請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46560
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林正芳 | |
dc.contributor.author | Fang-Miao Yeh | en |
dc.contributor.author | 葉芳妙 | zh_TW |
dc.date.accessioned | 2021-06-15T05:15:38Z | - |
dc.date.available | 2012-07-27 | |
dc.date.copyright | 2010-07-27 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-21 | |
dc.identifier.citation | Aoustin, E., Schafer, A.I., Fane, A.G., Waite, T.D., (2001), Ultrafiltration of natural organic matter. Separation Purification of Technology, 22-23, 63-78.
Aptel, P., and Buckley, C.A., (1996), Categories of Membrane Operations. Water Treatment Membrane Process. Bian, R., Watanabe, Y., Ozawa, G., and Tambo, N., (1997a), Removal of natural organic matters, iron and manganese by ultrafiltration with coagulation (in Japanese). Journal of American Water Works Association, 66(4), 24-33. Bian, R., Watanabe, Y., Ozawa, G., and Tambo, N., (1997b), Effects of coagulation pretreatment on membrane fouling and removal efficiency of natural organic matters in ultrafiltration processes. Proceedings of 6th IAWQ Asia-Pacific Regional Conference, Korea, 1514-1521. Chang, Y.J. and Benjamin, M.M., (1996), Iron oxide adsorption and UF to remove NOM and control fouling. Journal American Water Works Association, 88(12), 74-88. Choo, K.H., Lee, H., Choi, S.J., (2005), Iron and manganese removal and membrane fouling during UF in conjunction with prechlorination for drinking water treatment. Journal of Membrane Science, 267, 18–26. Chai, X., Kobayashi, T., Fujii, N., (1998),Ultrasound effect on cross-flow filtration of polyacrylonitrile ultrafiltration membranes, Journal of Membrane Science, 148 129-135. Cheryan, M., (1998), Ultrafiltration and microfiltration handbook. Technomic Publishing Company, USA, 88-123. Cho, J., Amy, G., Pellegrino, J., (1998), Membrane filtration of natural organic matter: initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membranes. Water Research, 33(11), 2517-2526. Cho, J., Amy, G., Pellegrino, J., (2000), Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration. Journal of Membrane Science, 164(1-2), 89-110. Chung, T.S., Qlin, J.J., Huan, A., Toh, K.C., (2002), Visualization of the effect of die shear rate on the outer surface morphology of ultrafiltration membranes by AFM. Journal of Membrane Science, 196(2), 251-266. Costa, A.R. and Maria, N.D.P., (2005), Effect of membrane pore size and solution chemistry on the ultrafiltration of humic substances solutions. Journal of Membrane Science, 255(1-2), 49-56. Clark, M.M. and Lucas, P., (1998), Diffusion and partitioning of humic acid in a porous ultrafiltration membrane. Journal of Membrane Science, 143(1-2), 13-25. Dialynas, E., Diamadopoulos, E. (2008) Integration of immersed membrane ultrafiltration with coagulation and activated carbon adsorption for advanced treatment of municipal wastewater. Desalination, 230, 113-27. Dong, B.Z., Chen, Y., Gao, N.Y., Fan, J.C. (2007) Effect of coagulation pretrement on the fouling of ultrafiltration membrane. Journal of Enviornmental Sciences-China, 19(3), 278-283. Friedler, E., Katz, I., Dosoretz, C.G. (2008) Chlorination and coagulation as pretreatments for greywater desalination. Desalination, 222, 38-49. George Tchobanoglous, Jeannie Darby, Keith Bourgeous, John McArdle, Paul Genest, Michael Tylla, (1998), Ultrafiltration as an advanced tertiary treatment process for municipal Wastewater. Desalination, 119, 315-322. Gur-Reznik, S., Katz, I., Dosoretz, G. (2008) Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents. Water Research, 42, 1595-1605. Her, N., Amy, G., Jarusutthirak., (2000), Seasonal variations of nanofiltration (NF) foulants: identification and control. Desalination, 132(1-3), 143-160. Hong, S. and Elimelech, M., (1997), Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. Journal of Membrane Science, 132(2), 159-181. Kabsch-Korbutowicz, M., Majewska-Nowak, K., Winnicki, T. (2008) Water treatment using MIEX®DOC/ultrafiltration process. Desalination, 221, 338-344. Kan, S.K. and Choo, K.H., (2003), Use of MF and UF membranes for reclamation of glass industry wastewater containing colloidal clay and glass particles. Journal of Membrane Science 223, 89-103. Kilduff, J.E., Mattaraj, S., Belfort, G., (2004), Flux decline during nanofiltration of naturally -occurring dissolved organic matter: effects of osmotic pressure, membrane permeability and cake formation. Journal of Membrane Science, 239(1), 39-53. Kimura, K., Hane, Y., Watanabe, Y., Amy, G., Ohkuma, N., (2004), Irreversible membrane fouling during ultrafiltration of surface water. Water Research, 38 (14-15), 3431-3441. Kobayashi, T., Kobayashi, T., Hosaka, Y., Fujii, N., (2003), Ultrasound-enhanced membrane cleaning processes applied water treatments: influence of sonic frequency on filtration treatments, Ultrasonics, 41,185-190. Kulovaara, M., Metsamuuronen, S., Nystrom, M., (1999), Effects of aquatic humic substances on a hydrophobic ultrafiltration membrane. Chemosphere, 38(15), 3485-3496. Lim, A.L., Renbi, B., (2003), Membrane fouling and cleaning in microfiltration of activated sludge wastewater. Journal of Membrane Science, 216, 279–290. Lianfa Song, (1998), Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling. Journal of Membrane Science, 139(1), 183-200. Lin, C.F., Lin T.Y., Hao O.J., (1999), Ultrafiltration process for removing humic substances: effect of molecular weight fractions and PAC treatment. Water Research, 34(5), 1252-1264. Lin, C.F., Lin T.Y., Hao O.J., (2000), Effects of humic substance characteristics on UF performance. Water Research, 34(4), 1097-1106. Lee, N., Amya, G., Croue, J.P., Buissonc, H., (2004), Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Research, 38 (20), 4511-4523. Lee S., Cho J., Elimelech M., (2005), Combined influence of natural organic matter (NOM) and colloidal particles on nanofiltration membrane fouling. Journal of Membrane Science, 262(1-2), 27-41. Lee, S., Lee, C.H. (2007) Effect of membrane properties and pretreatment on flux and NOM rejection in surface water nanofiltration. Separation and Purification Technology, 56, 1-8. Malgorzata, K.K., Katarzyna, M.N., Tomasz, W., (1999), Analysis of membrane fouling in the treatment of water solutions containing humic acids and mineral salts. Desalination, 126(1-3), 179-185. Nakatsuka, S., Nakate, I., Miyano, T., (1996), Drinking water treatment by using ultrafiltration hollow fiber membranes. Desalination, 106(1-3), 55-61. Prado, N., Ochoa, J., Audic, J.L., Amrane, A., Meinhold, J., (2007), Semi-industrial-scale Process for Dilute Swine Wastewater Treatment Using a Submerged Membrane Bioreactor (MBR) with Direct Reuse of Treated Water. International Journal of Chemical Reactor Engineering, 5(68). Price, G.J., (1992), Current Trends in Sonochemistry, The Royal Society of Chemistry, 56-87. Qin, J.J., Oo, M.H., Wai, M.N., Lee, H., Hong, S.P., Kim, J.E., Xing, Y., Zhang M., (2004), Pilot study for reclamation of secondary treated sewage effluent. Desalination, 171, 299-305. Qin, J.J., Kekre, K.A., Tao, G., Oo, M.H., Wai, M.N., Lee, T.C., Viswanath, B., Seah, H., (2006), New option of MBR-RO process for production of NEWater from domestic sewage. Journal of Membrane Science, 272, 70–77. Ridel, K., Girard, B., Lencki, R.W., (1998), Influence of membrane structure on fouling layer morphology during apple juice clarification. Journal of Membrane Science, 139, 155-166. Seidel, A. and Elimelech, M., (2002), Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: implications for fouling control. Journal of Membrane Science, 203(1-2), 245-255. Shon, H.K., Vigneswaran, S., Zareie, M.H., Aim, R. B., Lee, E., Lee, J., Cho, J., Kim, I.S. (2009) Physico-cheamical pretreatment to seawater reverse osmosis (SWRO): organic characterization and membrane autopsy. Desalination, 236, 282-290. Tay, K.G. and Song, L., (2005). A more effective method for fouling characterization in a full-scale reverse osmosis process. Desalination, 177(1-3), 95-107. Teixeira, M.R., Rosa, M.J., Nystrom, M., (2005). The role of membrane charge on nanofiltration performance. Journal of Membrane Science, 265, 160–166. Ueda, T., Hata, K., Kikuoka, Y., Seino, O., (1996). Effect of Aeration on Suction Pressure in a Submerged Membrane Bioreactor, Water Research, 31, 489. Xiangli, Q., Zhenjia, Z., Nongcun, W., Wee, V., Low, M., Loh, C.S., Hing, N.T. (2008). Coagulation pretreatment for a large-scale ultrafilitration process treating water from the Taihu River. Desalination, 230, 305-313. Yang, W., Cicek, N., (2008), Treatment of swine wastewater by submerged membrane bioreactors with consideration of estrogenic activity removal. Desalination, 231, 200–208 Yoon, S.H., Lee, C.H., Kim, K.J., Fan, A.G., (1997), Effect of calcium ion on the fouling of nanofilter by humic acid in drinking water production. Water Research, 32(7), 2180-2186. Yuan, W. and Zydney, A.L., (1999), Humic acid fouling during microfiltration. Journal of Membrane Science, 157(1), 1-12. Yuan, W. and Zydney, A.L., (2000), Humic acid fouling during ultrafiltration. Environmental Science and Technology, 34(23), 5043-5050. 方隆誠(2006),以酵素清洗超濾薄膜過濾腐植酸之不可逆積垢與分析,台灣大學環境工程學研究所碩士論文。 林秀蘭(2008),超音波對超濾薄膜積垢生成之影響,台灣大學環境工程學研究所碩士論文。 林何印(1995),超濾與逆滲透薄膜程序處理及回收工業廢水之研究,中央大學環境工程學碩士論文,1995。 張永信(1998),薄膜程序用於工業區廢水回收之研究,成功大學環境工程學碩士論文。 吳勇興、焦士榮(2008),工業廢水薄膜過濾處理模廠研究,中興工程期刊,第101期, p.39-44。 經濟部水利署水利規劃試驗所(2006),台中市福田水資源回收中心放流水再生利用研究報告。 經濟部工業局(2000),廢水薄膜處理技術應用與推廣手冊。 內政部營建署(2009),營建資訊312期。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46560 | - |
dc.description.abstract | 本研究以迪化污水處理廠二沉出流水、林口南區污水處理廠二沉出流水以及台大牧場之放流水為對象,利用中空纖維超濾膜(ultrafiltration, UF)進行廢污水回收再利用之可行性評估。並探討結合不同前處理技術,對廢污水中特定物質之去除效能。最後,根據薄膜清洗程序試驗,找出薄膜最佳操作條件。
以都市污水做為再生水水源時,薄膜操作條件為固定通量約20 LMH,過濾時間以不超過2小時,固定反沖洗流速為0.1 m/s,並且搭配玻璃纖維(fiber filter)過濾之前處理技術為最佳操作處理流程。經實驗結果得知,在無結合前處理之條件下,過濾2小時反沖洗1分鐘,經17小時過濾後TMP上升約280%;若結合玻璃纖維過濾和反沖洗步驟,其TMP上升約58%。 以工業廢水做為再生水水源時,薄膜操作條件為固定通量約20 LMH,反沖洗流速為0.1 m/s,過濾時間以不超過90分鐘為最佳操作流程。當結合玻璃纖維過濾和反沖洗步驟,觀察薄膜TMP之上升情形,結果顯示並無法有效減緩結垢生成。 以畜牧二級放流水做為水源,因懸浮固體物濃度超過50 mg/L,需藉由粒狀活性碳(granular activated carbon, GAC)預處理才能進入薄膜系統過濾。薄膜操作條件為固定產水通量約5 LMH,反沖洗流速為0.1 m/s,以過濾時間不超過15分鐘為最佳操作流程。實驗結果顯示,UF系統並不適合處理畜牧廢水。 分析不同廢污水經UF處理後之出流水水質,並與中階用水回收建議值比較;都市污水方面,僅pH值稍微偏低,其他數值皆可符合,另外,亦分析12種污水廠較常檢測出之高濃度新興污染物質,單獨以UF處理,其去除效果並不理想,需搭配其他前處理程序;工業廢水方面,處理後的水質無法符合冷卻用水回收建議值;至於畜牧廢水經處理後之濁度和電導度仍偏高,因此並不適合做為回收再生水水源。 | zh_TW |
dc.description.abstract | The objective of the present study is to assess the feasibility of reusing ultrafiltration (UF) hollow-fiber membrane in the treatment of effluent of secondary domestic, industrial and pasturage wastewater. Simultaneously, kinds of pretreatment processes combined with UF were used to confer the removal efficiencies in term of turbidity, suspended solid, conductivity, inorganic matters and so on. Finally, collocate of backwash process with UF process was used as pretreatment to find the optimum operating conditions.
For the secondary domestic wastewater, the UF system was designed to operate at constant flux and the backwashing rate of 20 LMH and 0.1 m/s respectively. Wastewater was filtered through UF for 2 hours, and then backwashed for 1 min. From the results it is clear that the optimum operating conditions could be achieved when fiber filter was combined with UF process and backwash process. For the secondary industrial wastewater, the UF system was designed to operate at a constant flux of 20 LMH with a backwashing rate of 0.1 m/s. Wastewater was filtered through UF for 90 min and followed by 1 min of backwash without any pretreatment. However, the results of transmembrane pressure (TMP) showed that this combination of processes could not decrease the membrane fouling effectively. Since the concentration of suspended solid in the secondary pasturage wastewater was 50 mg/L which was over the standard value, granular activated carbon (GAC) should be used for pretreatment process. In this study, the UF system was designed to operate at a constant flux of 5 LMH and with backwashing rate of 0.1 m/s. Wastewater was filtered through UF for 15 min and followed by 1 min of backwash. The results showed that the water quality of permeate for domestic wastewater treated by UF process was applicable to medium quality reuse. The water quality of industrial wastewater treated by UF process was not applicable to cooling water reuse. However, because the high concentration of turbidity and conductivity of wastewater from effluents of pasturage wastewater treatment, it is not suitable to use as the source of feedwater for wastewater reclamation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:15:38Z (GMT). No. of bitstreams: 1 ntu-99-R97541104-1.pdf: 1109698 bytes, checksum: 6e0beaf0d6464dab49d2b1cc228eb6d7 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 致謝 Ⅰ
中文摘要 Ⅱ 英文摘要 Ⅲ 目錄 Ⅴ 圖目錄 Ⅷ 表目錄 Ⅹ 第一章 前言 1 1-1 研究緣起 1 1-2 研究目的與內容 2 1-2-1 研究目的 2 1-2-2 研究方法 2 第二章 文獻回顧 3 2-1 水回收現況 3 2-1-1 再生水回收用途 3 2-1-2 都市污水回收再利用 6 2-1-3 工業廢水回收再利用 10 2-1-4 畜牧廢水回收再利用 11 2-2 薄膜技術與應用 11 2-2-1 分離機制 11 2-2-2 薄膜種類 12 2-2-3 薄膜材質 13 2-2-4 薄膜形式 13 2-3 影響薄膜滲透率之因子 16 2-3-1 薄膜性質 16 2-3-2 進流液特性 17 2-4 薄膜結垢生成與清洗 19 2-4-1 結垢生成機制 19 2-4-2 結垢清洗控制 20 2-5 前處理技術 20 2-6 新興污染物 21 第三章 實驗材料與方法 23 3-1 實驗內容 23 3-2 廢污水來源 25 3-3 實驗設備與藥品 26 3-3-1 UF薄膜 26 3-3-2 前處理設備 26 3-3-3 實驗藥品 28 3-3-4 自動/半自動薄膜程序控制系統 29 3-4 實驗步驟與方法 30 3-4-1 前置實驗 30 3-4-1-1 Polymer 瓶杯試驗 30 3-4-1-2 PAC 瓶杯試驗 30 3-4-2 水質分析項目與方法 31 3-4-3 實驗分析儀器與方法 32 3-4-3-1總有機碳濃度分析 32 3-4-3-2無機物濃度分析 32 3-4-3-3 LC/MS/MS 33 3-4-4 前處理實驗流程 34 3-4-5 薄膜結垢實驗 34 3-4-5-1都市污水 35 3-4-5-2工業廢水 36 3-4-5-3畜牧廢水 36 3-4-6 薄膜反沖洗試驗 36 3-4-6-1 都市污水 37 3-4-6-2 工業廢水 38 3-4-6-3 畜牧廢水 38 3-4-7 都市污水CIP測試 38 第四章 結果與討論 40 4-1 薄膜結垢實驗 40 4-1-1 都市污水 40 4-1-2 工業廢水 41 4-1-3 畜牧廢水 43 4-2 薄膜反沖洗實驗 46 4-2-1 都市污水 46 4-2-2 工業廢水 48 4-2-3 畜牧廢水 50 4-3 前處理實驗 51 4-3-1 瓶杯試驗 51 4-3-1-1 Polymer 瓶杯試驗 51 4-3-1-2 PAC 瓶杯試驗 51 4-3-2 都市污水 52 4-3-3 工業廢水 55 4-4 薄膜藥洗實驗 58 4-5 水質分析 59 4-5-1 都市污水 59 4-5-2 工業廢水 60 4-5-3 畜牧廢水 61 第五章 結論與建議 62 5-1 結論 62 5-2 建議 64 參考文獻 65 附錄 71 | |
dc.language.iso | zh-TW | |
dc.title | 超濾膜與前處理技術於廢污水回收再利用之研究 | zh_TW |
dc.title | The Use of Ultrafiltration Membrane and Pretreatment Processes in Wastewater Reclamation | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林郁真,康佩群 | |
dc.subject.keyword | 前處理,UF膜,結垢阻塞,反沖洗,水回收, | zh_TW |
dc.subject.keyword | Pretreatment,Ultrafiltration,transmembrane pressure (TMP),Membrane fouling,Backwash,Wastewater reclamation, | en |
dc.relation.page | 78 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-22 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。