Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59920
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 莊曜宇(Eric Y. Chuang) | |
dc.contributor.author | Chia-Yu Huang | en |
dc.contributor.author | 黃家郁 | zh_TW |
dc.date.accessioned | 2021-06-16T09:45:06Z | - |
dc.date.available | 2022-02-16 | |
dc.date.copyright | 2017-02-16 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-01-24 | |
dc.identifier.citation | 1. Cowell JK, Hawthorn L: The application of microarray technology to the analysis of the cancer genome. Current Molecular Medicine 2007, 7(1):103-120.
2. Metzker ML: Sequencing technologies—the next generation. Nature Reviews Genetics 2010, 11(1):31-46. 3. Ozsolak F, Milos PM: RNA sequencing: advances, challenges and opportunities. Nature Reviews Genetics 2011, 12(2):87-98. 4. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T: Global analysis of protein activities using proteome chips. Science (New York, NY) 2001, 293(5537):2101-2105. 5. Laird PW: Principles and challenges of genome-wide DNA methylation analysis. Nature Reviews Genetics 2010, 11(3):191-203. 6. Negrini S, Gorgoulis VG, Halazonetis TD: Genomic instability—an evolving hallmark of cancer. Nature Reviews Molecular Cell Biology 2010, 11(3):220-228. 7. Barabasi A-L, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nature Reviews Genetics 2011, 12(1):56-68. 8. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D: Methods of integrating data to uncover genotype-phenotype interactions. Nature Reviews Genetics 2015, 16(2):85-97. 9. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M et al: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010, 142(3):409-419. 10. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P et al: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genetics 2011, 43(7):621-629. 11. Loi S, Michiels S, Lambrechts D, Fumagalli D, Claes B, Kellokumpu-Lehtinen P-L, Bono P, Kataja V, Piccart MJ, Joensuu H: Somatic mutation profiling and associations with prognosis and trastuzumab benefit in early breast cancer. Journal of the National Cancer Institute 2013, 105(13):960-967. 12. Chen R, Khatri P, Mazur PK, Polin M, Zheng Y, Vaka D, Hoang CD, Shrager J, Xu Y, Vicent S et al: A meta-analysis of lung cancer gene expression identifies PTK7 as a survival gene in lung adenocarcinoma. Cancer research 2014, 74(10):2892-2902. 13. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA et al: Molecular portraits of human breast tumours. Nature 2000, 406(6797):747-752. 14. Patani N, Jiang WG, Newbold RF, Mokbel K: Histone-modifier gene expression profiles are associated with pathological and clinical outcomes in human breast cancer. Anticancer Research 2011, 31(12):4115-4125. 15. Starmans MH, Pintilie M, Chan-Seng-Yue M, Moon NC, Haider S, Nguyen F, Lau SK, Liu N, Kasprzyk A, Wouters BG: Integrating RAS status into prognostic signatures for adenocarcinomas of the lung. Clinical Cancer Research 2015, 21(6):1477-1486. 16. Yuan Y, Van Allen EM, Omberg L, Wagle N, Amin-Mansour A, Sokolov A, Byers LA, Xu Y, Hess KR, Diao L et al: Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nature Biotechnology 2014, 32(7):644-652. 17. Gerstung M, Pellagatti A, Malcovati L, Giagounidis A, Porta MGD, Jädersten M, Dolatshad H, Verma A, Cross NCP, Vyas P et al: Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes. Nature Communications 2015, 6:5901. 18. Kristensen VN, Lingjaerde OC, Russnes HG, Vollan HKM, Frigessi A, Borresen-Dale A-L: Principles and methods of integrative genomic analyses in cancer. Nature Reviews Cancer 2014, 14(5):299-313. 19. Holzinger ER, Ritchie MD: Integrating heterogeneous high-throughput data for meta-dimensional pharmacogenomics and disease-related studies. Pharmacogenomics 2012, 13(2):213-222. 20. Libbrecht MW, Noble WS: Machine learning applications in genetics and genomics. Nature Reviews Genetics 2015, 16(6):321-332. 21. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 2002, 417(6887):399-403. 22. Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008, 9(1):1-13. 23. Karlebach G, Shamir R: Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology 2008, 9(10):770-780. 24. Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular cell biology. Nature 1999, 402(6761 Suppl):C47-C52. 25. Wang J, Li M, Deng Y, Pan Y: Recent advances in clustering methods for protein interaction networks. BMC Genomics 2010, 11(3):1-19. 26. Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, Castellani G, Milanesi L: Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics 2016, 17 Suppl 2(2):167-177. 27. Fortunato S: Community detection in graphs. Physics Reports 2010, 486(3-5):75-174. 28. Palla G, Derényi I, Farkas I, Vicsek T: Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005, 435(7043):814-818. 29. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences 2005, 102(43):15545-15550. 30. Witte T, Plass C, Gerhauser C: Pan-cancer patterns of DNA methylation. Genome Medicine 2014, 6(8):66. 31. The Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM: The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics 2013, 45(10):1113-1120. 32. FDA approval for paclitaxel albumin-stabilized nanoparticle formulation [http://www.cancer.gov/about-cancer/treatment/drugs/fda-nanoparticle-paclitaxel] 33. Schiff PB, Horwitz SB: Taxol stabilizes microtubules in mouse fibroblast cells. Proceedings of the National Academy of Sciences 1980, 77(3):1561-1565. 34. Schiff PB, Fant J, Horwitz SB: Promotion of microtubule assembly in vitro by taxol. Nature 1979, 277(5698):665-667. 35. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS, Jemal A: Cancer treatment and survivorship statistics, 2014. CA: A Cancer Journal for Clinicians 2014, 64(4):252-271. 36. Fearon ER, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell 1990, 61(5):759-767. 37. Laurent-Puig P, Bons H: Sequence of molecular genetic events in colorectal tumorigenesis. European Journal of Cancer Prevention 1999, 8(6):S49. 38. Ewing I, Hurley JJ, Josephides E, Millar A: The molecular genetics of colorectal cancer. Frontline Gastroenterology 2014, 5(1):26-30. 39. Conlin A, Smith G, Carey FA, Wolf CR, Steele RJ: The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut 2005, 54(9):1283-1286. 40. Lurje G, Zhang W, Lenz H-J: Molecular prognostic markers in locally advanced colon cancer. Clinical Colorectal Cancer 2007, 6(10):683-690. 41. Migliore L, Migheli F, Spisni R, Coppedè F: Genetics, cytogenetics, and epigenetics of colorectal cancer. BioMed Research International 2011, 2011:792362. 42. Gerdes H, Chen Q, Elahi A, Sircar A, Goldberg E, Winawer D, Urmacher C, Winawer S, Jhanwar S: Recurrent deletions involving chromosomes 1, 5, 17, and 18 in colorectal carcinoma: possible role in biological and clinical behavior of tumors. Anticancer Research 1994, 15(1):13-24. 43. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D et al: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483(7391):603-607. 44. Hsu Y-C, Chiu Y-C, Chen Y, Hsiao T-H, Chuang EY: A gene-set approach to analyze copy number alterations in breast cancer. Translational Cancer Research 2015, 4(3):291-302. 45. Irizarry RA, Ladd-Acosta C, Carvalho B, Wu H, Brandenburg SA, Jeddeloh JA, Wen B, Feinberg AP: Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Research 2008, 18(5):780-790. 46. Dunnett CW: A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association 1955, 50(272):1096-1121. 47. Cox DR: Regression models and life-tables. Journal of the Royal Statistical Society Series B (Methodological) 1972, 34(2):187-220. 48. Kaplan EL, Meier P: Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 1958, 53(282):457-481. 49. Mantel N: Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer chemotherapy Reports Part 1 1966, 50(3):163-170. 50. McCullagh P, Nelder JA: Generalized linear models, vol. 37: CRC press; 1989. 51. Tibshirani R: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B (Methodological) 1996, 58(1):267-288. 52. Zou H, Hastie T: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2005, 67(2):301-320. 53. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological) 1995, 57(1):289-300. 54. Cohen J: A coefficient of agreement for nominal scales. Educational and Psychological Measurement 1960, 20(1):37-46. 55. Sarkadi B, Homolya L, Szakács G, Váradi A: Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiological Reviews 2006, 86(4):1179-1236. 56. Hodges LM, Markova SM, Chinn LW, Gow JM, Kroetz DL, Klein TE, Altman RB: Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenetics and genomics 2011, 21(3):152-161. 57. Mungall A, Palmer S, Sims S, Edwards C, Ashurst J, Wilming L, Jones M, Horton R, Hunt S, Scott C: The DNA sequence and analysis of human chromosome 6. Nature 2003, 425(6960):805-811. 58. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al: Gene Ontology: tool for the unification of biology. Nature Genetics 2000, 25(1):25-29. 59. Consortium GO: Gene ontology consortium: going forward. Nucleic Acids Research 2015, 43(D1):D1049-D1056. 60. Priyadarshini K: Paclitaxel against cancer: a short review. Medicinal Chemistry 2013, 2012. 61. Park S-M, Park S-J, Kim H-J, Kwon O-H, Kang T-W, Sohn H-A, Kim S-K, Moo Noh S, Song K-S, Jang S-J et al: A known expressed sequence tag, BM742401, is a potent lincRNA inhibiting cancer metastasis. Experimental and Molecular Medicine 2013, 45:e31. 62. Zheng J, Huang X, Tan W, Yu D, Du Z, Chang J, Wei L, Han Y, Wang C, Che X: Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nature Genetics 2016, 48(7):747-757. 63. Bhatlekar S, Fields JZ, Boman BM: HOX genes and their role in the development of human cancers. Journal of molecular medicine (Berlin, Germany) 2014, 92(8):811-823. 64. Kanai M, Hamada J, Takada M, Asano T, Murakawa K, Takahashi Y, Murai T, Tada M, Miyamoto M, Kondo S et al: Aberrant expressions of HOX genes in colorectal and hepatocellular carcinomas. Oncology reports 2010, 23(3):843-851. 65. Hyo-eun CB, Ruddy DA, Radhakrishna VK, Caushi JX, Zhao R, Hims MM, Singh AP, Kao I, Rakiec D, Shaw P: Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nature Medicine 2015, 21(5):440-448. 66. Turke AB, Zejnullahu K, Wu Y-L, Song Y, Dias-Santagata D, Lifshits E, Toschi L, Rogers A, Mok T, Sequist L: Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 2010, 17(1):77-88. 67. Lin L, Bivona TG: Mechanisms of resistance to epidermal growth factor receptor inhibitors and novel therapeutic strategies to overcome resistance in NSCLC patients. Chemotherapy Research and Practice 2012, 2012:817297. 68. Gottesman MM: Mechanisms of cancer drug resistance. Annual review of medicine 2002, 53:615-627. 69. Ogunbiyi OA, Goodfellow PJ, Gagliardi G, Swanson PE, Birnbaum EH, Fleshman JW, Kodner I, Moley JF: Prognostic value of chromosome 1p allelic loss in colon cancer. Gastroenterology 1997, 113(3):761-766. 70. Li Y, Lyu Z, Zhao L, Cheng H, Zhu D, Gao Y, Shang X, Shi H: Prognostic value of MGMT methylation in colorectal cancer: a meta-analysis and literature review. Tumor Biology 2015, 36(3):1595-1601. 71. Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, Jessup JM, Kolodner R: Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer research 1997, 57(5):808-811. 72. Narayan G, Arias-Pulido H, Koul S, Vargas H, Zhang FF, Villella J, Schneider A, Terry MB, Mansukhani M, Murty VV: Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome. Molecular Cancer 2003, 2(1):1. 73. Sabourdy F, Mourey L, Le Trionnaire E, Bednarek N, Caillaud C, Chaix Y, Delrue M-A, Dusser A, Froissart R, Garnotel R et al: Natural disease history and characterisation of SUMF1 molecular defects in ten unrelated patients with multiple sulfatase deficiency. Orphanet Journal of Rare Diseases 2015, 10:31. 74. Sturmer T, Buring JE, Lee I-M, Gaziano JM, Glynn RJ: Metabolic abnormalities and risk for colorectal cancer in the physicians' health study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2006, 15(12):2391-2397. 75. Huber SM: Oncochannels. Cell calcium 2013, 53(4):241-255. 76. Pardo LA, Stuhmer W: The roles of K+ channels in cancer. Nature Reviews Cancer 2014, 14(1):39-48. 77. Ousingsawat J, Spitzner M, Puntheeranurak S, Terracciano L, Tornillo L, Bubendorf L, Kunzelmann K, Schreiber R: Expression of voltage-gated potassium channels in human and mouse colonic carcinoma. Clinical Cancer Research 2007, 13(3):824-831. 78. Alvarez-Baron CP, Jonsson P, Thomas C, Dryer SE, Williams C: The two-pore domain potassium channel KCNK5: induction by estrogen receptor α and role in proliferation of breast cancer cells. Molecular Endocrinology 2011, 25(8):1326-1336. 79. Fang Y-J, Lu Z-H, Wang F, Wu X-J, Li L-R, Zhang L-Y, Pan Z-Z, Wan D-S: Prognostic impact of ERbeta and MMP7 expression on overall survival in colon cancer. Tumor Biology 2010, 31(6):651-658. 80. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y et al: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012, 486(7403):346-352. 81. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR: Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Research 2013, 41(Database issue):D955-D961. 82. Costello JC, Heiser LM, Georgii E, Gonen M, Menden MP, Wang NJ, Bansal M, Ammad-ud-din M, Hintsanen P, Khan SA et al: A community effort to assess and improve drug sensitivity prediction algorithms. Nature Biotechnology 2014, 32(12):1202-1212. 83. Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H, Degenhardt J, Mayba O, Gnad F, Liu J et al: A comprehensive transcriptional portrait of human cancer cell lines. Nature Biotechnology 2015, 33(3):306-312. 84. Yadav B, Pemovska T, Szwajda A, Kulesskiy E, Kontro M, Karjalainen R, Majumder MM, Malani D, Murumägi A, Knowles J: Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Scientific Reports 2014, 4:5193. 85. Pemovska T, Johnson E, Kontro M, Repasky GA, Chen J, Wells P, Cronin CN, McTigue M, Kallioniemi O, Porkka K et al: Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature 2015, 519(7541):102-105. 86. Pemovska T, Kontro M, Yadav B, Edgren H, Eldfors S, Szwajda A, Almusa H, Bespalov MM, Ellonen P, Elonen E et al: Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer discovery 2013, 3(12):1416-1429. 87. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R: A systems biology approach for pathway level analysis. Genome Research 2007, 17(10):1537-1545. 88. Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J-s, Kim CJ, Kusanovic JP, Romero R: A novel signaling pathway impact analysis. Bioinformatics 2009, 25(1):75-82. 89. Rivals I, Personnaz L, Taing L, Potier M-C: Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 2007, 23(4):401-407. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59920 | - |
dc.description.abstract | 目前已知腫瘤的生成是由許多不同層次的生物分子的變異所累積的結果,因此整合多種體學資料的分析已逐漸受到重視。但由於這些體學資料具有異質性、大規模、且彼此相關的特性,目前仍缺乏一個有效的整合分析方法,以系統性地探討癌症與生物分子間的關聯性以及生物分子之間的交互作用。
於本論文研究中,我們提了一個可以結合多種體學資料的整合分析方法,用於系統性鑑定癌症中與特定臨床效用相關的因子,如藥物敏感性及病人預後相關體學特徵,這些特徵更進一步以網絡的形式呈現,以一個節點代表一個特徵,並以線段連結兩個節點以表示兩者具有相關的特性;此外,此方法也將一群群高度相關的特徵聚集在一起而形成一個個模組,提供了生物分子之間交互作用的可能性。此方法主要分為四個步驟,首先為體學資料的蒐集與標準化過程,並將這些異質的體學資料轉換成適當的數值尺度,隨後,我們進行相關特徵節點的初步篩選以達到降維的目的,第三步為利用最小絕對壓縮挑選(Lasso)評估法篩選出最具代表性的因子,也就是找出每個模組中的代表節點,最後再利用相關性檢定將這些模組中的其他因子一一鑑定出來。為了驗證此方法的可行性,我們將這個方法應用至一系列的模擬資料以及兩個真實資料集「Cancer Cell Line Encyclopedia(CCLE)與The Cancer Genome Atlas(TCGA)」中分別作探討。 應用於模擬資料的結果證實了使用 Lasso 於整合分析方法中的可行性,也顯示了整合多種體學資料並同時分析的方法有效提升結果的正確性。在 CCLE 的真實資料集中,我們針對了癌症細胞株建立了一個與太平洋紫杉醇敏感性相關的異質網絡,總共有 2,033 個節點,其中包含了 5 種不同層次的分子特徵,並組成 98 個模組,其中一個節點為一個多重耐藥運輸子的上游基因ABCB1,我們發現其 mRNA 的表達與太平洋紫杉醇的耐受性相關,且在 9 種癌症中有著不同的表達情形;此外,我們也鑑定出一個已知參與細胞中微管組裝與去組裝功能的基因群「MICROTUBULE POLYMERIZATION OR DEPOLYMERIZATION」,也再次確認了太平洋紫杉醇與微管功能及細胞移動的相關性。將此方法應用於 TCGA 資料集中,我們鑑定出一個由 266 個節點所組成的結腸癌患者預後相關的異質網絡,其中為 5 種不同層次的分子特徵共同組成 61 個模組;硫酸酯酶修飾因子基因 SUMF1 及鉀離子通道蛋白 KCNK5 的突變狀態為影響預後最大的兩個因子;此外,1 號染色體短臂上 DNA 拷貝數的缺失、及位於 7 號染色體上 CpG 位點的甲基化特徵與較差的預後息息相關,其中包含了位於 HOXA13 中的 CpG 位點的甲基化特徵。我們期望在此得到的結果可以增進我們對於癌症中抗藥性因素及腫瘤生成與惡化機制的了解。 總結來說,我們所建立的整合分析方法可有效用於建構與藥物反應及病人預後相關的異質網絡,透過模擬研究及兩個真實資料集的應用,我們驗證了此模型的穩健性及可行性。我們期望此分析方法可以應用至更多的體學資料中,以幫助我們去了解高度異質性的癌症。 | zh_TW |
dc.description.abstract | It has been illuminated that tumorigenesis is caused by an accumulation of perturbation of different layers of biomolecules. Therefore, there has been growing interest in the integrated analysis of multilayer omics data. The dimensionality, heterogeneity, and dependency of omics data necessitate an effective hybrid-analysis method for systematically exploring the associations and interactions between layers. No such method has been previously developed.
In the present study, we aimed to develop a hybrid-analysis method that incorporates multi-omics data for systematically identifying the omics features related to the specific outcome, such as drug responsiveness and patients’ prognosis. These identified features were then presented by a network, using a node to represent a feature and an edge for correlation between features. Besides, the method could cluster a group of highly correlated omics features into a module, providing the putative interactions of biomolecules. The proposed method can be briefly divided into the following four steps. First, omics data were collected and conducted the normalization to transform each dataset into an appropriate scale. Next, we preselected the features of interest to reduce the dimension. Third, Least Absolute Shrinkage and Selection Operator (Lasso) estimator was introduced to identify representative nodes in each module. Finally, we built integral modules by correlation analyses. To test the feasibility of our method, the simulation study and two applications of public datasets, the Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA), were conducted. The results of the simulation study demonstrated the feasibility of applying the lasso estimator in the hybrid-analysis method and suggested that improved performance can be achieved by integrating all layers of data simultaneously. Two feature networks were constructed, related to paclitaxel response and survival, respectively. The former network involved a total of 98 modules constituted by 2,033 features from 5 data types. Among them, the expression of ABCB1, which encodes multidrug transporters, was the most relevant factor for drug resistance and was expressed differentially among several cancer types. In addition, we identified the gene set “MICROTUBULE POLYMERIZATION OR DEPOLYMERIZATION”, which influences assembly or disassembly of microtubules, suggesting that paclitaxel affects the functions of microtubules as well as cell movement. In the second network, we identified a total of 266 features that jointly constructed 61 modules correlated with the risk of colon cancer. The mutation status of sulfatase-modifying factor 1 (SUMF1) and the potassium channel member 5 (KCNK5) were the top two most influential factors. Moreover, the loss of chromosome 1p and hypermethylation of multiple CpG loci on chromosome 7, including the sites in HOXA13, were identified associated with poor prognosis. It is expected that the results obtained here could promote the understanding of drug resistance mechanisms and tumor development and progression. To sum up, we developed an effective and robust hybrid-analysis method to investigate multi-omics networks with implications in drug response and prognosis of cancers. Its performance was corroborated using a simulation study and two real datasets. Our model is widely applicable to other omics data and is anticipated to facilitate the exploration of highly heterogeneous cancers. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:45:06Z (GMT). No. of bitstreams: 1 ntu-106-R03945018-1.pdf: 4713513 bytes, checksum: 2fa6f8321eaa6ea45ee551f446cfb604 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書
致謝 I 中文摘要 III ABSTRACT V CONTENTS VIII LIST OF FIGURES XI LIST OF TABLES XII Chapter 1. Introduction 1 1.1. Multi-omics analysis 1 1.1.1. Omics data 1 1.1.2. Motivation of multi-omics analysis 2 1.1.3. Methods and challenge of multi-omics analysis 3 1.2. Analysis method 5 1.2.1. Network analysis 5 1.2.2. Gene set analysis 6 1.2.3. Pan-cancer analysis 7 1.3. The use of paclitaxel chemotherapy 8 1.4. Colon cancer and the prognostic factors 9 1.5. Specific aims of this study 10 1.6. Structure of the thesis 11 Chapter 2. Materials and Methods 12 2.1. An overview of hybrid-analysis method 12 2.1.1. Data collection and data processing 13 2.1.2. Preselection of features of interest 15 2.1.3. Identification of the representative features through Lasso regression 16 2.1.4. Module construction 17 2.2. Gene set analysis 19 2.2.1. Pre-processing of gene sets 19 2.2.2. Gene set scoring 20 2.3. Performance evaluation 21 2.3.1. Statistical significance of representative features identified through lasso regression 21 2.3.2. Prediction ability of the model derived from hybrid-analysis 22 2.4. Simulation study 23 2.5. Datasets 26 2.5.1. CCLE dataset 26 2.5.2. TCGA dataset 27 2.5.3. Gene sets from MSigDB 27 Chapter 3. Results 28 3.1. Simulation study 28 3.2. Paclitaxel responsiveness-associated heterogeneous network 31 3.2.1. Results of data processing and network overview 31 3.2.2. Putative factors for paclitaxel responsiveness 34 3.2.4. Prediction model 37 3.2.5. Putative interactions of biomolecules 39 3.3. Prognostic heterogeneous network in colon cancer 40 3.3.1. Results of data processing and network overview 40 3.3.2. Putative factors for colon cancer prognosis 41 3.3.3. Putative interactions of biomolecules 42 Chapter 4. Discussion 47 4.1. An overview of this study 47 4.2. Results interpretation of two heterogeneous networks 48 4.2.1. Paclitaxel responsiveness-associated heterogeneous network 48 4.2.2. Prognosis-associated heterogeneous network for colon cancer patients 50 4.3. Another advantages 52 4.4. Limitations in the study 53 Chapter 5. Conclusion 55 References 57 Appendix 65 | |
dc.language.iso | en | |
dc.title | 運用多種體學資料建構異質網絡之分析方法 | zh_TW |
dc.title | A Hybrid Analysis Method for Construction of Heterogeneous Network from Multi-Omics Data | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 蕭自宏(Tzu-Hung Hsiao) | |
dc.contributor.oralexamcommittee | 蔡孟勳(Mong-Hsun Tsai),賴亮全(Liang-Chuan Lai),盧子彬(Tzu-Pin Lu) | |
dc.subject.keyword | 癌症細胞株,結腸癌患者,最小絕對壓縮挑選(Lasso),模組,太平洋紫杉醇敏感性,預後, | zh_TW |
dc.subject.keyword | Cancer cell lines,Colon cancer patients,Lasso,Modules,Paclitaxel responsiveness,Prognosis, | en |
dc.relation.page | 65 | |
dc.identifier.doi | 10.6342/NTU201700251 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-01-25 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
Appears in Collections: | 生醫電子與資訊學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-1.pdf Restricted Access | 4.6 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.