Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45987
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 張麗冠(Li-Kwan Chang) | |
dc.contributor.author | Tsui-Yan Chang | en |
dc.contributor.author | 張翠豔 | zh_TW |
dc.date.accessioned | 2021-06-15T04:50:34Z | - |
dc.date.available | 2011-08-06 | |
dc.date.copyright | 2010-08-06 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-02 | |
dc.identifier.citation | Adamson, A.L., Darr, D., Holley-Guthrie, E., Johnson, R.A., Mauser, A., Swenson, J., and Kenney, S. (2000). Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol 74, 1224-1233.
Adamson, A.L., and Kenney, S. (1999). The Epstein-Barr virus BZLF1 protein interacts physically and functionally with the histone acetylase CREB-binding protein. J Virol 73, 6551-6558. Akihisa, T., Tokuda, H., Ukiya, M., Suzuki, T., Enjo, F., Koike, K., Nikaido, T., and Nishino, H. (2004). 3-epicabraleahydroxylactone and other triterpenoids from camellia oil and their inhibitory effects on Epstein-Barr virus activation. Chem Pharm Bull (Tokyo) 52, 153-156. Andiman, W.A., Eastman, R., Martin, K., Katz, B.Z., Rubinstein, A., Pitt, J., Pahwa, S., and Miller, G. (1985). Opportunistic lymphoproliferations associated with Epstein-Barr viral DNA in infants and children with AIDS. Lancet 2, 1390-1393. Arvin, A.M., and Gershon, A.A. (1996). Live attenuated varicella vaccine. Annu Rev Microbiol 50, 59-100. Ascherio, A., Munger, K.L., Lennette, E.T., Spiegelman, D., Hernan, M.A., Olek, M.J., Hankinson, S.E., and Hunter, D.J. (2001). Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286, 3083-3088. Azad, R.F., Driver, V.B., Tanaka, K., Crooke, R.M., and Anderson, K.P. (1993). Antiviral activity of a phosphorothioate oligonucleotide complementary to RNA of the human cytomegalovirus major immediate-early region. Antimicrob Agents Chemother 37, 1945-1954. Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., Hatfull, G., Hudson, G.S., Satchwell, S.C., Seguin, C., et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211. Bauer, G., Hofler, P., and Zur Hausen, H. (1982). Epstein-Barr virus induction by a serum factor. I. Induction and cooperation with additional inducers. Virology 121, 184-194. Bhende, P.M., Seaman, W.T., Delecluse, H.J., and Kenney, S.C. (2004). The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet 36, 1099-1104. Bhende, P.M., Seaman, W.T., Delecluse, H.J., and Kenney, S.C. (2005). BZLF1 activation of the methylated form of the BRLF1 immediate-early promoter is regulated by BZLF1 residue 186. J Virol 79, 7338-7348. Bresnahan, W.A., Boldogh, I., Chi, P., Thompson, E.A., and Albrecht, T. (1997). Inhibition of cellular Cdk2 activity blocks human cytomegalovirus replication. Virology 231, 239-247. Bresnahan, W.A., Boldogh, I., Thompson, E.A., and Albrecht, T. (1996). Human cytomegalovirus inhibits cellular DNA synthesis and arrests productively infected cells in late G1. Virology 224, 150-160. Burke, A.P., Yen, T.S., Shekitka, K.M., and Sobin, L.H. (1990). Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod Pathol 3, 377-380. Burkitt, D. (1958). A sarcoma involving the jaws in African children. Br J Surg 46, 218-223. Burkitt, D. (1962). Determining the climatic limitations of a children's cancer common in Africa. Br Med J 2, 1019-1023. Chang, F.R., Hsieh, Y.C., Chang, Y.F., Lee, K.H., Wu, Y.C., and Chang, L.K. (2010a). Inhibition of the Epstein-Barr virus lytic cycle by moronic acid. Antiviral Res 85, 490-495. Chang, L.K., Chuang, J.Y., Nakao, M., and Liu, S.T. (2010b). MCAF1 and synergistic activation of the transcription of Epstein-Barr virus lytic genes by Rta and Zta. Nucleic Acids Res. Chang, L.K., Chung, J.Y., Hong, Y.R., Ichimura, T., Nakao, M., and Liu, S.T. (2005). Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res 33, 6528-6539. Chang, L.K., and Liu, S.T. (2000). Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Res 28, 3918-3925. Chang, L.K., Wei, T.T., Chiu, Y.F., Tung, C.P., Chuang, J.Y., Hung, S.K., Li, C., and Liu, S.T. (2003). Inhibition of Epstein-Barr virus lytic cycle by (-)-epigallocatechin gallate. Biochem Biophys Res Commun 301, 1062-1068. Chattopadhyay, D., Sarkar, M.C., Chatterjee, T., Sharma Dey, R., Bag, P., Chakraborti, S., and Khan, M.T. (2009). Recent advancements for the evaluation of anti-viral activities of natural products. N Biotechnol 25, 347-368. Coen, D.M., and Schaffer, P.A. (2003). Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Nat Rev Drug Discov 2, 278-288. Cohen, J.I. (2000). Epstein-Barr virus infection. N Engl J Med 343, 481-492. Connolly, J.D., and Hill, R.A. Triterpenoids. Nat Prod Rep 27, 79-132. Connolly, J.D., and Hill, R.A. (2010). Triterpenoids. Nat Prod Rep 27, 79-132. Cox, M.A., Leahy, J., and Hardwick, J.M. (1990). An enhancer within the divergent promoter of Epstein-Barr virus responds synergistically to the R and Z transactivators. J Virol 64, 313-321. Datta, A.K., Colby, B.M., Shaw, J.E., and Pagano, J.S. (1980). Acyclovir inhibition of Epstein-Barr virus replication. Proc Natl Acad Sci U S A 77, 5163-5166. de Oliveira, D.E., Ballon, G., and Cesarman, E. (2010). NF-kappaB signaling modulation by EBV and KSHV. Trends Microbiol. Dolcetti, R., and Masucci, M.G. (2003). Epstein-Barr virus: induction and control of cell transformation. J Cell Physiol 196, 207-218. Elion, G.B., Furman, P.A., Fyfe, J.A., de Miranda, P., Beauchamp, L., and Schaeffer, H.J. (1977). Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A 74, 5716-5720. Ernberg, I., Falk, K., Minarovits, J., Busson, P., Tursz, T., Masucci, M.G., and Klein, G. (1989). The role of methylation in the phenotype-dependent modulation of Epstein-Barr nuclear antigen 2 and latent membrane protein genes in cells latently infected with Epstein-Barr virus. J Gen Virol 70 ( Pt 11), 2989-3002. Farrell, P.J. (1995). Epstein-Barr virus immortalizing genes. Trends Microbiol 3, 105-109. Farrell, P.J., Rowe, D.T., Rooney, C.M., and Kouzarides, T. (1989). Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J 8, 127-132. Fingeroth, J.D., Weis, J.J., Tedder, T.F., Strominger, J.L., Biro, P.A., and Fearon, D.T. (1984). Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A 81, 4510-4514. Flemington, E.K., Goldfeld, A.E., and Speck, S.H. (1991). Efficient transcription of the Epstein-Barr virus immediate-early BZLF1 and BRLF1 genes requires protein synthesis. J Virol 65, 7073-7077. Furman, P.A., St Clair, M.H., Fyfe, J.A., Rideout, J.L., Keller, P.M., and Elion, G.B. (1979). Inhibition of herpes simplex virus-induced DNA polymerase activity and viral DNA replication by 9-(2-hydroxyethoxymethyl)guanine and its triphosphate. J Virol 32, 72-77. Fyfe, J.A., Keller, P.M., Furman, P.A., Miller, R.L., and Elion, G.B. (1978). Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine. J Biol Chem 253, 8721-8727. Gershburg, E., Hong, K., and Pagano, J.S. (2004). Effects of maribavir and selected indolocarbazoles on Epstein-Barr virus protein kinase BGLF4 and on viral lytic replication. Antimicrob Agents Chemother 48, 1900-1903. Gershburg, E., and Pagano, J.S. (2002). Phosphorylation of the Epstein-Barr virus (EBV) DNA polymerase processivity factor EA-D by the EBV-encoded protein kinase and effects of the L-riboside benzimidazole 1263W94. J Virol 76, 998-1003. Glaser, G., Vogel, M., Wolf, H., and Niller, H.H. (1998). Regulation of the Epstein-Barr viral immediate early BRLF1 promoter through a distal NF1 site. Arch Virol 143, 1967-1983. Gruffat, H., Manet, E., and Sergeant, A. (2002). MEF2-mediated recruitment of class II HDAC at the EBV immediate early gene BZLF1 links latency and chromatin remodeling. EMBO Rep 3, 141-146. Henson, B.W., Perkins, E.M., Cothran, J.E., and Desai, P. (2009). Self-assembly of Epstein-Barr virus capsids. J Virol 83, 3877-3890. Heslop, H.E. (2009). How I treat EBV lymphoproliferation. Blood 114, 4002-4008. Hostettmann-Kaldas, M., and Nakanishi, K. (1979). Moronic acid, a simple triterpenoid keto acid with antimicrobial activity isolated from Ozoroa mucronata. Planta Med 37, 358-360. Huang, J., Liao, G., Chen, H., Wu, F.Y., Hutt-Fletcher, L., Hayward, G.S., and Hayward, S.D. (2006). Contribution of C/EBP proteins to Epstein-Barr virus lytic gene expression and replication in epithelial cells. J Virol 80, 1098-1109. Ito, J., Chang, F.R., Wang, H.K., Park, Y.K., Ikegaki, M., Kilgore, N., and Lee, K.H. (2001). Anti-AIDS agents. 48.(1) Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis. J Nat Prod 64, 1278-1281. Javier, R.T., and Butel, J.S. (2008). The history of tumor virology. Cancer Res 68, 7693-7706. Jones, J.F., Shurin, S., Abramowsky, C., Tubbs, R.R., Sciotto, C.G., Wahl, R., Sands, J., Gottman, D., Katz, B.Z., and Sklar, J. (1988). T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N Engl J Med 318, 733-741. Kalinova, L., Indrakova, J., and Bachleda, P. (2009). Post-transplant lymphoproliferative disorder. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 153, 251-257. Kaufman, H., Martola, E.L., and Dohlman, C. (1962). Use of 5-iodo-2'-deoxyuridine (IDU) in treatment of herpes simplex keratitis. Arch Ophthalmol 68, 235-239. Kleymann, G., Fischer, R., Betz, U.A., Hendrix, M., Bender, W., Schneider, U., Handke, G., Eckenberg, P., Hewlett, G., Pevzner, V., et al. (2002). New helicase-primase inhibitors as drug candidates for the treatment of herpes simplex disease. Nat Med 8, 392-398. Kotton, C.N., and Fishman, J.A. (2005). Viral infection in the renal transplant recipient. J Am Soc Nephrol 16, 1758-1774. Kouzarides, T., Packham, G., Cook, A., and Farrell, P.J. (1991). The BZLF1 protein of EBV has a coiled coil dimerisation domain without a heptad leucine repeat but with homology to the C/EBP leucine zipper. Oncogene 6, 195-204. Kraus, R.J., Mirocha, S.J., Stephany, H.M., Puchalski, J.R., and Mertz, J.E. (2001). Identification of a novel element involved in regulation of the lytic switch BZLF1 gene promoter of Epstein-Barr virus. J Virol 75, 867-877. Kraus, R.J., Perrigoue, J.G., and Mertz, J.E. (2003). ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein-Barr virus. J Virol 77, 199-207. Krosky, P.M., Borysko, K.Z., Nassiri, M.R., Devivar, R.V., Ptak, R.G., Davis, M.G., Biron, K.K., Townsend, L.B., and Drach, J.C. (2002). Phosphorylation of beta-D-ribosylbenzimidazoles is not required for activity against human cytomegalovirus. Antimicrob Agents Chemother 46, 478-486. Kuo, R.Y., Qian, K., Morris-Natschke, S.L., and Lee, K.H. (2009). Plant-derived triterpenoids and analogues as antitumor and anti-HIV agents. Nat Prod Rep 26, 1321-1344. Kurokawa, M., Basnet, P., Ohsugi, M., Hozumi, T., Kadota, S., Namba, T., Kawana, T., and Shiraki, K. (1999). Anti-herpes simplex virus activity of moronic acid purified from Rhus javanica in vitro and in vivo. J Pharmacol Exp Ther 289, 72-78. Lee, Y.H., Chiu, Y.F., Wang, W.H., Chang, L.K., and Liu, S.T. (2008). Activation of the ERK signal transduction pathway by Epstein-Barr virus immediate-early protein Rta. J Gen Virol 89, 2437-2446. Liby, K.T., Yore, M.M., and Sporn, M.B. (2007). Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 7, 357-369. Lin, T.P., Chen, S.Y., Duh, P.D., Chang, L.K., and Liu, Y.N. (2008). Inhibition of the epstein-barr virus lytic cycle by andrographolide. Biol Pharm Bull 31, 2018-2023. Liu, P., and Speck, S.H. (2003). Synergistic autoactivation of the Epstein-Barr virus immediate-early BRLF1 promoter by Rta and Zta. Virology 310, 199-206. Liu, S., Borras, A.M., Liu, P., Suske, G., and Speck, S.H. (1997). Binding of the ubiquitous cellular transcription factors Sp1 and Sp3 to the ZI domains in the Epstein-Barr virus lytic switch BZLF1 gene promoter. Virology 228, 11-18. Luka, J., Kallin, B., and Klein, G. (1979). Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94, 228-231. Luzuriaga, K., and Sullivan, J.L. (2010). Infectious mononucleosis. N Engl J Med 362, 1993-2000. Manet, E., Bourillot, P.Y., Waltzer, L., and Sergeant, A. (1998). EBV genes and B cell proliferation. Crit Rev Oncol Hematol 28, 129-137. Medveczky, M.M., Sherwood, T.A., Klein, T.W., Friedman, H., and Medveczky, P.G. (2004). Delta-9 tetrahydrocannabinol (THC) inhibits lytic replication of gamma oncogenic herpesviruses in vitro. BMC Med 2, 34. Miller, R.L., Glaser, R., and Rapp, F. (1977). Studies of an Epstein-Barr virus-induced DNA polymerase. Virology 76, 494-502. Minarovits, J., Minarovits-Kormuta, S., Ehlin-Henriksson, B., Falk, K., Klein, G., and Ernberg, I. (1991). Host cell phenotype-dependent methylation patterns of Epstein-Barr virus DNA. J Gen Virol 72 ( Pt 7), 1591-1599. Montalvo, E.A., Cottam, M., Hill, S., and Wang, Y.J. (1995). YY1 binds to and regulates cis-acting negative elements in the Epstein-Barr virus BZLF1 promoter. J Virol 69, 4158-4165. Montalvo, E.A., Shi, Y., Shenk, T.E., and Levine, A.J. (1991). Negative regulation of the BZLF1 promoter of Epstein-Barr virus. J Virol 65, 3647-3655. Mosialos, G. (1997). The role of Rel/NF-kappa B proteins in viral oncogenesis and the regulation of viral transcription. Semin Cancer Biol 8, 121-129. Naithani, R., Huma, L.C., Holland, L.E., Shukla, D., McCormick, D.L., Mehta, R.G., and Moriarty, R.M. (2008). Antiviral activity of phytochemicals: a comprehensive review. Mini Rev Med Chem 8, 1106-1133. Niedobitek, G., Young, L.S., Lau, R., Brooks, L., Greenspan, D., Greenspan, J.S., and Rickinson, A.B. (1991). Epstein-Barr virus infection in oral hairy leukoplakia: virus replication in the absence of a detectable latent phase. J Gen Virol 72 ( Pt 12), 3035-3046. Packham, G., Economou, A., Rooney, C.M., Rowe, D.T., and Farrell, P.J. (1990). Structure and function of the Epstein-Barr virus BZLF1 protein. J Virol 64, 2110-2116. Petronelli, A., Pannitteri, G., and Testa, U. (2009). Triterpenoids as new promising anticancer drugs. Anticancer Drugs 20, 880-892. Pope, J.H., Horne, M.K., and Scott, W. (1968). Transformation of foetal human keukocytes in vitro by filtrates of a human leukaemic cell line containing herpes-like virus. Int J Cancer 3, 857-866. Qian, K., Kuo, R.Y., Chen, C.H., Huang, L., Morris-Natschke, S.L., and Lee, K.H. Anti-AIDS agents 81. Design, synthesis, and structure-activity relationship study of betulinic acid and moronic acid derivatives as potent HIV maturation inhibitors. J Med Chem 53, 3133-3141. Raab-Traub, N. (1992). Epstein-Barr virus and nasopharyngeal carcinoma. Semin Cancer Biol 3, 297-307. Ragoczy, T., and Miller, G. (1999). Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes. J Virol 73, 9858-9866. Ragoczy, T., and Miller, G. (2001). Autostimulation of the Epstein-Barr virus BRLF1 promoter is mediated through consensus Sp1 and Sp3 binding sites. J Virol 75, 5240-5251. Reefschlaeger, J., Bender, W., Hallenberger, S., Weber, O., Eckenberg, P., Goldmann, S., Haerter, M., Buerger, I., Trappe, J., Herrington, J.A., et al. (2001). Novel non-nucleoside inhibitors of cytomegaloviruses (BAY 38-4766): in vitro and in vivo antiviral activity and mechanism of action. J Antimicrob Chemother 48, 757-767. Rixon, F.J. (1993). Structure and assembly of herpesviruses. Seminars in Virology 4, 135-144. Sato, N., Zhang, Q., Ma, C.M., and Hattori, M. (2009). Anti-human immunodeficiency virus-1 protease activity of new lanostane-type triterpenoids from Ganoderma sinense. Chem Pharm Bull (Tokyo) 57, 1076-1080. Schepers, A., Pich, D., and Hammerschmidt, W. (1996). Activation of oriLyt, the lytic origin of DNA replication of Epstein-Barr virus, by BZLF1. Virology 220, 367-376. Shibata, D., Weiss, L.M., Nathwani, B.N., Brynes, R.K., and Levine, A.M. (1991). Epstein-Barr virus in benign lymph node biopsies from individuals infected with the human immunodeficiency virus is associated with concurrent or subsequent development of non-Hodgkin's lymphoma. Blood 77, 1527-1533. Sinclair, A.J., Brimmell, M., Shanahan, F., and Farrell, P.J. (1991). Pathways of activation of the Epstein-Barr virus productive cycle. J Virol 65, 2237-2244. Suh, N., Wang, Y., Honda, T., Gribble, G.W., Dmitrovsky, E., Hickey, W.F., Maue, R.A., Place, A.E., Porter, D.M., Spinella, M.J., et al. (1999). A novel synthetic oleanane triterpenoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, with potent differentiating, antiproliferative, and anti-inflammatory activity. Cancer Res 59, 336-341. Takada, K., and Ono, Y. (1989). Synchronous and sequential activation of latently infected Epstein-Barr virus genomes. J Virol 63, 445-449. Taylor, N., Flemington, E., Kolman, J.L., Baumann, R.P., Speck, S.H., and Miller, G. (1991). ZEBRA and a Fos-GCN4 chimeric protein differ in their DNA-binding specificities for sites in the Epstein-Barr virus BZLF1 promoter. J Virol 65, 4033-4041. Tsurumi, T., Daikoku, T., Kurachi, R., and Nishiyama, Y. (1993). Functional interaction between Epstein-Barr virus DNA polymerase catalytic subunit and its accessory subunit in vitro. J Virol 67, 7648-7653. Tsurumi, T., Fujita, M., and Kudoh, A. (2005). Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol 15, 3-15. van Zeijl, M., Fairhurst, J., Jones, T.R., Vernon, S.K., Morin, J., LaRocque, J., Feld, B., O'Hara, B., Bloom, J.D., and Johann, S.V. (2000). Novel class of thiourea compounds that inhibit herpes simplex virus type 1 DNA cleavage and encapsidation: resistance maps to the UL6 gene. J Virol 74, 9054-9061. Wandinger, K., Jabs, W., Siekhaus, A., Bubel, S., Trillenberg, P., Wagner, H., Wessel, K., Kirchner, H., and Hennig, H. (2000). Association between clinical disease activity and Epstein-Barr virus reactivation in MS. Neurology 55, 178-184. Wang, F.Z., Roy, D., Gershburg, E., Whitehurst, C.B., Dittmer, D.P., and Pagano, J.S. (2009). Maribavir inhibits epstein-barr virus transcription in addition to viral DNA replication. J Virol 83, 12108-12117. Wang, Y.C., Huang, J.M., and Montalvo, E.A. (1997). Characterization of proteins binding to the ZII element in the Epstein-Barr virus BZLF1 promoter: transactivation by ATF1. Virology 227, 323-330. Weiss, L.M., Strickler, J.G., Warnke, R.A., Purtilo, D.T., and Sklar, J. (1987). Epstein-Barr viral DNA in tissues of Hodgkin's disease. Am J Pathol 129, 86-91. Young, L.S., and Murray, P.G. (2003). Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene 22, 5108-5121. Young, L.S., and Rickinson, A.B. (2004). Epstein-Barr virus: 40 years on. Nat Rev Cancer 4, 757-768. Yu, D., Sakurai, Y., Chen, C.H., Chang, F.R., Huang, L., Kashiwada, Y., and Lee, K.H. (2006). Anti-AIDS agents 69. Moronic acid and other triterpene derivatives as novel potent anti-HIV agents. J Med Chem 49, 5462-5469. Yu, X., Wang, Z., and Mertz, J.E. (2007). ZEB1 regulates the latent-lytic switch in infection by Epstein-Barr virus. PLoS Pathog 3, e194. Zalani, S., Holley-Guthrie, E., and Kenney, S. (1995). The Zif268 cellular transcription factor activates expression of the Epstein-Barr virus immediate-early BRLF1 promoter. J Virol 69, 3816-3823. Zalani, S., Holley-Guthrie, E.A., Gutsch, D.E., and Kenney, S.C. (1992). The Epstein-Barr virus immediate-early promoter BRLF1 can be activated by the cellular Sp1 transcription factor. J Virol 66, 7282-7292. zur Hausen, H., O'Neill, F.J., Freese, U.K., and Hecker, E. (1978). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272, 373-375. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45987 | - |
dc.description.abstract | Epstein-Barr virus (EBV)是人類皰疹病毒,具有潛伏期和溶裂期兩種生活型態。EBV的感染途徑是透過唾液感染上皮細胞和淋巴B細胞,與傳染性單核血球增多症、伯基特淋巴瘤、T細胞淋巴癌、何杰金氏症、胃癌及鼻咽癌等疾病有密切關係。BRLF1和BZLF1是EBV的極早期基因,會轉譯Rta和Zta這兩個轉錄因子進而活化EBV溶裂期的基因表現。目前的抗EBV藥物如acyclovir、ganciclovir及indolocarbazole等主要作用於病毒的DNA聚合酶以抑制病毒的溶裂複製。然而病毒常常會突變而產生抗藥性的突變株,因此需要更新穎的藥物及治療方法。Triterpenoids (三萜類)是由三十個碳元素為骨架之天然化合物,普遍存在於植物或真菌中,具有抗發炎、抗腫瘤、抑制細胞增生及誘導細胞凋亡機制的調節作用。本篇研究的目的是探討triterpenoids的衍生物JYK-MA-37對抑制EBV溶裂期的效果。首先將P3HR1細胞以不同濃度的JYK-MA-37處理,接著並以sodium butyrate (SB)及12-O-tetradecanoylphorbol-13-acetate (TPA)誘導EBV進入溶裂循環,利用西方點墨法與流式細胞分析,結果顯示10 μM的JYK-MA-37有效地抑制EBV的溶裂期蛋白質Rta、Zta及EA-D的表現,其EC50-Rta為11.32 μM,CC50為55 μM。接著,以冷光酵素活性分析測試JYK-MA-37對活化BRLF1與BZLF1啟動子Rp及Zp的影響,結果發現EBV溶裂期極早期基因BRLF1及BZLF1的轉錄活性會被抑制。利用即時聚合酶連鎖分析JYK-MA-37對EBV顆粒產生的影響,結果發現JYK-MA-37會抑制EBV顆粒的產生。綜合以上實驗結果,證明JYK-MA-37具有抑制EBV溶裂循環的能力。 | zh_TW |
dc.description.abstract | Epstein-Barr virus (EBV) is a human herpesvirus, which has two different life cycles: latent and lytic. EBV infects lymphoid and epithelial cells. Infection by this virus causes infectious mononucleosis and is closely related to several malignant diseases, including Burkitt’s lymphoma, T-cell lymphoma, Hodgkin’s disease,gastric cancer and nasopharyngeal carcinoma. At the onset of the EBV lytic cycle, the virus expresses two immediate-early genes, BRLF1 and BZLF1, which encode transcription factors, Rta and Zta, respectively. These two transcription factors are required to activate the EBV early genes and lytic cascade. Clinically effective anti-EBV drugs that target EBV-encoded DNA polymerase, including acyclovir, ganciclovir and indolocarbazole, are commonly used for inhibiting the lytic cycle of EBV. However, viruses are potentially mutagenic for resistance to drugs. In light of this, it is necessary to identify new targets for antivirus chemotherapy and to develop new treatment strategies. Triterpenoids are formed from six isoprene units with 30 carbons. As it is generally known, triterpenoids are major constituents in several herbal remedies or fungi that are reported to have the capacity of anti-inflammatory, anticancer, repressing cell proliferation, inducing cell apotosis program, etc. The purpose of this study is to demonstrate the effect of JYKMA-37, one of the derivatives of triterpenoids, on repressing the EBV lytic cycle. First of all, P3HR1 cells were treated with different concentrations of JYK-MA-37, and then induced the EBV lytic cycle by sodium butyrate (SB) and 12-O-tetradecanoylphorbol-13-acetate (TPA). Immunoblot analysis and flow cytometry analysis were performed, the results showed that JYK-MA-37 at 10 μM effectively inhibits the expression of EBV lytic protein, including Rta、Zta and EA-D, after lytic induction in P3HR1 cells (EC50 = 22.083 μM,CC50 = 11.32 μM). Moreover, transient transfection analysis revealed that transactivation of BRLF1 promoter (Rp) and BZLF1 promoter (Zp) were inhibited by JYK-MA-37 in a dose-dependent manner. Finally, real-time PCR showed that JYK-MA-37 substantially reduces the numbers of EBV particles produced by the cells after lytic induction. Taken together, this study demonstrated that JYK-MA-37 poccess the capacity of inhibiting the progression of EBV lytic cycle. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:50:34Z (GMT). No. of bitstreams: 1 ntu-99-R97b47413-1.pdf: 2633448 bytes, checksum: c4124b170cd4c3f37c2b61b597f4503f (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書致謝感言 i 致謝感言 ii 中文摘要 iii 英文摘要 iv 表目錄 ix 圖目錄 x 前言 1 EBV的發現 1 EBV的構造與基因體 1 EBV感染人類的途徑 1 與EBV相關的疾病 2 EBV的生活史 2 極早期基因BRLF1及其Rta蛋白質的表現 4 極早期基因BZLF1及其Zta蛋白質的表現 5 抗皰疹病毒藥物 6 抗EBV活化疾病的治療 8 天然藥物 9 三萜類 (Triterpenoids) 9 Moronic acid (MA)及MA衍生物 10 JYK-MA-37 11 研究目的 12 材料與方法 13 細胞株及培養 13 細胞毒性分析 13 病毒溶裂循環的誘導 13 西方點墨法 13 50% cytotoxic concentration 14 50% effective concentration 14 Therapeutic index 15 流式細胞儀分析 15 質體DNA的萃取 15 RNA的萃取 16 反轉錄聚合酶連鎖反應 16 細胞的轉染 17 冷光酵素活性檢測 17 分離EBV的DNA 17 即時聚合酶連鎖分析 18 結果 19 抗EBV活性藥物的篩選 19 JYK-MA- 37對P3HR1細胞的毒性分析 19 JYK-MA-37對EBV溶裂期蛋白質的影響 20 利用流式細胞儀分析JYK-MA-37對Rta,Zta,EA-D及EBNA1表現的影響 20 JYK-MA-37對BRLF1-BZLF1雙基因轉錄的影響 21 分析JYK-MA-37對EBV極早期基因啟動子Rp與Zp的影響 21 JYK-MA-37對EBV病毒顆粒產生的影響 22 討論 24 參考文獻 46 附件 57 附件一:三萜類的分類及結構 57 附件二:moronic acid的化學結構修改對照表 69 附件三:報導質體 73 | |
dc.language.iso | zh-TW | |
dc.title | Triterpenoids抑制Epstein-Barr virus進入溶裂循環 | zh_TW |
dc.title | Inhibition of Epstein-Barr virus lytic cycle by triterpenoids | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張芳榮(Fang-Rong Chang),張世宗(Shih-Chung Chang),劉世東(Shi-Tung Liu) | |
dc.subject.keyword | Epstein-Barr virus (EBV),三萜,類,溶裂循環, | zh_TW |
dc.subject.keyword | Epstein-Barr virus (EBV),triterpenoids,lytic cycle, | en |
dc.relation.page | 73 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-02 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
Appears in Collections: | 微生物學科所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-99-1.pdf Restricted Access | 2.57 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.