請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84210
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張嘉升(Chia-Seng Chang) | |
dc.contributor.author | Fan-Yun Chiu | en |
dc.contributor.author | 邱凡芸 | zh_TW |
dc.date.accessioned | 2023-03-19T22:06:22Z | - |
dc.date.copyright | 2022-07-07 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-06-28 | |
dc.identifier.citation | [1] Y. Zou et al., Scientific Reports 5, 10811 (2015). [2] R. Setzu, E. Baggetta, and J. C. Villégier, Journal of Physics: Conference Series 97, 012077 (2008). [3] C. Benvenuti, P. Chiggiato, L. Parrini, and R. Russo, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 336 (1993). [4] M. Lindgren, M. Currie, W. S. Zeng, R. Sobolewski, S. Cherednichenko, B. Voronov, and G. N. Gol'tsman, Applied Superconductivity 6, 423 (1998). [5] N. Terao, Japanese Journal of Applied Physics 4, 353 (1965). [6] N. Pessall, R. E. Gold, and H. A. Johansen, Journal of Physics and Chemistry of Solids 29, 19 (1968). [7] G. i. Oya and Y. Onodera, Journal of Applied Physics 45, 1389 (1974). [8] S. Öğüt and K. M. Rabe, Physical Review B 52, R8585 (1995). [9] E. C. Ethridge, S. C. Erwin, and W. E. Pickett, Physical Review B 53, 12563 (1996). [10] N. Schönberg, Acta Metallurgica 2, 427 (1954). [11] G. V. Brown, Journal of Applied Physics 47, 3673 (1976). [12] R. Sanjinés, M. Benkahoul, C. S. Sandu, P. E. Schmid, and F. Lévy, Thin Solid Films 494, 190 (2006). [13] R. Kaiser, W. Spengler, S. Schicktanz, and C. Politis, physica status solidi (b) 87, 565 (1978). [14] H. W. Werner Martienssen, Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin, Heidelberg, 2005), 1 edn. [15] V. Buscaglia, F. Caracciolo, M. Ferretti, M. Minguzzi, and R. Musenich, Journal of Alloys and Compounds 266, 201 (1998). [16] Y. Zou et al., Scientific Reports 6, 22330 (2016). [17] C. Wang et al., Solid State Communications 149, 725 (2009). [18] V. I. Ivashchenko, P. E. A. Turchi, and E. I. Olifan, Physical Review B 82, 054109 (2010). [19] Z. L. L. X. F. Li, J. At. Mol. Sci 3, 78 (2012). [20] P.-J. Chen, W.-J. Li, and T.-K. Lee, Physical Review B 104, 115161 (2021). [21] K. R. Babu and G.-Y. Guo, Physical Review B 99, 104508 (2019). [22] R. E. Treece, J. S. Horwitz, D. B. Chrisey, E. P. Donovan, and S. B. Qadri, Chemistry of Materials 6, 2205 (1994). [23] S. Linzen, M. Ziegler, O. V. Astafiev, M. Schmelz, U. Hübner, M. Diegel, E. Il’ichev, and H. G. Meyer, Superconductor Science and Technology 30, 035010 (2017). [24] M. Joguet, W. Lengauer, M. Bohn, and J. Bauer, Journal of Alloys and Compounds 269, 233 (1998). [25] A. V. Linde, R. M. Marin-Ayral, F. Bosc-Rouessac, and V. V. Grachev, International Journal of Self-Propagating High-Temperature Synthesis 19, 9 (2010). [26] Y. M. Shy, L. E. Toth, and R. Somasundaram, Journal of Applied Physics 44, 5539 (1973). [27] R. E. Treece, M. S. Osofsky, E. F. Skelton, S. B. Qadri, J. S. Horwitz, and D. B. Chrisey, Physical Review B 51, 9356 (1995). [28] X.-J. Chen, V. V. Struzhkin, S. Kung, H.-k. Mao, R. J. Hemley, and A. N. Christensen, Physical Review B 70, 014501 (2004). [29] X.-J. Chen, V. V. Struzhkin, Z. Wu, R. E. Cohen, S. Kung, H.-k. Mao, R. J. Hemley, and A. N. Christensen, Physical Review B 72, 094514 (2005). [30] S. Anand, K. Thekkepat, and U. V. Waghmare, Nano Letters 16, 126 (2016). [31] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Physical Review 106, 162 (1957). [32] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Physical Review 108, 1175 (1957). [33] Y. Y. Chen, P. C. Chen, C. B. Tsai, K. I. Suga, and K. Kindo, International Journal of Thermophysics 30, 316 (2009). [34] A. B. Karki, Y. M. Xiong, N. Haldolaarachchige, S. Stadler, I. Vekhter, P. W. Adams, D. P. Young, W. A. Phelan, and J. Y. Chan, Physical Review B 83, 144525 (2011). [35] M. P. Mathur, D. W. Deis, and J. R. Gavaler, Journal of Applied Physics 43, 3158 (1972). [36] A. ALTINKÖK, Journal of Naval Sciences and Engineering 16, 71 (2022). [37] L. Fu and C. L. Kane, Physical Review Letters 100, 096407 (2008). [38] L. Fu and C. L. Kane, Physical Review B 76, 045302 (2007). [39] X.-L. Qi and S.-C. Zhang, Reviews of Modern Physics 83, 1057 (2011). [40] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 452, 970 (2008). [41] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nature Physics 5, 438 (2009). [42] L. A. Wray et al., Physical Review B 83, 224516 (2011). [43] M. Hajlaoui, E. Papalazarou, J. Mauchain, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, The European Physical Journal Special Topics 222, 1271 (2013). [44] G. Wang et al., Nano Research 3, 874 (2010). [45] M.-X. Wang et al., Science 336, 52 (2012). [46] L. Zhao et al., Nature Communications 6, 8279 (2015). [47] Y. S. Hor et al., Physical Review Letters 104, 057001 (2010). [48] M. Kriener, K. Segawa, Z. Ren, S. Sasaki, S. Wada, S. Kuwabata, and Y. Ando, Physical Review B 84, 054513 (2011). [49] L. Fu and E. Berg, Physical Review Letters 105, 097001 (2010). [50] K. Matano, M. Kriener, K. Segawa, Y. Ando, and G.-q. Zheng, Nature Physics 12, 852 (2016). [51] S. Yonezawa, K. Tajiri, S. Nakata, Y. Nagai, Z. Wang, K. Segawa, Y. Ando, and Y. Maeno, Nature Physics 13, 123 (2017). [52] Z. Wang, A. A. Taskin, T. Frölich, M. Braden, and Y. Ando, Chemistry of Materials 28, 779 (2016). [53] T. Asaba et al., Physical Review X 7, 011009 (2017). [54] M. P. Smylie et al., Physical Review B 96, 115145 (2017). [55] K. Willa, R. Willa, K. W. Song, G. D. Gu, J. A. Schneeloch, R. Zhong, A. E. Koshelev, W.-K. Kwok, and U. Welp, Physical Review B 98, 184509 (2018). [56] S.-H. Yu, T. L. Hung, M.-N. Ou, M. M. C. Chou, and Y.-Y. Chen, Physical Review B 100, 174502 (2019). [57] F. Wu and I. Martin, Physical Review B 96, 144504 (2017). [58] L. Hao and C. S. Ting, Physical Review B 96, 144512 (2017). [59] M. K. Jacobsen, R. S. Kumar, A. L. Cornelius, S. V. Sinogeiken, and M. F. Nico, AIP Conference Proceedings 955, 171 (2007). [60] A. Nakayama, M. Einaga, Y. Tanabe, S. Nakano, F. Ishikawa, and Y. Yamada, High Pressure Research 29, 245 (2009). [61] J. L. Zhang et al., Proceedings of the National Academy of Sciences 108, 24 (2011). [62] C. Zhang, L. Sun, Z. Chen, X. Zhou, Q. Wu, W. Yi, J. Guo, X. Dong, and Z. Zhao, Physical Review B 83, 140504 (2011). [63] L. Zhu, H. Wang, Y. Wang, J. Lv, Y. Ma, Q. Cui, Y. Ma, and G. Zou, Physical Review Letters 106, 145501 (2011). [64] S. J. Zhang et al., Journal of Applied Physics 111, 112630 (2012). [65] M. Einaga, Y. Tanabe, A. Nakayama, A. Ohmura, F. Ishikawa, and Y. Yamada, Journal of Physics: Conference Series 215, 012036 (2010). [66] J. Zhang, S. Zhang, P. Kong, L. Yang, C. Jin, Q. Liu, X. Wang, and J. Yu, Journal of Applied Physics 123, 125901 (2018). [67] J. Zhang, C. Liu, X. Zhang, F. Ke, Y. Han, G. Peng, Y. Ma, and C. Gao, Applied Physics Letters 103, 052102 (2013). [68] M.-K. Han, B.-G. Yu, Y. Jin, and S.-J. Kim, Inorganic Chemistry Frontiers 4, 881 (2017). [69] K. Park et al., Journal of the American Chemical Society 138, 14458 (2016). [70] D. Perrin, M. Chitroub, S. Scherrer, and H. Scherrer, Journal of Physics and Chemistry of Solids 61, 1687 (2000). [71] M.-K. Han, Y. Jin, D.-H. Lee, and S.-J. Kim, Materials 10 (2017). [72] A. Ribak et al., Physical Review B 93, 064505 (2016). [73] C.-L. Chen et al., Advanced Science n/a, 2201353 (2022). [74] H. K. Mao, J. Xu, and P. M. Bell, Journal of Geophysical Research: Solid Earth 91, 4673 (1986). [75] F. Datchi, A. Dewaele, P. Loubeyre, R. Letoullec, Y. Le Godec, and B. Canny, High Pressure Research 27, 447 (2007). [76] L. Lu, W. Yi, and D. L. Zhang, Review of Scientific Instruments 72, 2996 (2001). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84210 | - |
dc.description.abstract | 本博士論文由以下兩個研究主題所組成:第一部份為微米尺寸ε-NbN的單晶不具有超導特性;第二部份為以高壓誘發Cux(CuI)0.002Bi2Te2.7Se0.3晶體中的超導特性。 第一部份:微米尺寸ε-NbN的單晶不具有超導特性 研究高品質單晶的特性對於解決存在某些材料中具爭議性的物理特性非常重要。然而,在單晶樣品在實驗測量上往往不是合宜的尺寸。NbN就是實例之一,由於其多樣化的物理特性及各種結構相,它吸引了科學和工程方面的興趣。到目前為止,NbN的超導特性僅在立方δ-和四方γ-結構相中觀察到,但在六方ε-相中並未觀察到。最近由Zou等人的研究指出在六方ε-相為基底的多相粉末樣品中量測出超導轉變溫度(Tc)約在11.6 K的超導性質。為了解決這個問題,這項工作使用電子背散射衍射(Electron Back-Scattering Diffraction, EBSD) 技術對於來自Alfa Aesar和Goodfellow的NbN微米尺寸粉末樣品進行結構相分析及測量其電子傳輸特性。我們的結果明確地證實NbN其六方ε-相不具有超導特性。 第二部份:以高壓誘發Cux(CuI)0.002Bi2Te2.7Se0.3晶體中的超導特性 我們成功地觀察到在拓樸化合物Cux(CuI)0.002Bi2Te2.7Se0.3晶體中以壓力誘發的超導特性。測量其與溫度相關的電阻從0.8到36 GPa,在 3.8 GPa 時檢測到Tc於2 K的超導特性。進一步增加壓力後,在15 GPa時達到最高的Tc為9.3 K;超過15 GPa後,Tc隨著壓力的增加而降低。除此之外,霍爾效應測量指出載子濃度從 4.2 GPa 時的約1017 cm-3到 15 GPa 時的約1022 cm-3顯著上升了大約5個數量級,同時對應了10K的電阻於壓力4.2 GPa之下降轉變。在同步輻射收集了在1.97到44.99 GPa高壓結構研究,在室溫中分別於13.9和25.3 GPa的壓力下觀察到兩次結構相轉變。所有與壓力相關的載流子濃度、殘餘電阻率和Tc都強烈表明在常壓晶相中存在電子相轉變。在不同壓力下的(101)面應變分析中可對應到載子濃度與超導Tc的行為。我們的觀察指出隱藏於常壓晶相的電子相轉變可能是由Cux(CuI)0.002Bi2Te2.7Se0.3晶體內的各向異性內應力引發的。 | zh_TW |
dc.description.abstract | This doctoral thesis is composed of two following research subjects: I. The absence of superconductivity in micrometer-sized ε-NbN single crystals. II. The pressure induced superconductivity in Cux(CuI)0.002Bi2Te2.7Se0.3 crystals. I. The absence of superconductivity in micrometer-sized ε-NbN single crystals: It is important to study the properties of high quality single crystal in order to resolve the issue of an interesting material that certain debatable fundamental properties exist. However, it is unfortunate that sizable single crystal for experimental measurements is not always available. NbN is one of the examples; it has attracted scientific and engineering interests due to its diverse physical properties and a variety of structural phases. Until now superconductivity is only observed in cubic δ- and tetragonal γ- NbN but not in hexagonal ε-NbN. Recently, Zou et al. reported the observation of superconductivity with Tc ~ 11.6 K in a hexagonal ε-NbN based on the measurement on a multi-phase powder specimen. In order to resolve the issue, the work used the Electron Back-Scattering Diffraction (EBSD) technique to characterize phases of micron-size NbN crystals from commercial powders and measure their transport properties. Our results unambiguously confirm that the hexagonal ε-NbN phase is not superconducting. II. The pressure induced superconductivity in Cux(CuI)0.002Bi2Te2.7Se0.3 crystal: We report a successful observation of pressure-induced superconductivity in a topological compound Cux(CuI)0.002Bi2Te2.7Se0.3. The temperature dependent electrical resistance was measured from 0.8 through 36 GPa. Superconductivity was detected at 3.8 GPa with Tc = 2 K. Upon further pressure increase, where they reach maximum Tc = 9.3 K at 15 GPa. Over 15 GPa, superconducting transition temperature decreased as pressure increased. Furthermore, the Hall effects measurements indicated carrier concentration up-turned dramatically about five orders in magnitude of power from ~ 1017 cm-3 at 4.2 GPa to ~ 1022 cm-3 at 15 GPa, which respond to the downturn transition at 4.2 GPa of resistance at 10 K. The high-pressure structure investigations with synchrotron radiation were collected at various pressures from 1.97 to 44.99 GPa. We observed two times of structure phase transitions at room temperature at the pressures of 13.9 and 25.3 GPa, respectively. All of the pressure dependent carrier concentration, residual resistivity, and superconductivity Tc are strongly suggested that there is an electronic phase transition embedded in the ambient pressure crystal phase. The strain analysis on (101) plane which is corresponding to the carrier concentration and superconductivity Tc. Our observations suggest that the hidden electronic phase transition may induced by an anisotropic inner stress in the Cux(CuI)0.002Bi2Te2.7Se0.3. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:06:22Z (GMT). No. of bitstreams: 1 U0001-2306202223074500.pdf: 4226683 bytes, checksum: 7c3c3f9b89f25a872ba62be440c78b87 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii Abstract v Contents vii Figures ix Tables xii Part I. The absence of superconductivity in micrometer-sized ε-NbN single crystals 1 Chapter.1 Introduction 1 Chapter.2 Basic concepts of superconductivity 5 I.2.1 Meissner effect 6 I.2.2 BCS theory 7 I.2.3 Destruction of superconductivity by magnetic critical fields 10 I.2.4 Heat capacity 10 Chapter.3 Experiment 12 I.3.1 Sample preparation 12 I.3.2 Powder specimen 12 I.3.3 Micrometer-sized single crystal 13 Chapter.4 Result and discussion of powder specimen 14 I.4.1 X-ray diffraction 14 I.4.2 Magnetization 17 I.4.3 Specific heat 18 Chapter.5 Result and discussion of micrometer-sized single crystal 22 I.5.1 Electron backscattering diffraction of δ-NbN single crystal 22 I.5.2 Resistivity measurement of δ-NbN single crystal 25 I.5.3 Electron backscattering diffraction of ε-NbN single crystal 28 I.5.4 Resistivity measurement of ε-NbN single crystal 30 Chapter.6 Conclusion 32 I.6.1 Conclusion of powder specimen 32 I.6.2 Conclusion of micrometer-sized single crystal 32 Part II. The pressure induced superconductivity in Cu intercalated (CuI)0.002Bi2Te2.7Se0.3 crystal 34 Chapter.1 Introduction 34 Chapter.2 Experiment 37 II.2.1 Sample preparation 37 II.2.2 Crystal structure determination at ambient pressure 37 II.2.3 Crystal structure determination at high pressure 37 II.2.4 Physical properties characterization at high pressure 38 Chapter.3 Result and discussion 40 II.3.1 Crystal structure and phase analysis 40 II.3.2 Transport properties 43 II.3.3 Superconductivity suppression in magnetic field 46 II.3.4 Superconducting critical field analysis 49 II.3.5 Anisotropic strain analysis 52 Chapter.4 Conclusion 56 Appendix. Specific heat measurement of micrometer-sized single crystal 58 References 64 | |
dc.language.iso | en | |
dc.title | 探討超導性質在NbN 微米尺寸單晶和銅插層於(CuI)0.002Bi2Te2.7Se0.3 | zh_TW |
dc.title | The superconductivity in micrometer-sized single crystals of NbN and Cu intercalated (CuI)0.002Bi2Te2.7Se0.3 | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 博士 | |
dc.contributor.author-orcid | 0000-0003-2077-7901 | |
dc.contributor.coadvisor | 陳洋元(Yang-Yuan Chen) | |
dc.contributor.coadvisor-orcid | 陳洋元(0000-0002-1318-4756) | |
dc.contributor.oralexamcommittee | 吳茂昆(Maw-Kuen Wu),李定國(Ting-Kuo Lee),王明杰(Ming-Jye Wang) | |
dc.contributor.oralexamcommittee-orcid | ,王明杰(0000-0001-9263-8295) | |
dc.subject.keyword | 超導性,氮化鈮,高壓,結構相,拓樸化合物,電子傳輸特性, | zh_TW |
dc.subject.keyword | superconductivity,NbN,high-pressure,structural phases,topological compound,transport properties, | en |
dc.relation.page | 70 | |
dc.identifier.doi | 10.6342/NTU202201081 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-06-30 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
dc.date.embargo-lift | 2024-05-30 | - |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2306202223074500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.13 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。