nel function. Merely a few number of low-degree monomial features are able to achieve

good approximating precision, and hence can result in similar classification accuracy to a

normal Gaussian kernel SVM. Furthermore, if the features of the original data have some

extent of sparseness, the Taylor polynomial of monomial features will also be sparse.

Hence it will be very efficient to work with linear SVM solvers. By approximating the

feature mapping of the Gaussian kernel function with a compact feature set and leverag-
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ing the efficiency of linear SVM solvers, we can perform fast classification on large-scale

data and obtain the classification performance similar to using nonlinear kernel SVMs.

The experimental results show that the proposed method is useful for classifying large-

scale datasets. Although its speed is a bit slower than using the linear SVM, it achieves

better accuracy which is very close to a normal nonlinear SVM solver, and is still very

fast. Compared to using random Fourier features and explicit features of low-degree

polynomial kernel function with linear SVM solvers, our Taylor polynomial of monomial

features technique achieves higher accuracy in similar complexity.

The rest of this chapter is organized as follows: In Section 4.2, we discuss some

related works and briefly review the SVM for preliminaries. Then in Section 4.3, we

propose the method of approximating the infinite-dimensional implicit feature mapping

of the Gaussian kernel function by a low-dimensional Taylor polynomial-based monomial

feature mapping. In Section 4.4, we demonstrate the approach for efficiently training the

Gaussian kernel SVM by the Taylor polynomial-based monomial features with a linear

SVM solver. Section 4.5 shows the experimental results, and finally, we conclude the

chapter in Section 4.6.

4.2 Preliminary

In this section, we first survey some related works of training the SVM on large-scale

data, and then review the SVM to give preliminaries of this work.

4.2.1 Related Work

In the following, we briefly review some related works of large-scale SVM training. De-

composition methods are very popular approaches to tackle the scalability problem of

training the SVM [7, 37, 40]. The quadratic programming (QP) optimization problem

of the SVM is decomposed into a series of QP sub-problems to solve, where each sub-

problem works only on a subset of instances to optimize. The work of [37] proved that

optimizing on the QP sub-problem will reduce the objective function and hence will con-
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verge. The sequential minimal optimization (SMO) [40] is an extreme decomposition.

The QP problem is decomposed into the smallest sub-problems, where each sub-problem

works only on two instances and can be analytically solved which prevents the use of

numerical QP solvers. The popular SVM implementation LIBSVM [7] is an SMO-like

algorithm with improved working set selection strategies. The decomposition methods

consume constant amount of memory and can run fast. However, decomposition methods

still suffer from slow convergence for training on very large-scale data.

There are SVM training methods which do not directly solve the QP optimization

problem, for example, the reduced SVM (RSVM) [28] and the core vector machine

(CVM) [52]. The RSVM adopts a reduced kernel matrix to formulate an L2-loss SVM

problem, where the reduced kernel matrix is a rectangular sub-matrix of the full kernel

matrix. The reduced problem is then approximated by a smooth optimization problem

and then be solved by a fast Newton method. The CVM [52] models an L2-loss SVM

by a minimum enclosing ball problem, where the solution of the minimum enclosing ball

problem will be the solution of the SVM. In which, the data are viewed as points in the

kernel-induced feature space, and the target is to find a minimum ball to enclose all the

points. A fast variant of the CVM is the ball vector machine (BVM) [51], which simply

moves a pre-defined large enough ball to enclose all points.

Explicitly mapping the data with the kernel induced feature mapping is a way to cap-

italize with the efficient linear SVM solver to solve nonlinear kernel SVMs. This method

is simple and can capitalize with existing packages of linear SVM solvers like LIBLIN-

EAR [15] and SVMperf [24]. The work of [8] is most related to our work, which explic-

itly maps the data by a feature mapping corresponding to low-degree polynomial kernel

functions, and then uses a linear SVM solver to find an explicit separating hyperplane

in the explicit feature space. Since the dimensionality of its explicit feature mapping is

factorial to the degree, this approach is only applicable to low-degree polynomial kernel

functions. Since the degree is a parameter of the polynomial kernel, the dimensional-

ity which increases with degree constrains the value of degree to be small, which causes

some loss of the nonlinearity of the polynomial kernel. In contrast, our method is a Taylor
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polynomial-based approximation of the implicit feature mapping of the Gaussian kernel

function, and the dimensionality of our approximated feature mapping increases with the

degree of the Taylor polynomial, where this degree is not a kernel parameter and hence

will not constrain the nonlinearity of the kernel function. Although using a higher degree

will get a better approximating precision and hence usually result in better accuracy, our

experimental results show that using with degree-2, which results in a low-dimensional

explicit mapping, is enough to obtain similar accuracy to the Gaussian kernel SVM. Also,

the Gaussian kernel function is more commonly used than the polynomial kernel function

since it usually achieves better accuracy in similar computational cost.

Random Fourier features of [43,44] uniformly approximates the implicit feature map-

ping of the Gaussian kernel function. However, the random Fourier features are dense,

and a large number of features are required to reduce the variation. Too few features will

have very large variation, which causes poor approximation and results in low accuracy.

4.2.2 Review of the SVM

The SVM [55] is a statistically robust learning method with state-of-the-art performance

on classification. The SVM trains a classifier by finding an optimal separating hyperplane

which maximizes the margin between two classes of data. Without loss of generality,

suppose there are m instances of training data. Each instance consists of a (xi, yi) pair

where xi ∈ Rn denotes the n features of the i-th instance and yi ∈ {+1,−1} is its class

label. The SVM finds the optimal separating hyperplane w · x + b = 0 by solving the

quadratic programming optimization problem:

arg min
w,b,ξ

1

2
||w||2 + C

m∑
i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, ...,m.

Minimizing 1
2
||w||2 in the objective function means maximizing the margin between two

classes of data. Each slack variable ξi denotes the extent of xi falling into the erroneous

region, and C > 0 is the cost parameter which controls the trade-off between maximizing
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the margin and minimizing the slacks. The decision function is f(x) = w · x + b, and

the testing instance x is classified by sign(f(x)) to determine which side of the optimal

separating hyperplane it falls into.

The SVM’s optimization problem is usually solved in dual form to apply the kernel

trick:

argmin
α

1

2

m∑
i,j=1

αiαjyiyjK(xi,xj)−
m∑
i=1

αi

subject to
m∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, ...,m.

The function K(xi,xj) is called kernel function, which implicitly maps xi and xj into

a high-dimensional feature space and computes their inner product there. By applying

the kernel trick, the SVM implicitly maps data into the kernel induced high-dimensional

space to find an optimal separating hyperplane. A commonly used kernel function is the

Gaussian kernel K(x,y) = exp(−g||x− y||2) with the parameter g > 0, whose implicit

feature mapping is infinite-dimensional. The original inner product is called linear kernel

K(x,y) = x · y. The corresponding decision function of the dual form SVM is f(x) =∑m
i=1 αiyiK(xi,x) + b, where αi, i = 1, . . . ,m are called supports, which denote the

weights of each instance to compose the optimal separating hyperplane in the feature

space. The instances with nonzero supports are called support vectors. Only the support

vectors involve in constituting the optimal separating hyperplane. With the kernel trick,

the weight vector w becomes a linear combination of kernel evaluations with support

vectors: w =
∑m

i=1 αiyiK(xi, ). On the contrary, the linear kernel can obtain an explicit

weight vector w =
∑m

i=1 αiyixi.

4.3 Approximating the Gaussian Kernel Function by Tay-

lor Polynomial-based Monomial Features

In this section, we first equivalently formulate the Gaussian kernel function as the inner

product of two infinite-dimensional feature mapped instances, and then we approximate
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the infinite-dimensional feature mapping by a low-degree Taylor polynomial to obtain a

low-dimensional approximated feature mapping.

The Gaussian kernel function is

K(x,y) = exp(−g||x− y||2)

where g > 0 is a user-specified parameter. It is an exponential function depending on

the relative distance between the two instances. Our first objective is to transform it to

become the inner product of two feature mapped instances.

First, we expand the term ||x− y||2:

||x− y||2 = ||x||2 − 2x · y + ||y||2.

Then the Gaussian kernel function can be equivalently represented by

K(x,y) = exp(−g||x− y||2)

= exp(−g(||x||2 − 2x · y + ||y||2))

= exp(−g||x||2) exp(2gx · y) exp(−g||y||2).

(4.1)

The terms exp(−g||x||2) and exp(−g||y||2) are simply scalars based on the magnitude of

each instance respectively. Hence what we need is transforming the term exp(2gx · y) to

be the inner product of feature mapped x and y.

The exponential function exp(x) can be represented by the Taylor series

exp(x) = 1 + x+
x2

2!
+

x3

3!
+ · · · =

∞∑
d=0

xd

d!
.

By replacing the exponential function exp(2gx · y) with its infinite series representation,

it becomes

exp(2gx · y) =
∞∑
d=0

(2gx · y)d

d!
=

∞∑
d=0

(2g)d

d!
(x · y)d. (4.2)
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The form of (x · y)d corresponds to the monomial feature kernel [47], which can be

defined as the inner product of the monomial feature mapped x and y as

(x · y)d = Φd(x) · Φd(y)

where Φd is the degree-d monomial feature mapping. The following lemma states the

monomial feature mapping:

Lemma 9 For x,y ∈ Rn and d ∈ N, the feature mapping of the degree-d monomial

feature kernel function K(x,y) = (x · y)d can be defined as:

Φd(x) =

[

√
d!∏n

i=1mk,i!

n∏
i=1

x
mk,i

i |∀mk ∈ Nn with
n∑

i=1

mk,i = d]

Each mk corresponds to a dimension of degree-d monomial features. There are totally(
n+d−1

d

)
dimensions [46, 47].

Proof 13 The k-th term in the expansion of (x · y)d = (x1y1 + · · · + xnyn)
d will be in

the form (x1y1)
mk,1(x2y2)

mk,2 · · · (xnyn)
mk,n multiplied by a coefficient, where each mk,i

is an integer with 0 ≤ mk,i ≤ d and
∑n

i=1mk,i = d. By the multinomial theorem [18],

the coefficient of each (x1y1)
mk,1(x2y2)

mk,2 · · · (xnyn)
mk,n term is d!

mk,1!mk,2!···mk,n!
. Thus

each dimension of the monomial feature mapped x is

√
d!

mk,1!mk,2! · · ·mk,n!
x
mk,1

1 x
mk,2

2 · · · xmk,n
n

for every mk ∈ Nn with
∑n

i=1mk,i = d.

Enumerating all such mk’s is equivalent to finding all integer solutions of the equation

m1+m2+ · · ·+mn = d where mi ≥ 0 for i = 1 to n. Enumerating all integer solutions

to this equation is equivalent to enumerating all size-d combinations with repetitions from

n kinds of objects, and the number of the combinations with repetitions is
(
n+d−1

d

)
. �

The following is a simple example to illustrate the monomial feature mapping. The
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degree-2 monomial feature kernel and monomial features of two-dimensional data x and

y [47, 55]:

(x · y)2 = ([x1, x2] · [y1, y2])2

=(x1y1 + x2y2)
2 = x2

1y
2
1 + 2x1y1x2y2 + x2

2y
2
2

=[x2
1,
√
2x1x2, x

2
2] · [y21,

√
2y1y2, y

2
2]

From Lemma 9, the mk’s satisfying
∑2

i=1mk,i = 2 with 0 ≤ mk,i ≤ 2 are (2, 0),

(1, 1), and (0, 2). So the degree-2 monomial features of x ∈ R2 are x2
1, x1x2, x2

2, and

the corresponding coefficients are 1,
√
2, and 1. Hence the degree-2 monomial feature

mapping of x = [x1, x2] (y, respectively) is [x2
1,
√
2x1x2, x

2
2].

With the monomial feature mapping, the Gaussian kernel function can be equivalently

formulated as

K(x,y) = exp(−g||x− y||2)

= exp(−g||x||2)(
∞∑
d=0

(2g)d

d!
(x · y)d) exp(−g||y||2)

= exp(−g||x||2)(
∞∑
d=0

(2g)d

d!
Φd(x) · Φd(y)) exp(−g||y||2)

= exp(−g||x||2)(
∞∑
d=0

√
(2g)d

d!
Φd(x) ·

√
(2g)d

d!
Φd(y)

)

exp(−g||y||2)

= exp(−g||x||2)[
1,
√
2gΦ1(x),

√
(2g)2

2!
Φ2(x),

√
(2g)3

3!
Φ3(x), . . .

]
·[

1,
√
2gΦ1(y),

√
(2g)2

2!
Φ2(y),

√
(2g)3

3!
Φ3(y), . . .

]

exp(−g||y||2)

Therefore, the infinite-dimensional feature mapping induced by the Gaussian kernel
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function for an instance x can be defined as

ΦG(x) = exp(−g||x||2)

[√
(2g)d

d!
Φd(x)|d = 0, . . . ,∞

]

and K(x,y) = ΦG(x) · ΦG(y).

From the approximation property of the Taylor series, the infinite series representation

of the exponential function can be estimated by a low-degree Taylor polynomial. By

keeping only the low-order terms of the Taylor series, we can obtain a finite-dimensional

approximated feature mapping of the Gaussian kernel function. The following Φ̄G(x) is

the du-th order Taylor approximation to ΦG(x):

Φ̄G(x) = exp(−g||x||2)

[√
(2g)d

d!
Φd(x)|d = 0, . . . , du

]
(4.3)

where the dimensionality of Φ̄G(x) for x ∈ Rn is
∑du

d=0

(
n+d−1

d

)
=
(
(n+1)+du−1

du

)
=(

n+du
du

)
, which comes from summing the dimensions of monomial feature mappings from

d = 0 to d = du. The du is a user-specified approximation degree. The higher the

du is, the closer to the original Gaussian kernel function the approximation gets. The

exponential function can be sufficiently approximated by a low-degree Taylor polynomial

if the evaluating point is not too far from the defined point.

We name Φ̄G the TPM feature mapping for the abbreviation of Taylor Polynomial-

based Monomial feature mapping. To compose a degree-du TPM feature mapping Φ̄G for

n-dimensional data, we must first generate monomial feature mappings Φ0,Φ1, . . . ,Φdu

for n-dimensional data. Note that degree-0 and degree-1 monomial feature mappings

are trivial, where Φ0(x) is merely a constant 1, and Φ1(x) is the same with the original

instance x. An example of a degree-2 TPM feature mapping for two-dimensional instance

is as follows:

Φ̄G(x) = exp(−g||x||2)

[1,
√

2gx1,
√

2gx2,

√
(2g)2

2!
x2
1,

√
2
(2g)2

2!
x1x2,

√
(2g)2

2!
x2
2]
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Then the Gaussian kernel function can be approximately computed by the TPM fea-

ture mapped instances as

K(x,y) ≈ Φ̄G(x) · Φ̄G(y). (4.4)

Compared to uniform approximation of the random Fourier features [43, 44], our ap-

proximation of the Gaussian kernel function by the TPM features is non-uniform. Sig-

nificant information to evaluate the function is concentrated on low-degree terms due to

the approximation property of the Taylor polynomial. Therefore, we can utilize only the

low-degree terms to precisely approximate the infinite-dimensional feature mapping of

the Gaussian kernel function, where only low-degree monomial features are required and

hence we can achieve a low-dimensional approximated feature mapping. Then the Gaus-

sian kernel SVM can be approximately trained via the fast linear SVM solvers with TPM

feature mapped instances.

4.4 Efficient Training of the Gaussian Kernel SVM with

a Linear SVM Solver and TPM Feature Mapping

With the explicit TPM feature mapping Φ̄G (4.3) to approximately compute the Gaus-

sian kernel function by (4.4), we can utilize an efficient linear SVM solver such as

LIBLINEAR [15] with the TPM feature mapped instances to train a Gaussian kernel

SVM. This way explicitly maps data to the high-dimensional feature space of the TPM

feature mapping, and the linear SVM finds an explicit optimal separating hyperplane

w · Φ̄G(x) + b = 0. The weight vector w =
∑m

i=1 αiyiΦ̄G(xi) is no longer a linear

combination of kernel evaluations but is an explicit vector.

Figure 4.1 shows the algorithm for training the Gaussian kernel SVM by the TPM

feature mapping with a linear SVM solver. First, the feature mapping of specified ap-

proximating degree for the corresponding dimensionality of data is generated. Then all

feature vectors of training data are transformed by using the TPM feature mapping. Fi-

nally, a linear SVM solver is utilized to compute an explicit optimal separating hyper-

plane on the two classes of the feature mapped instances to obtain the decision function
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Input: Training instances xi ∈ Rn and yi ∈ {1,−1}, i = 1, . . . ,m, approximation degree
du, Gaussian kernel parameter g, SVM cost parameter C.
Output: Decision function f(Φ̄G(x)).

Generate the degree-du TPM feature mapping for n-dimensional input Φ̄G(x).

For each xi, apply the TPM feature mapping Φ̄G with kernel parameter g to obtain
Φ̄G(xi), i = 1, . . . ,m.

Using (Φ̄G(xi), yi), i = 1, . . . ,m as the training instances and the cost parameter C to
train a linear SVM, which generates the decision function f(Φ̄G(x)) = w · Φ̄G(x) + b.

Figure 4.1: Approximate training of the Gaussian kernel SVM by TPM feature mapping
with a linear SVM solver.

f(Φ̄G(x)) = w · Φ̄G(x) + b. The final classifier is sign(f(Φ̄G(x))), which classifies the

testing instance x by applying the TPM feature mapping on the testing data and comput-

ing its decision value to determine which side of the optimal separating hyperplane it falls

into.

Figure 4.2 illustrates a series of approximating decision boundaries generated by the

linear SVM with TPM feature mapping from du = 1 to du = 4 to compare with the deci-

sion boundary generated by a normal Gaussian kernel SVM. In each sub-figure, the solid

curve is the decision boundary f(x) = 0 of the normal Gaussian kernel SVM, and the

dotted curve is the approximating decision boundary f(Φ̄G(x)) = 0 generated by the lin-

ear SVM with TPM feature mapping. It is seen that in du=1, the approximating decision

boundary does not not result in very good approximation. Because in du = 1, the expo-

nential function exp(2gx · y) of (4.2) is simply approximated by 1 + 2gx · y. This linear

approximation is usually not precise enough to approximate the exponential function, and

hence the linear SVM with TPM feature mapping does not have a precise approximation

to the Gaussian kernel SVM. However, we can see that in du = 2, the decision boundary

obtained by the linear SVM with TPM feature mapping becomes very close to the original

one, almost overlaps together. From du = 3, the linear SVM with TPM feature mapping

provides almost the same decision boundary to the Gaussian kernel SVM. Similar to the

approximation of exp(x) by low-order terms of its Taylor series representation, the TPM

feature mapping precisely approximates the infinite-dimensional feature mapping of the
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Figure 4.2: The approximation of the Gaussian kernel SVM by the linear SVM with TPM
feature mapping. In each sub-figure, the solid curve is the decision boundary obtained by
the Gaussian kernel SVM, and the dotted curve is obtained by the linear SVM with TPM
feature mapping from du = 1 to du = 4.

Gaussian kernel function by low-order terms, and hence can precisely approximate the

the Gaussian kernel SVM by a linear SVM with TPM feature mapping.

It is seen that the linear SVM with a low-degree TPM feature mapping is enough

to get very good approximation to the original decision boundary obtained by a normal

nonlinear kernel SVM solver. Therefore, we can use a low-degree TPM feature mapping

to obtain a low-dimensional feature mapping, which is efficient for using with the linear

SVM solver. This approach leverages the fast linear SVM solver to train the Gaussian

kernel SVM.

4.4.1 Complexity of the Classifier

The complexity of the classifier trained by the linear SVM with TPM feature mapping

depends on the dimensionality of the weight vector w, i.e., the dimensionality of the

degree-du TPM feature mapping on n-dimensional data, which is O(
(
n+du
du

)
). The nor-

mal Gaussian kernel SVM classifier needs to preserve all the support vectors to perform
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kernel evaluations with the testing instance, and its complexity is O(n ∗ #SV ), where

#SV denotes the number of support vectors, i.e., the classifier complexity of the normal

Gaussian kernel SVM classifier increases linearly with the number of support vectors.

Since the complexity of the linear SVM with TPM feature mapping is independent of the

number of support vectors, and the degree of the TPM feature mapping is not necessary

to be high, we can usually obtain a classifier with the complexity lower than the one ob-

tained by the Gaussian kernel SVM. For large-scale training data, the SVM may result in

a large amount of support vectors. With a small approximation degree du, the classifier

complexity of the linear SVM with TPM feature mapping can be much smaller than that

of a normal Gaussian kernel SVM classifier.

4.4.2 Data Dependent Sparseness Property

The dimensionality of the TPM feature mapping
(
n+du
du

)
will be high if the dimensions of

data n is large, or the approximating degree du is too big. However, if some features of

original instances are zero, i.e., the data have some extent of sparseness, many features

of the TPM feature mapped instances will also be zero. Since only the nonzero TPM

features are required to be preserved for computations, the actual dimensions of the TPM

feature mapped instances will be much smaller than the dimensions of the complete TPM

feature mapping, which not only saves storage space but is helpful for the computational

efficiency both in training and testing since popular linear SVM solvers such as LIBLIN-

EAR [15] and SVMperf [24] have the computational complexity linear to the average

number of nonzero features.

From (4.3), it is seen that a degree-du TPM feature mapping is composed of scaled

monomial feature mappings up to degree du. Each feature in the degree-d monomial fea-

ture mapping is composed of d-time multiplications of original features with repetitions.

If any of the original features is zero, all the monomial features involved by that original

feature will also be zero.

In the following analyses, we concentrate on the TPM feature mapping with du = 2

since we will use du = 2 in the experiments to lower the computational cost of training the
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SVM as much as possible. Suppose there are ñ zero features in the n-dimensional instance

x. The monomial features of Φ1(x) are the same with the original features, and hence

there are also ñ zero features. In Φ2(x), a feature xi, 1 ≤ i ≤ n involves with n monomial

features: {xix1, xix2, . . . , xixn}. Then there will be ñn −
(
ñ
2

)
zero features, where

(
ñ
2

)
is the repetitive count of the monomial features composed of the multiplication of two

original features. So the degree-2 Φ̄G(x) with
(
n+2
2

)
dimensions will have ñ + ñn −

(
ñ
2

)
zero features. For example, suppose that an instance is 10-dimensional, whose degree-2

TPM feature mapping has 66 dimensions. If two of the original features of the instance

are zero, then there will be 21 zero features in its degree-2 TPM feature mapping.

It is seen that if the data are not fully dense, the sparseness will augment in the TPM

feature mapped data. Hence the actual complexity does not increase as the increasing

dimension of the TPM feature mapping. This property makes the TPM feature mapping

easier to work with linear SVM solvers such as LIBLINEAR and SVMperf , whose com-

putational efficiency are significantly influenced by the number of nonzero features.

This sparseness property can be more apparent in the data with categorical features.

Since the SVM is designed for numerical data, the categorical features are suggested to

be pre-processed to indicator variables [22], where each indicator variable stands for a

categorical value. For example, a categorical feature with four kinds of categorical values

will be transformed to four indicator features, where only one indicator feature will have

nonzero value. In such a situation, the actual complexity of the TPM feature mapped

instances will be much smaller than the dimensions of the TPM feature mapping.

4.4.3 Precision Issues of Approximation

In approximating the Gaussian kernel function by the inner product of TPM feature

mapped instances, the computation of the term exp(2gx · y) in the Gaussian kernel com-

putation (4.1) is approximated by its du-th order Taylor approximation. The infinite series

representation of exp(2gx · y) adopted in (4.2) is a Taylor series defined at zero. Ac-

cording to the Taylor theorem, the evaluation of the Taylor series at zero will be equal to

the evaluation of the original function if the evaluating point is sufficiently close to zero.
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Table 4.1: Dataset statistics.
Number of Average Number of

Dataset training instances Features nonzero features testing instances
Forest Cover Type 387,341 54 11.9 193,671

IJCNN 2001 49,990 22 13.0 91,701
Adult 32,561 123 13.9 16,281

Therefore, in addition to the order of the Taylor approximation, the evaluating point of

the exponential function also affects the approximating precision. While the evaluating

point is distant too far from zero, the approximation will be degraded.

The factors influencing the evaluating point of the exponential function exp(2gx · y)

include the kernel parameter g and the inner product between instances x and y, where the

value of the inner product depends on the feature values and the dimensions of instances.

The potential problem from large feature values can be easily tackled since the guidelines

of the practical use of the SVM [22, 46] suggest scaling the value of each feature to

appropriate range like [0, 1] or [−1, 1] in the data pre-processing step to prevent the effect

that greater numerical range features may dominate those in smaller range. Scaling the

data also avoids numerical difficulty and prevents overflow.

The other factors are the dimensions of the data and the value of the Gaussian kernel

parameter g. It is noted that the value of g is suggested to be small [46]. One reason is

to prevent the numerical values from getting extremely large as the dimensions of data

increase. The other reason is that using large g may cause the overfitting problem in

the classifier. The Gaussian kernel function represents each instance by a bell-shaped

function sitting on the instance, which represents its similarity to all other instances. Large

g means that the instance is more dissimilar to others. The kernel start memorizing data

and becoming local, which causes the resulting classifier tend to overfit the data [46].

To prevent the overfitting problem and numerical difficulty, a simple strategy is setting

g = 1/n where n denotes the dimensions of data. Setting g = 1/n is also the default of

LIBSVM [7]. Note that the values of both the kernel parameter g and the cost parameter

C for training the SVM are usually chosen by cross-validation to select an appropriate

parameter combination [22,46]. Since Gaussian kernel with large g is prone to overfitting

the data, it mostly results in poor accuracy in cross-validation. Therefore, the value of g
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chosen by cross-validation is usually small.

With scaling all feature values to [−1, 1], and the kernel parameter g is typically small,

the evaluating point of exp(2gx ·y)’s Taylor polynomial is often very close to zero, which

prevents the potential precision problem of far evaluating point in the Taylor polynomial.

Furthermore, if the data has some extent of sparseness, the value of the inner product x ·y

will be smaller and thus the evaluating point will approach to zero more.

4.5 Experiments

We consider on several public large-scale datasets to evaluate the effectiveness of using

the proposed TPM-feature mapping with a linear SVM solver on classification tasks. We

compare the accuracy, training time, and testing time with a normal Gaussian kernel SVM,

the LIBSVM [7] with Gaussian kernel, and a normal linear SVM solver, the LIBLINEAR

[15]. We also compare with some related works, the explicit feature mapping of low-

degree polynomial kernel function with a linear SVM solver [8], and the random Fourier

features technique which also approximates the feature mapping of the Gaussian kernel

function [43].

The large-scale datasets we adopt include two datasets available at the UCI machine

learning repository [5], the Adult and Forest cover type, and the dataset of the IJCNN

2001 competition [41] . Since the Forest cover type dataset is multi-class, we follow the

way of [13] which considers the binary-class problem of separating class 2 from others.

For the dataset which does not have a separate testing set, we adopt a 2 : 1 split where

2/3 of the dataset acts as the training set and the other 1/3 acts as the testing set. All three

datasets used in our experiments are pre-processed versions available in the LIBSVM

website [7], where all feature values have been scaled to [−1, 1] and categorical features

have been transformed to indicator variables [22]. The statistics of the datasets are given

in Table 4.1, which also lists the average number of nonzero features of each dataset.

Our experimental platform is a PC featured with an Intel Core 2 Q9300 CPU at

2.5GHz and 8GB RAM, running Windows XP x64 Edition. The program of TPM feature

mapping is written in C++, and the linear SVM solver we adopt is LIBLINEAR [8] .
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Table 4.2: Comparison bases - Running time and accuracy of Gaussian kernel and linear
SVMs.

Gaussian kernel SVM
Parameters

Dataset Training time Accuracy Testing time (C, g) # SV
Forest Cover Type 23,461.97 sec 73.87% 1,800.39 sec (23, 23) 96,380

IJCNN 2001 23.72 sec 98.70% 18.59 sec (25, 2) 2,477
Adult 119.48 sec 85.12% 28.91 sec (23, 2−5) 11,506

Linear SVM # nonzero
Dataset Training time Accuracy Testing time C features in w

Forest Cover Type 20.41 sec 61.48% 1.62 sec 2−3 54
IJCNN 2001 6.89 sec 91.80% 0.86 sec 25 22

Adult 7.86 sec 83.31% 0.11 sec 25 122

Table 4.3: Time of applying degree-2 TPM feature mapping and the number of nonzero
features in mapped data.

TPM transforming Average number of TPM transforming
Dataset time of training data nonzero TPM features time of testing data

Forest Cover Type 4.68 sec 90.3 2.34 sec
IJCNN 2001 0.12 sec 105.0 0.22 sec

Adult 1.87 sec 118.1 0.92 sec

Table 4.2 shows the classification accuracy, training time, and testing time of applying

the Gaussian kernel SVM and linear SVM on the three datasets respectively to act as the

bases for comparison. We use LIBSVM [7] as the Gaussian kernel SVM solver where the

kernel cache is set to 1000 MBytes, and LIBLINEAR [15] as the linear SVM solver. All

the parameters for training SVMs are determined by cross-validation. We also show the

number of support vectors of Gaussian kernel SVM classifiers and the number of nonzero

features in the weight vector w of linear SVM classifiers. It is seen that on all three

datasets, the Gaussian kernel SVM results in higher accuracy than the linear SVM, but its

training time and testing time is longer. Especially on the Forest cover type dataset which

has more than 380, 000 training instances, the Gaussian kernel SVM consumes about 650

times longer training time than the linear SVM.
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Table 4.4: Classification results - Training time and testing accuracy of three explicit
mapping with linear SVM.

Feature Training Compare with Gaussian
Dataset mapping time Accuracy Training time Accuracy (C, g)
Forest TPM-2 383.03 sec 66.48% -23,078.94 sec -7.39% (213, 2−11)
Cover Poly-2 1,361.56 sec 62.10% -22,100.41 sec −11.77% (2−3, 23)
Type Fourier-200 130.17 sec 56.36% -23,331.8 sec −17.51% (2−3, 2−7)

TPM-2 12.26 sec 97.84% -11.46 sec -0.86% (29, 2)
IJCNN Poly-2 10.18 sec 97.83% -13.54 sec −0.87% (2−3, 25)
2001 Fourier-200 63.86 sec 56.18% +40.14 sec −42.52% (211, 2−9)

TPM-2 4.02 sec 85.04% -115.46 sec -0.08% (2, 2−9)
Adult Poly-2 1.88 sec 85.03% -117.6 sec −0.09% (23, 2−5)

Fourier-200 17.1 sec 60.06% -102.38 sec −25.06% (25, 2−11)

Table 4.5: Testing time of the classifiers.
Feature Testing Time differences with # nonzero

Dataset mapping time Gaussian kernel features in w
TPM-2 15.23 sec -1,785.16 sec 4,598

Forest Cover Type Poly-2 2.33 sec -1,798.06 sec 4,594
Fourier-200 28.18 sec -1,772.21 sec 200

TPM-2 8.00 sec -10.59 sec 231
IJCNN 2001 Poly-2 1.20 sec -17.39 sec 231

Fourier-200 13.24 sec -5.35 sec 200
TPM-2 1.31 sec -27.60 sec 5,230

Adult Poly-2 0.17 sec -28.74 sec 5,228
Fourier-200 2.35 sec -26.56 sec 200

4.5.1 Time of Applying TPM Feature Mapping

Here we measure the computing time of performing the TPM feature mapping. Our

target is to capitalize with an efficient linear SVM solver with TPM feature mapping to

approximately train a Gaussian kernel SVM. If the TPM feature mapping is slow, it would

be better to train the Gaussian kernel SVM directly. Hence the TPM feature mapping

must run fast. In the whole experiments, we use the degree-2 TPM feature mapping.

The computing time of performing degree-2 TPM feature mapping on the three datasets

is shown in Table 4.3. We can see that the TPM feature mapping runs very fast, which

consumes much less time than that of training the Gaussian kernel SVM. Even on the

very large dataset Forest cover type, the TPM feature mapping takes only 4.68 seconds to

transform the training data. Table 4.3 also shows the average number of nonzero features

in the degree-2 TPM feature mapped data.
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4.5.2 Comparison of Accuracy and Efficiency

We show the accuracy, training time and testing time of applying the degree-2 TPM fea-

ture mapping with linear SVM solvers to compare with normal Gaussian kernel SVMs.

We also compare with using other explicit feature mapping with linear SVM solvers, the

random Fourier features [43], and the degree-2 explicit feature mapping of polynomial

kernel [8].

The authors of [8] have provided a program which integrates degree-2 polynomial

mapping with LIBLINEAR, and thus we will use it in the experiments. For TPM and

random Fourier feature mapping, we separately mapped all data first, and then use the

mapped data as the input to LIBLINEAR. From Table 4.3, it is seen that the average

number of nonzero features in the degree-2 TPM-feature mapped data is in the range

between 90.3 and 118.1. Since the random Fourier features are dense, for comparing

accuracy in a similar complexity with degree-2 TPM feature mapping in training with

the linear SVM, we use 200 features for random Fourier feature mapping. The degree-2

explicitly polynomial feature mapped data has the same number of nonzero features with

the degree-2 TPM feature mapped data.

All parameters for training are determined by cross-validation1. The results of training

time and testing accuracy of the three methods are reported in Table 4.4, and the results

of testing time are reported in Table 4.5. For the ease of comparison, we also show the

differences in time and accuracy to the Gaussian kernel SVM.

We first consider on the results of our proposed degree-2 TPM feature mapping (TPM-

2). It is seen that on IJCNN2001 and Adult datasets, the resulted accuracy is similar to

that of the Gaussian kernel SVM, but consumes much less time on training. On the Forest

cover type dataset, the accuracy is not as good as using a normal Gaussian kernel SVM.

The reason is that this dataset needs a large value of the Gaussian kernel parameter g

to separate the two classes of data. But the approximating precision of the TPM feature

mapping decreases as the value of g increases. Therefore, the TPM feature mapping needs

to use a smaller g to work with the SVM, but a small value of g does not separate the data

1The degree-2 polynomial kernel function is K(x,y) = (gx · y + r)2, where we fix r to 1 as that done
by [8].
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well and results in lower accuracy. However, it takes only several minutes to complete the

training, compared to several hours of the Gaussian kernel SVM. Although the accuracy

is not as high as a normal Gaussian kernel SVM, but the improvement on training time is

large and can provide a good trade-off between accuracy and efficiency. The results show

that the low-degree TPM feature mapping with a linear SVM solver can well approximate

the classification ability of the Gaussian kernel SVM in relatively very low computational

cost.

The degree-2 polynomial mapping (Poly-2) also results in similar accuracy on

IJCNN2001 and Adult datasets, but on the Forest cover type dataset, it does not perform

well and is only slightly better than the linear SVM. Since the degree is one of the pa-

rameters of the polynomial kernel function, the nonlinear ability of the polynomial kernel

function is restricted by the low-degree, which causes it cannot separate this dataset well.

The degree of our TPM feature mapping is related to the precision of approximation but

not a parameter of the Gaussian kernel function, and degree-2 is usually enough to approx-

imate well and hence is able to achieve better accuracy. The computing time of explicit

polynomial feature mapping is usually faster here since its program provided by their au-

thors integrates the feature mapping, which reads the original data from disk to perform

feature mapping in memory, and the feature mapping can be executed fast. Our prototype

of the TPM is a separate feature mapping, and the linear SVM solver must read the larger

mapped data from disk. Since the disk reading is slow, it usually takes longer time than

Poly-2. The difference is more apparent in the testing. From Table 4.5, we can see that

the resulted classifiers of TPM-2 and Poly-2 have similar number of nonzero features in

the weight vector w. Since the Poly-2 reads original data to perform in-memory feature

mapping, it runs faster than TPM-2 which reads larger mapped data from disk. We leave

the integration of the TPM feature mapping with the linear SVM solver as a future work.

Then we consider on the random Fourier features (Fourier-200). It is seen that the

accuracy resulted from Fourier-200 is poor since 200 features are still too few to approx-

imate the Gaussian kernel function well. The random Fourier features method requires a

large number of features to reduce the variation, but with 200 features, it already consumes
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longer time than TPM-2 and Poly-2 in Adult and IJCNN 2001 datasets. In the comparison

of testing efficiency, although there are only 200 nonzero features in the weight vector w

of Fourier-200, it still runs slower than TPM-2 and Poly-2. Because the random Fourier

features are dense, all the mapped testing data also have 200 nonzero features, while the

TPM-2 and Poly-2 feature mapped data are sparse. Hence Fourier-200 runs slower in

testing than both TPM-2 and Poly-2 which have dense weight vectors but sparse testing

data.

4.6 Summary

We propose the Taylor polynomial-based monomial (TPM) feature mapping which ap-

proximates the infinite-dimensional implicit feature mapping of the Gaussian kernel func-

tion by low-dimensional features, and then utilize the TPM feature mapped data with a

fast linear SVM solver to approximately train a Gaussian kernel SVM. The experimen-

tal results show that TPM feature mapping with a linear SVM solver can achieve similar

accuracy to a Gaussian kernel SVM but consume much less time.
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Chapter 5

Conclusion

In this dissertation, we study the privacy as well as efficiency issues in utilizing the sup-

port vector machines. We show that existing works are not secure for privacy-preserving

outsourcing of the SVM, and consider on the inherent privacy violation problem of the

SVM classifier. We propose solutions for these problems, and prove that the proposed

techniques are strong in security. We also develop an efficient SVM training scheme for

large-scale data.

In Chapter 2, we propose a privacy-preserving outsourcing scheme of the SVM which

protects the data by the random linear transformation. It achieves similar classification

accuracy to a normal SVM classifier, and provides higher security on the data privacy

than existing works based on the geometric transformation. The privacy of both the data

and generated classifiers are protected, and the overhead imposed on the data owner is

very little.

In Chapter 3, we propose the privacy-preserving SVM classifier to tackle the inher-

ent privacy violation problem of the classification model of the SVM, where some intact

instances of the training data called support vectors are revealed. The Gaussian kernel

SVM classifier is post-processed to a privacy-preserving classifier which precisely ap-

proximates the prediction ability of the SVM classifier and does not disclose the private

content of support vectors. By protecting the content of support vectors, the privacy-

preserving SVM classifier can be publicly released without violating individual privacy.

In Chapter 4, based on the kernel approximation technique of Chapter 3, we pro-
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pose the Taylor polynomial-based monomial feature mapping which sufficiently approx-

imates the infinite-dimensional implicit feature mapping of the Gaussian kernel function

by explicit low-dimensional features, and then utilize the explicitly feature mapped low-

dimensional data with a fast linear SVM solver to approximately train a Gaussian kernel

SVM. The experimental results show that the proposed scheme can achieve similar clas-

sification accuracy to a normal Gaussian kernel SVM but consume much less time.
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