Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92100
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 賴文崧 | zh_TW |
dc.contributor.advisor | Wen-Sung Lai | en |
dc.contributor.author | 裴如淳 | zh_TW |
dc.contributor.author | Ju-Chun Pei | en |
dc.date.accessioned | 2024-03-05T16:17:16Z | - |
dc.date.available | 2024-03-06 | - |
dc.date.copyright | 2024-03-05 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-04 | - |
dc.identifier.citation | Ahn, W. Y., Haines, N., & Zhang, L. (2017). Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package. Comput Psychiatr, 1, 24-57. doi:10.1162/CPSY_a_00002
Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nat Neurosci, 14(10), 1338-1344. doi:10.1038/nn.2921 Amann, L. C., Gandal, M. J., Halene, T. B., Ehrlichman, R. S., White, S. L., McCarren, H. S., & Siegel, S. J. (2010). Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull, 83(3-4), 147-161. doi:10.1016/j.brainresbull.2010.04.008 Arguello, P. A., & Gogos, J. A. (2008). A signaling pathway AKTing up in schizophrenia. J Clin Invest, 118(6), 2018-2021. doi:10.1172/JCI35931 Arkadir, D., Morris, G., Vaadia, E., & Bergman, H. (2004). Independent coding of movement direction and reward prediction by single pallidal neurons. J Neurosci, 24(45), 10047-10056. doi:10.1523/JNEUROSCI.2583-04.2004 Bajestan, S. N., Sabouri, A. H., Nakamura, M., Takashima, H., Keikhaee, M. R., Behdani, F., . . . Osame, M. (2006). Association of AKT1 haplotype with the risk of schizophrenia in Iranian population. Am J Med Genet B Neuropsychiatr Genet, 141B(4), 383-386. doi:10.1002/ajmg.b.30291 Balu, D. T., Carlson, G. C., Talbot, K., Kazi, H., Hill-Smith, T. E., Easton, R. M., . . . Lucki, I. (2012). Akt1 deficiency in schizophrenia and impairment of hippocampal plasticity and function. Hippocampus, 22(2), 230-240. doi:10.1002/hipo.20887 Bari, B. A., Grossman, C. D., Lubin, E. E., Rajagopalan, A. E., Cressy, J. I., & Cohen, J. Y. (2019). Stable Representations of Decision Variables for Flexible Behavior. Neuron, 103(5), 922-933 e927. doi:10.1016/j.neuron.2019.06.001 Basar, E., Basar-Eroglu, C., Karakas, S., & Schurmann, M. (2000). Brain oscillations in perception and memory. Int J Psychophysiol, 35(2-3), 95-124. doi:10.1016/s0167-8760(99)00047-1 Beaulieu, J. M., Del''guidice, T., Sotnikova, T. D., Lemasson, M., & Gainetdinov, R. R. (2011). Beyond cAMP: The Regulation of Akt and GSK3 by Dopamine Receptors. Front Mol Neurosci, 4, 38. doi:10.3389/fnmol.2011.00038 Benedetti, F., Poletti, S., Radaelli, D., Bernasconi, A., Cavallaro, R., Falini, A., . . . Smeraldi, E. (2010). Temporal lobe grey matter volume in schizophrenia is associated with a genetic polymorphism influencing glycogen synthase kinase 3-beta activity. Genes Brain Behav, 9(4), 365-371. doi:10.1111/j.1601-183X.2010.00566.x Benes, F. M., & Berretta, S. (2001). GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology, 25(1), 1-27. doi:10.1016/S0893-133X(01)00225-1 Benes, F. M., Khan, Y., Vincent, S. L., & Wickramasinghe, R. (1996). Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse, 22(4), 338-349. doi:10.1002/(SICI)1098-2396(199604)22:4<338::AID-SYN5>3.0.CO;2-C Bijlsma, A., Omrani, A., Spoelder, M., Verharen, J. P. H., Bauer, L., Cornelis, C., . . . Wierenga, C. J. (2022). Social Play Behavior Is Critical for the Development of Prefrontal Inhibitory Synapses and Cognitive Flexibility in Rats. J Neurosci, 42(46), 8716-8728. doi:10.1523/JNEUROSCI.0524-22.2022 Blasi, G., Napolitano, F., Ursini, G., Taurisano, P., Romano, R., Caforio, G., . . . Bertolino, A. (2011). DRD2/AKT1 interaction on D2 c-AMP independent signaling, attentional processing, and response to olanzapine treatment in schizophrenia. Proc Natl Acad Sci U S A, 108(3), 1158-1163. doi:10.1073/pnas.1013535108 Blum, B. P., & Mann, J. J. (2002). The GABAergic system in schizophrenia. Int J Neuropsychopharmacol, 5(2), 159-179. doi:10.1017/S1461145702002894 Braun, S., & Hauber, W. (2011). The dorsomedial striatum mediates flexible choice behavior in spatial tasks. Behav Brain Res, 220(2), 288-293. doi:10.1016/j.bbr.2011.02.008 Brown, A. S. (2011). The environment and susceptibility to schizophrenia. Prog Neurobiol, 93(1), 23-58. doi:10.1016/j.pneurobio.2010.09.003 Capuzzo, G., & Floresco, S. B. (2020). Prelimbic and Infralimbic Prefrontal Regulation of Active and Inhibitory Avoidance and Reward-Seeking. J Neurosci, 40(24), 4773-4787. doi:10.1523/JNEUROSCI.0414-20.2020 Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q., & Frank, M. J. (2013). Frontal theta overrides pavlovian learning biases. J Neurosci, 33(19), 8541-8548. doi:10.1523/JNEUROSCI.5754-12.2013 Chadha, R., & Meador-Woodruff, J. H. (2020). Downregulated AKT-mTOR signaling pathway proteins in dorsolateral prefrontal cortex in Schizophrenia. Neuropsychopharmacology, 45(6), 1059-1067. doi:10.1038/s41386-020-0614-2 Chang, C. Y., Chen, Y. W., Wang, T. W., & Lai, W. S. (2016). Akting up in the GABA hypothesis of schizophrenia: Akt1 deficiency modulates GABAergic functions and hippocampus-dependent functions. Sci Rep, 6, 33095. doi:10.1038/srep33095 Chen, Y. C., Chen, Y. W., Hsu, Y. F., Chang, W. T., Hsiao, C. K., Min, M. Y., & Lai, W. S. (2012). Akt1 deficiency modulates reward learning and reward prediction error in mice. Genes Brain Behav, 11(2), 157-169. doi:10.1111/j.1601-183X.2011.00759.x Chen, Y. W., Kao, H. Y., Min, M. Y., & Lai, W. S. (2014). A sex- and region-specific role of Akt1 in the modulation of methamphetamine-induced hyperlocomotion and striatal neuronal activity: implications in schizophrenia and methamphetamine-induced psychosis. Schizophr Bull, 40(2), 388-398. doi:10.1093/schbul/sbt031 Chen, Y. W., & Lai, W. S. (2011). Behavioral phenotyping of v-akt murine thymoma viral oncogene homolog 1-deficient mice reveals a sex-specific prepulse inhibition deficit in females that can be partially alleviated by glycogen synthase kinase-3 inhibitors but not by antipsychotics. Neuroscience, 174, 178-189. doi:10.1016/j.neuroscience.2010.09.056 Cho, H., Thorvaldsen, J. L., Chu, Q., Feng, F., & Birnbaum, M. J. (2001). Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem, 276(42), 38349-38352. doi:10.1074/jbc.C100462200 Chuhma, N., Oh, S. J., & Rayport, S. (2023). The dopamine neuron synaptic map in the striatum. Cell Rep, 42(3), 112204. doi:10.1016/j.celrep.2023.112204 Cohen, J. D., McClure, S. M., & Yu, A. J. (2007). Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos Trans R Soc Lond B Biol Sci, 362(1481), 933-942. doi:10.1098/rstb.2007.2098 Corbit, L. H., Nie, H., & Janak, P. H. (2012). Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol Psychiatry, 72(5), 389-395. doi:10.1016/j.biopsych.2012.02.024 Curley, A. A., Arion, D., Volk, D. W., Asafu-Adjei, J. K., Sampson, A. R., Fish, K. N., & Lewis, D. A. (2011). Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. Am J Psychiatry, 168(9), 921-929. doi:10.1176/appi.ajp.2011.11010052 Davis, K. N., Tao, R., Li, C., Gao, Y., Gondre-Lewis, M. C., Lipska, B. K., . . . Hyde, T. M. (2016). GAD2 Alternative Transcripts in the Human Prefrontal Cortex, and in Schizophrenia and Affective Disorders. PLoS One, 11(2), e0148558. doi:10.1371/journal.pone.0148558 Daw, N. D., O''Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876-879. doi:10.1038/nature04766 Delevich, K., Hoshal, B., Zhou, L. Z., Zhang, Y., Vedula, S., Lin, W. C., . . . Wilbrecht, L. (2022). Activation, but not inhibition, of the indirect pathway disrupts choice rejection in a freely moving, multiple-choice foraging task. Cell Rep, 40(4), 111129. doi:10.1016/j.celrep.2022.111129 den Ouden, H. E., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., . . . Cools, R. (2013). Dissociable effects of dopamine and serotonin on reversal learning. Neuron, 80(4), 1090-1100. doi:10.1016/j.neuron.2013.08.030 Deserno, L., Boehme, R., Mathys, C., Katthagen, T., Kaminski, J., Stephan, K. E., . . . Schlagenhauf, F. (2020). Volatility Estimates Increase Choice Switching and Relate to Prefrontal Activity in Schizophrenia. Biol Psychiatry Cogn Neurosci Neuroimaging, 5(2), 173-183. doi:10.1016/j.bpsc.2019.10.007 Di Cristo, G. (2007). Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders. Clin Genet, 72(1), 1-8. doi:10.1111/j.1399-0004.2007.00822.x Di Forti, M., Lappin, J. M., & Murray, R. M. (2007). Risk factors for schizophrenia--all roads lead to dopamine. Eur Neuropsychopharmacol, 17 Suppl 2, S101-107. doi:10.1016/j.euroneuro.2007.02.005 Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M., & Gogos, J. A. (2004). Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet, 36(2), 131-137. doi:10.1038/ng1296 Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The role of medial prefrontal cortex in memory and decision making. Neuron, 76(6), 1057-1070. doi:10.1016/j.neuron.2012.12.002 Featherstone, R. E., V, M. T.-L., Suh, J. D., Lin, R., Lucki, I., & Siegel, S. J. (2013). Electrophysiological and behavioral responses to ketamine in mice with reduced Akt1 expression. Psychopharmacology (Berl), 227(4), 639-649. doi:10.1007/s00213-013-2997-9 Franke, T. F. (2008). PI3K/Akt: getting it right matters. Oncogene, 27(50), 6473-6488. doi:10.1038/onc.2008.313 Friedman-Hill, S., Maldonado, P. E., & Gray, C. M. (2000). Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations. Cereb Cortex, 10(11), 1105-1116. doi:10.1093/cercor/10.11.1105 Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci, 9(10), 474-480. doi:10.1016/j.tics.2005.08.011 Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291(5508), 1560-1563. doi:10.1126/science.1055465 Gage, G. J., Stoetzner, C. R., Wiltschko, A. B., & Berke, J. D. (2010). Selective activation of striatal fast-spiking interneurons during choice execution. Neuron, 67(3), 466-479. doi:10.1016/j.neuron.2010.06.034 Gelman, A., Hwang, J., & Vehtari, A. (2013). Understanding predictive information criteria for Bayesian models. Statistics and Computing, 24(6), 997-1016. doi:10.1007/s11222-013-9416-2 Gold, J. M., Waltz, J. A., Prentice, K. J., Morris, S. E., & Heerey, E. A. (2008). Reward processing in schizophrenia: a deficit in the representation of value. Schizophr Bull, 34(5), 835-847. doi:10.1093/schbul/sbn068 Gonzalez-Burgos, G., & Lewis, D. A. (2008). GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull, 34(5), 944-961. doi:10.1093/schbul/sbn070 Green, L., & Myerson, J. (1996). Exponential versus Hyperbolic Discounting of Delayed Outcomes: Risk and Waiting Time. American Zoologist, 36(4), 496-505. Green, M. F. (2006). Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin Psychiatry, 67(10), e12. Green, M. F., Kern, R. S., & Heaton, R. K. (2004). Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res, 72(1), 41-51. doi:10.1016/j.schres.2004.09.009 Green, M. F., Nuechterlein, K. H., Gold, J. M., Barch, D. M., Cohen, J., Essock, S., . . . Marder, S. R. (2004). Approaching a consensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS conference to select cognitive domains and test criteria. Biol Psychiatry, 56(5), 301-307. doi:10.1016/j.biopsych.2004.06.023 Gremel, C. M., & Costa, R. M. (2013). Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat Commun, 4, 2264. doi:10.1038/ncomms3264 Grospe, G. M., Baker, P. M., & Ragozzino, M. E. (2018). Cognitive Flexibility Deficits Following 6-OHDA Lesions of the Rat Dorsomedial Striatum. Neuroscience, 374, 80-90. doi:10.1016/j.neuroscience.2018.01.032 He, Y., Li, Y., Pu, Z., Chen, M., Gao, Y., Chen, L., . . . Chen, J. F. (2020). Striatopallidal Pathway Distinctly Modulates Goal-Directed Valuation and Acquisition of Instrumental Behavior via Striatopallidal Output Projections. Cereb Cortex, 30(3), 1366-1381. doi:10.1093/cercor/bhz172 Herrmann, C. S., & Demiralp, T. (2005). Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol, 116(12), 2719-2733. doi:10.1016/j.clinph.2005.07.007 Herrmann, C. S., Munk, M. H., & Engel, A. K. (2004). Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci, 8(8), 347-355. doi:10.1016/j.tics.2004.06.006 Hong, S. I., Kang, S., Chen, J. F., & Choi, D. S. (2019). Indirect Medium Spiny Neurons in the Dorsomedial Striatum Regulate Ethanol-Containing Conditioned Reward Seeking. J Neurosci, 39(36), 7206-7217. doi:10.1523/JNEUROSCI.0876-19.2019 Howard, M. W., Rizzuto, D. S., Caplan, J. B., Madsen, J. R., Lisman, J., Aschenbrenner-Scheibe, R., . . . Kahana, M. J. (2003). Gamma oscillations correlate with working memory load in humans. Cereb Cortex, 13(12), 1369-1374. doi:10.1093/cercor/bhg084 Ibarra-Lecue, I., Diez-Alarcia, R., Morentin, B., Meana, J. J., Callado, L. F., & Uriguen, L. (2020). Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia. Front Pharmacol, 11, 344. doi:10.3389/fphar.2020.00344 Ikeda, M., Iwata, N., Suzuki, T., Kitajima, T., Yamanouchi, Y., Kinoshita, Y., . . . Ozaki, N. (2004). Association of AKT1 with schizophrenia confirmed in a Japanese population. Biol Psychiatry, 56(9), 698-700. doi:10.1016/j.biopsych.2004.07.023 Ito, M., & Doya, K. (2015). Distinct neural representation in the dorsolateral, dorsomedial, and ventral parts of the striatum during fixed- and free-choice tasks. J Neurosci, 35(8), 3499-3514. doi:10.1523/JNEUROSCI.1962-14.2015 Jaaro-Peled, H., Hayashi-Takagi, A., Seshadri, S., Kamiya, A., Brandon, N. J., & Sawa, A. (2009). Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1-ErbB4 and DISC1. Trends Neurosci, 32(9), 485-495. doi:10.1016/j.tins.2009.05.007 Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of artificial intelligence research, 4, 237-285. Kalayci, D., Ozdel, O., Sozeri-Varma, G., Kiroglu, Y., Tumkaya, S., & Toker-Ugurlu, T. (2016). Medial Prefrontal Cortex Neurochemical Metabolites in Schizophrenia and Schizoaffective Disorder: A Proton Magnetic Resonance Spectroscopy Study. Klinik Psikofarmakoloji Bülteni-Bulletin of Clinical Psychopharmacology, 23(3), 215-223. doi:10.5455/bcp.20130713094216 Kang, S., Hong, S. I., Kang, S., Song, M., Yang, M. A., Essa, H., . . . Choi, D. S. (2023). Astrocyte activities in the external globus pallidus regulate action-selection strategies in reward-seeking behaviors. Sci Adv, 9(24), eadh9239. doi:10.1126/sciadv.adh9239 Kellendonk, C., Simpson, E. H., & Kandel, E. R. (2009). Modeling cognitive endophenotypes of schizophrenia in mice. Trends Neurosci, 32(6), 347-358. doi:10.1016/j.tins.2009.02.003 Kita, H., Kosaka, T., & Heizmann, C. W. (1990). Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res, 536(1-2), 1-15. doi:10.1016/0006-8993(90)90002-s Kitagishi, Y., Kobayashi, M., Kikuta, K., & Matsuda, S. (2012). Roles of PI3K/AKT/GSK3/mTOR Pathway in Cell Signaling of Mental Illnesses. Depress Res Treat, 2012, 752563. doi:10.1155/2012/752563 Kumar, C. C., & Madison, V. (2005). AKT crystal structure and AKT-specific inhibitors. Oncogene, 24(50), 7493-7501. doi:10.1038/sj.onc.1209087 Kunii, Y., Matsumoto, J., Izumi, R., Nagaoka, A., Hino, M., Shishido, R., . . . Yabe, H. (2021). Evidence for Altered Phosphoinositide Signaling-Associated Molecules in the Postmortem Prefrontal Cortex of Patients with Schizophrenia. Int J Mol Sci, 22(15). doi:10.3390/ijms22158280 Kwak, S., & Jung, M. W. (2019). Distinct roles of striatal direct and indirect pathways in value-based decision making. Elife, 8. doi:10.7554/eLife.46050 Lai, W. S., Chang, C. Y., Wong, W. R., Pei, J. C., Chen, Y. S., & Hung, W. L. (2014). Assessing schizophrenia-relevant cognitive and social deficits in mice: a selection of mouse behavioral tasks and potential therapeutic compounds. Curr Pharm Des, 20(32), 5139-5150. doi:10.2174/1381612819666140110122750 Lai, W. S., Xu, B., Westphal, K. G., Paterlini, M., Olivier, B., Pavlidis, P., . . . Gogos, J. A. (2006). Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proc Natl Acad Sci U S A, 103(45), 16906-16911. doi:10.1073/pnas.0604994103 Lancaster, T. M., Ihssen, N., Brindley, L. M., Tansey, K. E., Mantripragada, K., O''Donovan, M. C., . . . Linden, D. E. (2016). Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals. Hum Brain Mapp, 37(2), 491-500. doi:10.1002/hbm.23044 Lee, K., Holley, S. M., Shobe, J. L., Chong, N. C., Cepeda, C., Levine, M. S., & Masmanidis, S. C. (2017). Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative Learning. Neuron, 93(6), 1451-1463 e1454. doi:10.1016/j.neuron.2017.02.033 Lee, K. Y., Joo, E. J., Jeong, S. H., Kang, U. G., Roh, M. S., Kim, S. H., . . . Kim, Y. S. (2010). No association between AKT1 polymorphism and schizophrenia: a case-control study in a Korean population and a meta-analysis. Neurosci Res, 66(3), 238-245. doi:10.1016/j.neures.2009.11.005 Levenga, J., Wong, H., Milstead, R., LaPlante, L., & Hoeffer, C. A. (2021). Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT''s Role in Complex Brain Disorders and Neurological Disease. Cereb Cortex Commun, 2(2), tgab036. doi:10.1093/texcom/tgab036 Li, C. T., Lai, W. S., Liu, C. M., & Hsu, Y. F. (2014). Inferring reward prediction errors in patients with schizophrenia: a dynamic reward task for reinforcement learning. Front Psychol, 5, 1282. doi:10.3389/fpsyg.2014.01282 Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A., & Daw, N. D. (2011). Differential roles of human striatum and amygdala in associative learning. Nat Neurosci, 14(10), 1250-1252. doi:10.1038/nn.2904 Li, Z., Yan, C., Lv, Q. Y., Yi, Z. H., Zhang, J. Y., Wang, J. H., . . . Chan, R. C. K. (2018). Striatal dysfunction in patients with schizophrenia and their unaffected first-degree relatives. Schizophr Res, 195, 215-221. doi:10.1016/j.schres.2017.08.043 Light, G. A., Hsu, J. L., Hsieh, M. H., Meyer-Gomes, K., Sprock, J., Swerdlow, N. R., & Braff, D. L. (2006). Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry, 60(11), 1231-1240. doi:10.1016/j.biopsych.2006.03.055 Liu, H. H., Hsieh, M. H., Hsu, Y. F., & Lai, W. S. (2015). Effects of affective arousal on choice behavior, reward prediction errors, and feedback-related negativities in human reward-based decision making. Front Psychol, 6, 592. doi:10.3389/fpsyg.2015.00592 Liu, H. H., Liu, C. M., Hsieh, M. H., Chien, Y. L., Hsu, Y. F., & Lai, W. S. (2022). Dysregulated affective arousal regulates reward-based decision making in patients with schizophrenia: an integrated study. Schizophrenia (Heidelb), 8(1), 26. doi:10.1038/s41537-022-00234-y Liu, Y. L., Fann, C. S., Liu, C. M., Chen, W. J., Wu, J. Y., Hung, S. I., . . . Hwu, H. G. (2006). A single nucleotide polymorphism fine mapping study of chromosome 1q42.1 reveals the vulnerability genes for schizophrenia, GNPAT and DISC1: Association with impairment of sustained attention. Biol Psychiatry, 60(6), 554-562. doi:10.1016/j.biopsych.2006.04.024 Manning, B. D., & Cantley, L. C. (2007). AKT/PKB signaling: navigating downstream. Cell, 129(7), 1261-1274. doi:10.1016/j.cell.2007.06.009 Markou, A., Salamone, J. D., Bussey, T. J., Mar, A. C., Brunner, D., Gilmour, G., & Balsam, P. (2013). Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia. Neurosci Biobehav Rev, 37(9 Pt B), 2149-2165. doi:10.1016/j.neubiorev.2013.08.007 Mathur, A., Law, M. H., Megson, I. L., Shaw, D. J., & Wei, J. (2010). Genetic association of the AKT1 gene with schizophrenia in a British population. Psychiatr Genet, 20(3), 118-122. doi:10.1097/YPG.0b013e32833a2234 Matsuda, S., Ikeda, Y., Murakami, M., Nakagawa, Y., Tsuji, A., & Kitagishi, Y. (2019). Roles of PI3K/AKT/GSK3 Pathway Involved in Psychiatric Illnesses. Diseases, 7(1). doi:10.3390/diseases7010022 Mazur, J. E. (1997). Choice, delay, probability, and conditioned reinforcement. Animal Learning & Behavior, 25(2), 131-147. doi:10.3758/BF03199051 McCutcheon, R. A., Abi-Dargham, A., & Howes, O. D. (2019). Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms. Trends Neurosci, 42(3), 205-220. doi:10.1016/j.tins.2018.12.004 Metha, J. A., Brian, M. L., Oberrauch, S., Barnes, S. A., Featherby, T. J., Bossaerts, P., . . . Jacobson, L. H. (2019). Separating Probability and Reversal Learning in a Novel Probabilistic Reversal Learning Task for Mice. Front Behav Neurosci, 13, 270. doi:10.3389/fnbeh.2019.00270 Mitchell, S. H. (2014). Assessing delay discounting in mice. Curr Protoc Neurosci, 66, Unit 8 30. doi:10.1002/0471142301.ns0830s66 Monteiro, P., Barak, B., Zhou, Y., McRae, R., Rodrigues, D., Wickersham, I. R., & Feng, G. (2018). Dichotomous parvalbumin interneuron populations in dorsolateral and dorsomedial striatum. J Physiol, 596(16), 3695-3707. doi:10.1113/JP275936 Moore, H., Geyer, M. A., Carter, C. S., & Barch, D. M. (2013). Harnessing cognitive neuroscience to develop new treatments for improving cognition in schizophrenia: CNTRICS selected cognitive paradigms for animal models. Neurosci Biobehav Rev, 37(9 Pt B), 2087-2091. doi:10.1016/j.neubiorev.2013.09.011 Mulle, J. G. (2012). Schizophrenia genetics: progress, at last. Curr Opin Genet Dev, 22(3), 238-244. doi:10.1016/j.gde.2012.02.011 Murray, G. K., Cheng, F., Clark, L., Barnett, J. H., Blackwell, A. D., Fletcher, P. C., . . . Jones, P. B. (2008). Reinforcement and reversal learning in first-episode psychosis. Schizophr Bull, 34(5), 848-855. doi:10.1093/schbul/sbn078 Nelson, E. A., Kraguljac, N. V., Maximo, J. O., Armstrong, W., & Lahti, A. C. (2022). Dorsal striatial hypoconnectivity predicts antipsychotic medication treatment response in first-episode psychosis and unmedicated patients with schizophrenia. Brain Behav, 12(11), e2625. doi:10.1002/brb3.2625 Nestler, E. J., & Hyman, S. E. (2010). Animal models of neuropsychiatric disorders. Nat Neurosci, 13(10), 1161-1169. doi:10.1038/nn.2647 Nougaret, S., & Ravel, S. (2018). Dynamic Encoding of Effort and Reward throughout the Execution of Action by External Globus Pallidus Neurons in Monkeys. J Cogn Neurosci, 30(8), 1130-1144. doi:10.1162/jocn_a_01277 Nuechterlein, K. H., Barch, D. M., Gold, J. M., Goldberg, T. E., Green, M. F., & Heaton, R. K. (2004). Identification of separable cognitive factors in schizophrenia. Schizophr Res, 72(1), 29-39. doi:10.1016/j.schres.2004.09.007 Ohi, K., Hashimoto, R., Yasuda, Y., Fukumoto, M., Nemoto, K., Ohnishi, T., . . . Takeda, M. (2013). The AKT1 gene is associated with attention and brain morphology in schizophrenia. World J Biol Psychiatry, 14(2), 100-113. doi:10.3109/15622975.2011.591826 Oishi, K., Watatani, K., Itoh, Y., Okano, H., Guillemot, F., Nakajima, K., & Gotoh, Y. (2009). Selective induction of neocortical GABAergic neurons by the PDK1-Akt pathway through activation of Mash1. Proc Natl Acad Sci U S A, 106(31), 13064-13069. doi:10.1073/pnas.0808400106 Ostlund, S. B., & Balleine, B. W. (2005). Lesions of medial prefrontal cortex disrupt the acquisition but not the expression of goal-directed learning. J Neurosci, 25(34), 7763-7770. doi:10.1523/JNEUROSCI.1921-05.2005 Park, S. W., Lee, J. G., Kong, B. G., Lee, S. J., Lee, C. H., Kim, J. I., & Kim, Y. H. (2009). Genetic association of BDNF val66met and GSK-3beta-50T/C polymorphisms with tardive dyskinesia. Psychiatry Clin Neurosci, 63(4), 433-439. doi:10.1111/j.1440-1819.2009.01976.x Pei, J. C., Liu, C. M., & Lai, W. S. (2014). Distinct phenotypes of new transmembrane-domain neuregulin 1 mutant mice and the rescue effects of valproate on the observed schizophrenia-related cognitive deficits. Front Behav Neurosci, 8, 126. doi:10.3389/fnbeh.2014.00126 Perez-Costas, E., Melendez-Ferro, M., & Roberts, R. C. (2010). Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem, 113(2), 287-302. doi:10.1111/j.1471-4159.2010.06604.x Pietilainen, O. P., Paunio, T., Loukola, A., Tuulio-Henriksson, A., Kieseppa, T., Thompson, P., . . . Peltonen, L. (2009). Association of AKT1 with verbal learning, verbal memory, and regional cortical gray matter density in twins. Am J Med Genet B Neuropsychiatr Genet, 150B(5), 683-692. doi:10.1002/ajmg.b.30890 Pomarol-Clotet, E., Canales-Rodriguez, E. J., Salvador, R., Sarro, S., Gomar, J. J., Vila, F., . . . McKenna, P. J. (2010). Medial prefrontal cortex pathology in schizophrenia as revealed by convergent findings from multimodal imaging. Mol Psychiatry, 15(8), 823-830. doi:10.1038/mp.2009.146 Pouget, A., Beck, J. M., Ma, W. J., & Latham, P. E. (2013). Probabilistic brains: knowns and unknowns. Nat Neurosci, 16(9), 1170-1178. doi:10.1038/nn.3495 Powell, C. M., & Miyakawa, T. (2006). Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol Psychiatry, 59(12), 1198-1207. doi:10.1016/j.biopsych.2006.05.008 Ragozzino, M. E. (2007). The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci, 1121, 355-375. doi:10.1196/annals.1401.013 Reddy, L. F., Waltz, J. A., Green, M. F., Wynn, J. K., & Horan, W. P. (2016). Probabilistic Reversal Learning in Schizophrenia: Stability of Deficits and Potential Causal Mechanisms. Schizophr Bull, 42(4), 942-951. doi:10.1093/schbul/sbv226 Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., & Varela, F. J. (1999). Perception''s shadow: long-distance synchronization of human brain activity. Nature, 397(6718), 430-433. doi:10.1038/17120 Roh, M. S., Seo, M. S., Kim, Y., Kim, S. H., Jeon, W. J., Ahn, Y. M., . . . Kim, Y. S. (2007). Haloperidol and clozapine differentially regulate signals upstream of glycogen synthase kinase 3 in the rat frontal cortex. Exp Mol Med, 39(3), 353-360. doi:10.1038/emm.2007.39 Ross, C. A., Margolis, R. L., Reading, S. A., Pletnikov, M., & Coyle, J. T. (2006). Neurobiology of schizophrenia. Neuron, 52(1), 139-153. doi:10.1016/j.neuron.2006.09.015 Rutledge, R. B., Lazzaro, S. C., Lau, B., Myers, C. E., Gluck, M. A., & Glimcher, P. W. (2009). Dopaminergic drugs modulate learning rates and perseveration in Parkinson''s patients in a dynamic foraging task. J Neurosci, 29(48), 15104-15114. doi:10.1523/JNEUROSCI.3524-09.2009 Saperia, S., Da Silva, S., Siddiqui, I., Agid, O., Daskalakis, Z. J., Ravindran, A., . . . Foussias, G. (2019). Reward-driven decision-making impairments in schizophrenia. Schizophr Res, 206, 277-283. doi:10.1016/j.schres.2018.11.004 Schechtman, E., Noblejas, M. I., Mizrahi, A. D., Dauber, O., & Bergman, H. (2016). Pallidal spiking activity reflects learning dynamics and predicts performance. Proc Natl Acad Sci U S A, 113(41), E6281-E6289. doi:10.1073/pnas.1612392113 Schwab, S. G., Hoefgen, B., Hanses, C., Hassenbach, M. B., Albus, M., Lerer, B., . . . Wildenauer, D. B. (2005). Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biol Psychiatry, 58(6), 446-450. doi:10.1016/j.biopsych.2005.05.005 Schwab, S. G., & Wildenauer, D. B. (2009). Update on key previously proposed candidate genes for schizophrenia. Curr Opin Psychiatry, 22(2), 147-153. doi:10.1097/YCO.0b013e328325a598 Sekiguchi, H., Pavey, G., & Dean, B. (2019). Altered levels of dopamine transporter in the frontal pole and dorsal striatum in schizophrenia. NPJ Schizophr, 5(1), 20. doi:10.1038/s41537-019-0087-7 Serantes, R., Arnalich, F., Figueroa, M., Salinas, M., Andres-Mateos, E., Codoceo, R., . . . Montiel, C. (2006). Interleukin-1beta enhances GABAA receptor cell-surface expression by a phosphatidylinositol 3-kinase/Akt pathway: relevance to sepsis-associated encephalopathy. J Biol Chem, 281(21), 14632-14643. doi:10.1074/jbc.M512489200 Serrano, M., Tripodi, M., & Caroni, P. (2022). Strategy updating mediated by specific retrosplenial-parafascicular-basal ganglia networks. Curr Biol, 32(16), 3477-3492 e3475. doi:10.1016/j.cub.2022.06.033 Shirayama, Y., Obata, T., Matsuzawa, D., Nonaka, H., Kanazawa, Y., Yoshitome, E., . . . Iyo, M. (2010). Specific metabolites in the medial prefrontal cortex are associated with the neurocognitive deficits in schizophrenia: a preliminary study. Neuroimage, 49(3), 2783-2790. doi:10.1016/j.neuroimage.2009.10.031 Sigurdsson, T., Stark, K. L., Karayiorgou, M., Gogos, J. A., & Gordon, J. A. (2010). Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature, 464(7289), 763-767. doi:10.1038/nature08855 Smith, A. D., & Bolam, J. P. (1990). The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci, 13(7), 259-265. doi:10.1016/0166-2236(90)90106-k Smucny, J., Carter, C. S., & Maddock, R. J. (2021). Medial Prefrontal Cortex Glutamate Is Reduced in Schizophrenia and Moderated by Measurement Quality: A Meta-analysis of Proton Magnetic Resonance Spectroscopy Studies. Biol Psychiatry, 90(9), 643-651. doi:10.1016/j.biopsych.2021.06.008 Sorg, C., Manoliu, A., Neufang, S., Myers, N., Peters, H., Schwerthoffer, D., . . . Riedl, V. (2013). Increased intrinsic brain activity in the striatum reflects symptom dimensions in schizophrenia. Schizophr Bull, 39(2), 387-395. doi:10.1093/schbul/sbr184 Souza, R. P., Romano-Silva, M. A., Lieberman, J. A., Meltzer, H. Y., Wong, A. H., & Kennedy, J. L. (2008). Association study of GSK3 gene polymorphisms with schizophrenia and clozapine response. Psychopharmacology (Berl), 200(2), 177-186. doi:10.1007/s00213-008-1193-9 Sridharan, D., Prashanth, P. S., & Chakravarthy, V. S. (2006). The role of the basal ganglia in exploration in a neural model based on reinforcement learning. Int J Neural Syst, 16(2), 111-124. doi:10.1142/S0129065706000548 Staal, S. P., Hartley, J. W., & Rowe, W. P. (1977). Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci U S A, 74(7), 3065-3067. doi:10.1073/pnas.74.7.3065 Starkweather, C. K., Gershman, S. J., & Uchida, N. (2018). The Medial Prefrontal Cortex Shapes Dopamine Reward Prediction Errors under State Uncertainty. Neuron, 98(3), 616-629 e616. doi:10.1016/j.neuron.2018.03.036 Subramaniam, K. (2021). The Role of the Medial Prefontal Cortex in Self-Agency in Schizophrenia. J Psychiatr Brain Sci, 6. doi:10.20900/jpbs.20210017 Suetani, S., Baker, A., Garner, K., Cosgrove, P., Mackay-Sim, M., Siskind, D., . . . Kesby, J. P. (2022). Impairments in goal-directed action and reversal learning in a proportion of individuals with psychosis. Cogn Affect Behav Neurosci, 22(6), 1390-1403. doi:10.3758/s13415-022-01026-8 Sullivan, P. F. (2017). How Good Were Candidate Gene Guesses in Schizophrenia Genetics? Biol Psychiatry, 82(10), 696-697. doi:10.1016/j.biopsych.2017.09.004 Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry, 60(12), 1187-1192. doi:10.1001/archpsyc.60.12.1187 Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (Vol. 135): MIT press Cambridge. Svrakic, D. M., Zorumski, C. F., Svrakic, N. M., Zwir, I., & Cloninger, C. R. (2013). Risk architecture of schizophrenia: the role of epigenetics. Curr Opin Psychiatry, 26(2), 188-195. doi:10.1097/YCO.0b013e32835d8329 Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Permier, J. (1997). Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. J Neurosci, 17(2), 722-734. doi:10.1523/JNEUROSCI.17-02-00722.1997 Tamminga, C. A., & Holcomb, H. H. (2005). Phenotype of schizophrenia: a review and formulation. Mol Psychiatry, 10(1), 27-39. doi:10.1038/sj.mp.4001563 Tan, H. Y., Chen, A. G., Chen, Q., Browne, L. B., Verchinski, B., Kolachana, B., . . . Weinberger, D. R. (2012). Epistatic interactions of AKT1 on human medial temporal lobe biology and pharmacogenetic implications. Mol Psychiatry, 17(10), 1007-1016. doi:10.1038/mp.2011.91 Tan, H. Y., Nicodemus, K. K., Chen, Q., Li, Z., Brooke, J. K., Honea, R., . . . Weinberger, D. R. (2008). Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. J Clin Invest, 118(6), 2200-2208. doi:10.1172/JCI34725 Tarcijonas, G., Foran, W., Haas, G. L., Luna, B., & Sarpal, D. K. (2020). Intrinsic Connectivity of the Globus Pallidus: An Uncharted Marker of Functional Prognosis in People With First-Episode Schizophrenia. Schizophr Bull, 46(1), 184-192. doi:10.1093/schbul/sbz034 Thiselton, D. L., Vladimirov, V. I., Kuo, P. H., McClay, J., Wormley, B., Fanous, A., . . . Riley, B. P. (2008). AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biol Psychiatry, 63(5), 449-457. doi:10.1016/j.biopsych.2007.06.005 Thompson, M., Weickert, C. S., Wyatt, E., & Webster, M. J. (2009). Decreased glutamic acid decarboxylase(67) mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders. J Psychiatr Res, 43(11), 970-977. doi:10.1016/j.jpsychires.2009.02.005 Torres, C., Glueck, A. C., Conrad, S. E., Moron, I., & Papini, M. R. (2016). Dorsomedial striatum lesions affect adjustment to reward uncertainty, but not to reward devaluation or omission. Neuroscience, 332, 13-25. doi:10.1016/j.neuroscience.2016.06.041 van Os, J., Kenis, G., & Rutten, B. P. (2010). The environment and schizophrenia. Nature, 468(7321), 203-212. doi:10.1038/nature09563 Vassena, E., Krebs, R. M., Silvetti, M., Fias, W., & Verguts, T. (2014). Dissociating contributions of ACC and vmPFC in reward prediction, outcome, and choice. Neuropsychologia, 59, 112-123. doi:10.1016/j.neuropsychologia.2014.04.019 von Stein, A., Chiang, C., & Konig, P. (2000). Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci U S A, 97(26), 14748-14753. doi:10.1073/pnas.97.26.14748 Waddington, J. L., Corvin, A. P., Donohoe, G., O''Tuathaigh, C. M., Mitchell, K. J., & Gill, M. (2007). Functional genomics and schizophrenia: endophenotypes and mutant models. Psychiatr Clin North Am, 30(3), 365-399. doi:10.1016/j.psc.2007.04.011 Waltz, J. A., Demro, C., Schiffman, J., Thompson, E., Kline, E., Reeves, G., . . . Gold, J. (2015). Reinforcement Learning Performance and Risk for Psychosis in Youth. J Nerv Ment Dis, 203(12), 919-926. doi:10.1097/NMD.0000000000000420 Waltz, J. A., Frank, M. J., Robinson, B. M., & Gold, J. M. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biol Psychiatry, 62(7), 756-764. doi:10.1016/j.biopsych.2006.09.042 Waltz, J. A., & Gold, J. M. (2007). Probabilistic reversal learning impairments in schizophrenia: further evidence of orbitofrontal dysfunction. Schizophr Res, 93(1-3), 296-303. doi:10.1016/j.schres.2007.03.010 Wang, J., Zhang, J., Li, P., Martens, S., & Luo, Y. (2019). Beta-gamma oscillation reveals learning from unexpected reward in learners versus non-learners. Neuropsychologia, 131, 266-274. doi:10.1016/j.neuropsychologia.2019.06.002 Wang, Q., Liu, L., Pei, L., Ju, W., Ahmadian, G., Lu, J., . . . Wang, Y. T. (2003). Control of synaptic strength, a novel function of Akt. Neuron, 38(6), 915-928. doi:10.1016/s0896-6273(03)00356-8 Wang, Q., Ren, H., Li, C., Li, Z., Li, J., Li, H., . . . Tang, J. (2022). Metabolite differences in the medial prefrontal cortex in schizophrenia patients with and without persistent auditory verbal hallucinations: a (1)H MRS study. Transl Psychiatry, 12(1), 116. doi:10.1038/s41398-022-01866-5 Warren, B. L., Mendoza, M. P., Cruz, F. C., Leao, R. M., Caprioli, D., Rubio, F. J., . . . Hope, B. T. (2016). Distinct Fos-Expressing Neuronal Ensembles in the Ventromedial Prefrontal Cortex Mediate Food Reward and Extinction Memories. J Neurosci, 36(25), 6691-6703. doi:10.1523/JNEUROSCI.0140-16.2016 Weiler, J. A., Bellebaum, C., Brune, M., Juckel, G., & Daum, I. (2009). Impairment of probabilistic reward-based learning in schizophrenia. Neuropsychology, 23(5), 571-580. doi:10.1037/a0016166 Williams, J. C., Zheng, Z. J., Tubiolo, P. N., Luceno, J. R., Gil, R. B., Girgis, R. R., . . . Van Snellenberg, J. X. (2023). Medial Prefrontal Cortex Dysfunction Mediates Working Memory Deficits in Patients With Schizophrenia. Biol Psychiatry Glob Open Sci, 3(4), 990-1002. doi:10.1016/j.bpsgos.2022.10.003 Wolkowitz, O. M., & Pickar, D. (1991). Benzodiazepines in the treatment of schizophrenia: a review and reappraisal. Am J Psychiatry, 148(6), 714-726. doi:10.1176/ajp.148.6.714 Wong, H., Levenga, J., LaPlante, L., Keller, B., Cooper-Sansone, A., Borski, C., . . . Hoeffer, C. (2020). Isoform-specific roles for AKT in affective behavior, spatial memory, and extinction related to psychiatric disorders. Elife, 9. doi:10.7554/eLife.56630 Wong, S. A., Thapa, R., Badenhorst, C. A., Briggs, A. R., Sawada, J. A., & Gruber, A. J. (2017). Opposing effects of acute and chronic d-amphetamine on decision-making in rats. Neuroscience, 345, 218-228. doi:10.1016/j.neuroscience.2016.04.021 Xu, Y., Yao Shugart, Y., Wang, G., Cheng, Z., Jin, C., Zhang, K., . . . Zhang, D. (2016). Altered expression of mRNA profiles in blood of early-onset schizophrenia. Sci Rep, 6, 16767. doi:10.1038/srep16767 Yanagi, M., Hosomi, F., Kawakubo, Y., Tsuchiya, A., Ozaki, S., & Shirakawa, O. (2020). A decrease in spontaneous activity in medial prefrontal cortex is associated with sustained hallucinations in chronic schizophrenia: An NIRS study. Sci Rep, 10(1), 9569. doi:10.1038/s41598-020-66560-2 Yang, L., & Masmanidis, S. C. (2020). Differential encoding of action selection by orbitofrontal and striatal population dynamics. J Neurophysiol, 124(2), 634-644. doi:10.1152/jn.00316.2020 Yin, H. H., Ostlund, S. B., Knowlton, B. J., & Balleine, B. W. (2005). The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci, 22(2), 513-523. doi:10.1111/j.1460-9568.2005.04218.x Young, M. K., Conn, K.-A., Das, J., Zou, S., Alexander, S., Burne, T. H. J., & Kesby, J. P. (2022). Activity in the Dorsomedial Striatum Underlies Serial Reversal Learning Performance Under Probabilistic Uncertainty. Biological Psychiatry Global Open Science. doi:10.1016/j.bpsgos.2022.08.005 Zemel, D., Gritton, H., Cheung, C., Shankar, S., Kramer, M., & Han, X. (2022). Dopamine depletion selectively disrupts interactions between striatal neuron subtypes and LFP oscillations. Cell Rep, 38(3), 110265. doi:10.1016/j.celrep.2021.110265 Zhang, Z. J., & Reynolds, G. P. (2002). A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res, 55(1-2), 1-10. doi:10.1016/s0920-9964(01)00188-8 Zhao, Z., Ksiezak-Reding, H., Riggio, S., Haroutunian, V., & Pasinetti, G. M. (2006). Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr Res, 84(1), 1-14. doi:10.1016/j.schres.2006.02.009 Zheng, W., Wang, H., Zeng, Z., Lin, J., Little, P. J., Srivastava, L. K., & Quirion, R. (2012). The possible role of the Akt signaling pathway in schizophrenia. Brain Res, 1470, 145-158. doi:10.1016/j.brainres.2012.06.032 Zhukovsky, P., Puaud, M., Jupp, B., Sala-Bayo, J., Alsio, J., Xia, J., . . . Dalley, J. W. (2019). Withdrawal from escalated cocaine self-administration impairs reversal learning by disrupting the effects of negative feedback on reward exploitation: a behavioral and computational analysis. Neuropsychopharmacology, 44(13), 2163-2173. doi:10.1038/s41386-019-0381-0 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92100 | - |
dc.description.abstract | 認知缺損為思覺失調症重要的臨床症狀,但現行治療效果不彰,可能來自於我們對病患的認知缺損了解不夠徹底。過去研究指出病患在涉及執行功能與酬賞學習的決策作業上有所缺損。此外,近來許多研究指出AKT1這個思覺失調症之候選基因和認知缺損高相關,可能由於其涉及神經傳導物和神經活動異常導致。但,AKT1基因缺損和GABA神經傳導物系統異常是否和思覺失調症認知缺損有關,仍是未解之謎。故,本研究目標即為了解AKT1是否影響相關腦區神經活動,或特定GABA神經元亞型表現量,並進一步導致酬賞型決策作業缺損。首先,使用AKT1缺損小鼠發現其異常行為表現,及在背內側紋狀體發現神經活動異常。又,觀察到其在背內側紋狀體中,GABA神經元亞型: parvalbumin的表現量下降。所以我們再進一步使用一般小鼠,使其Akt1在背內側紋狀體表現量下降,發現行為異常模式與AKT1缺損小鼠缺損老鼠很相似。最後,我們操弄Akt1在parvalbumin神經元之表現,發現Akt1此特定神經元表現下降,亦會產生相似之缺損。這顯示,AKT1之缺損主要影響到背內側紋狀體parvalbumin神經元之表現量,造成神經活動異常,進一步導致酬賞學習決策作業表現異常。 | zh_TW |
dc.description.abstract | The treatment of cognitive impairment in patients with schizophrenia is of great importance due to unmet medical needs. Previous research has shown that schizophrenia affects reward-based decision making, which are related to executive functions and motivation/reinforcement learning. Increasing evidence implicates the involvement of AKT1, a schizophrenia candidate gene, in cognitive impairment of schizophrenia, which involves neuromodulation and neuronal connectivity. However, the impact of AKT1 deficiency on GABAergic neurons has been less explored so far. It is of great interest to investigate the importance of AKT1 on GABAergic neuron subtypes, especially in reward-based decision making. Thus, taking advantage of Akt1 heterozygous mutant mice (Akt1+/-) as a mouse model of schizophrenia, our study aimed to investigate the involvement of Akt1 in GABAergic neuron function and its impact on brain activity in relevant brain regions in a probabilistic decision-making task. First, Akt1+/- mice exhibited a distinct behavioral pattern during the task, and an altered neural activity in DMS. Then, Akt1+/- mice exhibited a region-specific reduction of PV, and a selective decrease of Akt1 was also found in PV neurons. Furthermore, DMS-specific knockdown Akt1 mice reproduced the alterations in Akt1+/- mice. Finally, we found that mice with conditional Akt1 knockout in parvalbumin (PV), not in GABAergic neuron (GAD), recapitulated behavioral alterations in Akt1+/- mice. Akt1+/- mice, DMS-specific knockdown Akt1 mice, and conditional knockout mice of Akt1 in PV neurons all showed an increase in the lose-stay rate for high reward choice and no-reward learning. Furthermore, all mice demonstrated a decrease in choice consistency. These findings suggest that Akt1 affects PV neurons, particularly in DMS, potentially influencing distinct cognitive processes. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-05T16:17:16Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-03-05T16:17:16Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract iii Table of contents v List of Tables and Figures ix Chapter 1 Introduction 1 1.1. Overview of schizophrenia 1 1.1.1. What is schizophrenia 1 1.1.2. Cognitive dysfunction in schizophrenia 3 1.1.3. The GABA hypothesis of schizophrenia 5 1.1.4. The etiology of schizophrenia 7 1.2. Overview of reward-based decision making 10 1.2.1. The clinical application 11 1.2.2. The related brain regions 13 1.2.3. Computational analysis model 18 1.3. What is AKT1? 22 1.3.1. The association between AKT1 and cognitive impairment in schizophrenia 22 1.3.2. Cell signaling of AKT1 24 1.3.3. AKT1 is involved in several neurotransmitter pathways, especially in the GABAergic system 25 1.4. Using animal models of schizophrenia to study the reward-based decision-making process 26 1.4.1. Taking advantage of genetic manipulation 27 1.4.2. Akt1 mutant mice are ideal for mimicking schizophrenia-like cognitive functions 28 1.4.3. The alteration of GABAergic system in Akt1-/- mice 29 1.5. The objective of this study 30 Chapter 2 Methods 33 2.1. Animals 33 2.2. Food restriction schedule 35 2.3. Open field task 35 2.4. Dynamic foraging task 36 2.5. Surgery 49 2.6. LFP recording and power spectral density analysis 50 2.7. Immunofluorescent staining 51 2.8. Virus injection 52 2.9. Statistics 53 Chapter 3 Results 55 Exp. 1: The neuronal activity within related brain regions during dynamic foraging task in Akt1+/- mice 55 Exp. 2: The expression pattern of Akt1 and PV of Akt1+/- mice in related brain regions. 61 Exp. 3: The effect of specific knockdown Akt1 on DMS. 63 Exp. 4.1 The role of Akt1 on GABAergic neurons in the dynamic foraging task 67 Exp. 4.2 The role of Akt1 on parvalbumin neurons in the dynamic foraging task 71 Chapter 4 Discussion 77 4.1 Summary of this study 77 4.2 Akt1 deficiency modulated choice strategy, reward learning rate and choice consistency in reward learning 78 4.3 The effect of Akt1 on DMS plays a crucial role in the dynamic foraging task 81 4.4 Akt1 deficiency has a distinct impact on PV neurons. 84 4.5 Limitations and future plan 90 Figures and Tables 95 Supplementary 137 | - |
dc.language.iso | en | - |
dc.title | 探索思覺失調症候選基因AKT1影響GABA神經元亞型在酬賞型決策作業扮演之角色 | zh_TW |
dc.title | Investigate the role of AKT1, a schizophrenia candidate gene, on GABAergic neuron subtypes in reward-based decision making task in male mice | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 林士傑;姚皓傑;張芳嘉;張鈞惠;蕭逸澤 | zh_TW |
dc.contributor.oralexamcommittee | Shi-Chieh Lin;Hau-Jie Yao;Fang-Chia Chang;Chun-Hui Chang;Yi-Tse Hsiao | en |
dc.subject.keyword | 思覺失調症,認知缺損,酬賞學習決策作業,酬賞學習模型,背內側紋狀體, | zh_TW |
dc.subject.keyword | schizophrenia,Akt1 mice,probabilistic learning task,reinforcement learning model,parvalbumin (PV),dorsal medial striatum (DMS), | en |
dc.relation.page | 177 | - |
dc.identifier.doi | 10.6342/NTU202400437 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-02-06 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 心理學系 | - |
Appears in Collections: | 心理學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-1.pdf Restricted Access | 3.84 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.