
國立臺灣大學電機資訊學院電機工程學系

碩士論文

Department of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

利用網路中的強連結單元計算個人化網頁排序

Computing Personalized PageRank Using Strongly Connected

Components in Web

曾榮國

Rung-Guo Tzeng

指導教授：陳銘憲 博士

Advisor: Ming-Syan Chen, Ph.D.

 中華民國 97 年 7 月

July, 2008

Acknowledgements

The finish of this thesis should be attributed to the unconditional help and priceless support of

many people. I will always bear them in mind.

At the very first, I’m honored to express my deepest gratitude to my advisor, Prof. Ming-Syan

Chen, with whose able guidance I could have worked out this thesis. He has offered me valuable

ideas, suggestion, and criticisms with his profound knowledge and rich research experience. I’m

much obliged to his effort of pushing me and helping me complete this thesis.

I also cordially express my gratitude to Dr. Chih-Ming Hsu, whose patient guidance and

invaluable suggestion are indispensable to this thesis.

Last but not the least, I would like to thank my families and friends for their support,

thoughtfulness, and encouragement in all respects from the beginning of my postgraduate study.

Abstract

PageRank is an important ranking technique used in search engines. By using different

personalization vectors, search engine companies can compute specific and adaptive PageRank

vectors for different classes of users. However, computing even one PageRank vector consumes a

lot of time. To address this problem, we propose the SCC (Strongly Connected Component)

PageRank algorithm. The main spirit of SCC PageRank is utilizing the old PageRank vector to

deduce the new one. We decompose the original linear system of PageRank model into linear

subsystems. By using the dependency relation between these linear subsystems, we translate the

original computation into a hierarchical manner. While computing personalized PageRank vectors,

we check the necessity of recomputation. Thus, we can prevent some iterative recomputations and

achieve an improvement of efficiency. As shown by our experimental results, while computing

several personalized PageRank vectors, SCC PageRank performs better than the known accelerating

algorithms in most cases.

Keywords: Algorithm, Search Engine, Linkage Analysis, Linear System, PageRank

摘要摘要摘要摘要

網頁排序是搜尋引擎中一項重要的排序技術。藉由不同的個人化向量，搜尋引擎公司可以為

不同群組的使用者計算出特殊及適合的網頁排序向量。然而，僅計算單一網頁排序向量便需

花費許多時間。為了解決這個問題，我們提出了 SCC (Strongly Connected Component)網頁排

序演算法。SCC 網頁排序演算法的主要精神在於利用舊的網頁排序向量推導出新的網頁排序

向量。我們將網頁排序模組中原先的線性系統拆解為線性子系統。利用這些線性子系統間的

相依關係，我們將原本的計算轉變為階層式架構。在計算個人化網頁排序向量時，我們檢查

重覆計算的必要性。因此，我們可以避免一些迭代的重覆計算並達到效能上的改進。根據我

們的實驗成果顯示，在計算諸多個人化網頁排序向量時，SCC 網頁排序演算法的表現在許多

情況下可優於已知的加速演算法。

關鍵字關鍵字關鍵字關鍵字：：：：演算法演算法演算法演算法、、、、搜尋引擎搜尋引擎搜尋引擎搜尋引擎、、、、鏈結鏈結鏈結鏈結分分分分析析析析、、、、線性系統線性系統線性系統線性系統、、、、網頁排網頁排網頁排網頁排序序序序

Contents

1 Introduction 1

2 Preliminaries 7
2.1 Web Model . 7
2.2 Google’s PageRank Model . 8
2.3 The Personalization Vector vT . 10
2.4 The Personalized PageRank Problem . 11
2.5 Linear System for PageRank Problem . 11
2.6 Two-Way Reordered PageRank Model . 12

3 SCC PageRank Algorithm 18
3.1 Two-Way Reordered PageRank on Personalized PageRank 18
3.2 SCC PageRank . 20
3.3 SCC PageRank on Personalized PageRank . 24
3.4 Time and Space Complexities of SCC PageRank 29

4 Experimental Evaluation 32

5 Related Work 37

6 Conclusions 39

i

List of Figures

2.1 The transition relationship of sets VRD, VN , and VD in the Web graph. 13
2.2 A tiny web contains 12 pages. 15

3.1 SCC Decomposition for N -nodes in the tiny web in Fig. 2.2. 21
3.2 The corresponding SCC graph of SCCs of N -nodes in Fig. 3.1 22
3.3 The propagated computation for the PageRank problem. Assume there are total

r levels of RD-nodes, total n levels of N -nodes, and total d levels of D nodes.
The label, Li, of each kind of nodes represents its level. 23

ii

List of Tables

2.1 List of symbols. 8

4.1 The structures of the datasets . 33
4.2 The execution time (in seconds) of the SCC PageRank, two-way reordered Pager-

ank, and power method . 33
4.3 The execution time of computing personalized PageRank vectors. SCC PageR-

ank uses the worst case. 34
4.4 Number of nodes (NN) at each topological level and its corresponding computing

time (in seconds). 34

iii

Chapter 1

Introduction

The rapid growth of the World Wide Web has brought us a great deal of information. To effi-

ciently retrieve information from this great information warehouse, we need search tools to help

us finding queried pages. However, the size of Web results some issues to search engines. Since

there are billions of pages on the Web, there may be thousands of pages related to the queried

keyword. To fit the users’ requirements closely, most search engine companies develop their own

criterions to rank and list these resulting pages. In 1998, Page et al developed a celebrated ranking

criterion called PageRank [17]. PageRank is query-independent. It globally measures the impor-

tance of each page. The importance of all Web pages are computed and saved off-line. In the

PageRank model, there exists a special element, the personalization vector. The personalization

vector is a probability distribution, which denotes the probability of each page that a surfer may

jump to. Initially, the standard personalization vector is an uniform distribution. Later, Page et

al suggest nonuniformly distributed personalization vectors. Using nonuniformly distributed per-

sonalization vector as the base, the corresponding PageRank vector can be regarded as preferring

some Web pages. Thus, the search engine companies can compute specific and adaptive PageR-

1

ank vectors for different classes of users. The idea of personalized PageRank sounds attractive.

However, the misery is that computing even one PageRank vector consumes a lot of time. How

to efficiently compute different personalized PageRank vectors is called personalized PageRank

problem. To address this problem, much research has been elaborated on this area.

In [10], Jeh and Widom present a scalable personalized PageRank approach. They indicate

that there is linear relationship between personalization vectors and their corresponding person-

alized PageRank vectors. To efficiently compute the personalized PageRank vectors, they pre-

compute several vectors, which Jeh and Widom call basis vectors. The personalized PageRank

vector can be expressed as a linear combination of these basis vectors. Depending on the size

of the Web, the number of basis vectors can be dynamically adjusted. Thus, at query time, an

approximate personalized PageRank vector can be constructed.

Another approach to address the personalized PageRank problem is BlockRank algorithm,

which is proposed by Kamvar et al [11]. The BlockRank includes 4 steps: 1. Compute local

PageRank for each block (in Kamvar et al’s paper, a block is a set of nodes belonging to the same

host). 2. Compute the block transition matrix and Block-Ranks 3. Weight each local PageRank

and use the transition matrix to compute an approximation to the global PageRank. 4. Use the

approximation computed in step 3 as the starting vector and run the standard PageRank iteration.

Initially, BlockRank is used for accelerating the computation of PageRank vector. Later, Kamvar

et al find that this algorithm can be used in computing personalized PageRank vectors. They make

2

a restriction on personalization vector. Instead of assigning probability to each page, Kamvar et

al assign probability to each “host”. Thus, when the surfer jumps, he or she chooses a host

rather than a page. Under this restriction, each local PageRank stays unchanged while computing

different personalized PageRank vectors. Therefore, only the last 3 steps of BlockRank need to

be redone.

Obviously, all these prior works accelerate the computation of personalized PageRank. To ad-

dress the personalized PageRank problem, we propose a different algorithm called SCC (Strongly

Connected Component) PageRank. The SCC PageRank is constructed on top of the known fast

computing PageRank algorithm, the two-way reordered PageRank [9].

In computing PageRank, the intuitive method, the power method, regards all pages as the

same. Thus, the size of the corresponding linear system is the same as the size of Web. To solve

this linear system, power method uses iterative computation to solve it. In two-way reordered

PageRank, Hsu et al respectively reordered the reverse-dangling pages (pages without in-links)

and the dangling pages (pages without out-links) to the front and rear of the hyperlink matrix.

Hsu et al indicated that the computation of these two kinds of pages is straight and needs no

iteration. Thus, we can exclude them from the linear system, and reduce the size of the linear

system. By exploiting both dangling and reverse-dangling pages, two-way reordered PageRank

can efficiently reduce the computational complexity.

We noticed that the computation of reverse-dangling and dangling pages in two-way re-

3

ordered PageRank proceeds like a propagation. That is, we firstly compute the unnormalized

PageRanks of some reverse-dangling pages. Then use their results to compute the unnormalized

PageRanks of some other reverse-dangling pages, and so on. For dangling pages, the computation

is similar. This gives us an idea. Consider that we have computed the unnormalized PageRank

vector using uniformly distributed personalization vector. In computing personalized PageRank,

if the personalization values of pages, which are at the front of this propagation, are the same

as they are in the uniform distribution, we do not need to recompute their unnormalized PageR-

anks. Thus, we can save some time and get an improvement in performance. This idea sounds

feasible. However, the other pages, called normal pages, cause a problem. In two-way reordered

PageRank, the normal pages are located between reverse-dangling pages and dangling pages. To

compute the PageRanks of these normal pages, we need to solve their corresponding linear sys-

tem. As shown by Hsu et al’s experimental results, solving this linear system consumes most of

computing time. Thus, the effect of improvement that we have discussed is diluted. To resolve

this problem, we get deeper into the linear system, and split it into linear subsystems. By the

dependency relation between these linear subsystems, we can solve the linear subsystems one by

one. Thus, the computation for normal pages also proceeds like propagation. Combining all kinds

of pages, the whole computation proceeds in a fully propagated manner. While computing per-

sonalized PageRank, we compare the personalization vector with the uniform distributed one. If

the personalization values of the pages, which are at the front of the propagation, stay unchanged,

4

we do not need to recompute their unnormalized PageRanks. At a long run, we can save time in

recomputing several linear subsystems. Thus, we can get an improvement in performance.

To ensure that our idea is feasible, we conduct an implementation of personalization vector.

We use a concept of rating score. We assign a rating score to each Web page, and the correspond-

ing personalization vector is the normalization of the rating vector. With this implementation, we

indicate that if the rating scores of some pages, which are at the front of the propagation, stay

unchanged, we can quickly compute their new unnormalized PageRanks (i.e. we do not need iter-

ation). Theoretical space and time complexities of the SCC algorithm are analyzed. As shown by

our experimental results, the proposed SCC PageRank takes more time than two-way reordered

PageRank and power method need while computing the standard PageRank vector. The extra

time penalty is mainly caused by the I/O overhead of decomposing the original linear system.

While computing personalized PageRank vectors, we do not need to redo the decomposition.

Thus, the time is spent only on computation. While computing personalized PageRank vectors,

the SCC PageRank is able to outperform the power method. In the worst case (i.e. no recompu-

tation can be prevented), the performance of SCC PageRank is about the same as that of two-way

reordered PageRank. In other cases, the SCC PageRank can potentially perform better than two-

way reordered PageRank.

The remainder of this thesis is organized as follows. Preliminaries are given in Chapter 2. We

develop the SCC PageRank algorithm in Chapter 3. The experimental evaluation and results are

5

discussed in Chapter 4. Chapter 5 compares the SCC PageRank with some prior works. Finally,

we present our conclusions in Chapter 6.

6

Chapter 2

Preliminaries

In this chapter, we present the preliminaries for the Google’s PageRank model, two-way re-

ordered PageRank, and the personalized PageRank problem. Symbols used throughout this thesis

are listed in Table 2.1.

2.1 Web Model

We use a digraph G = (V, E) to denote the Web. The set V of vertices represents pages in Web.

The set E of directed edges represents hyperlinks between pages. Thus, we can use an adjacency

matrix, Hn×n, to represent the Web graph, where n is the size of the Web. If the entry, hi,j , of H

is nonzero, there is a hyperlink from page i to page j. In the PageRank model, each entry, hi,j , of

H is set as follow:

hi,j =

1/out(i), if (i, j) ∈ E

0, otherwise

,

where out(i) is the out-degree of page i. The matrix H is nonnegative, sparse and row normalized

(which means the nonzero rows sum to 1). The positive elements of row i correspond to the out-

links of page i, whereas the positive elements of column i correspond to the in-links of page i.

7

Table 2.1: List of symbols.
Notation Definition

H Row normalized hyperlink matrix of Web
I The identity matrix
0 The zero matrix
e The column vector of all 1s
v The personalization vector of Web pages
π The PageRank vector of Web pages
u The rating vector of Web pages
α The damping factor of PageRank model
τ The convergence tolerance in Jacobi

‖x‖1 The L1 norm of vector x
n(M) The order of the square matrix M ,

i.e. the size of M is n(M)× n(M)
nnz(M) The number of nonzeros in matrix M
out(i) The out-degree of page i
in(i) The in-degree of page i

RD-node A node has no in-links
N -node A node has both in-links and out-links
D-node A node has no out-links and has at least

one in-link

Hence, the matrix H contains a zero row for each node without out-links (i.e., a dangling page),

and contains a zero column for each node without in-links (i.e., a reverse-dangling page) 1.

2.2 Google’s PageRank Model

Here we give a brief introduction to Google’s PageRank model. Deeper description can be found

in [17] or [13]. We can use a simple sentence, “a page is important if it is pointed by other

important pages”, to express the concept of PageRank. The meaning of this sentence is that the

importance of a page i is the sum of the important scores of all pages pointing into page i. Thus,

1In this thesis, the terms “node” and “(Web) page” are used interchangeably.

8

the PageRank value of a page i, denoted πi, is computed by the following equation [17]

πi =
∑

(j,i)∈E

πj

out(j)
. (2.1)

Given an initial PageRank to each page, we can iteratively compute Eq. (2.1). When the iteration

stops, the result is the final PageRank. By collecting all PageRanks of all Web pages into a row

vector, πT , we can translate Eq. (2.1) into the following linear system.

πT = πTH. (2.2)

Note that Eq. (2.2) is like the power method applied to a Markov chain with transition probability

matrix H [13]. Since we hope there is a unique positive PageRank vector for Eq. (2.2), some

adjustments are made to Eq. (2.2). In Markov theory, the power method converges to a unique

vector if the Markov matrix, P , is stochastic, irreducible, and aperiodic. The converged vector

is called stationary vector. The first adjustment creates a matrix S such that S = H + (1/naeT),

where aT = (a1, a2, . . . , an), ai = 1 if page i is a dangling node and 0 otherwise. This adjustment

promises the stochasticity. To be irreducible and aperiodic, the second adjustment creates a matrix

G such that G = αS + (1− α)E, where α is a scalar between 0 and 1, and matrix E = 1/neeT

is the teleportation matrix. In Page et al’s paper, they use a model of random surfer to interpret

these two adjustments. Imagine a Web surfer who surfs the Web by following the hyperlinks in

each page. When he enters a new page, he randomly chooses an out-link to go to the next page.

When the surfer gets into a dangling page, given no out-links to choose, he teleports to a random

page by inputting an URL. Thus, the first adjustment assigns probability to each page the surfer

9

may teleport to when he gets into a dangling page. The second adjustment represents that the

surfer has probability of α to follow this surfing model, and probability of (1-α) to randomly

teleport between pages. The entry, Ei,j , denotes the probability of surfer’s teleportation to page

j when he is at page i. By these two adjustments, the definition of PageRank vector becomes the

solution of the following Markov model ([13], page 37):

πT = πTG, πTe = 1. (2.3)

2.3 The Personalization Vector vT

Initially, Page et al used E = 1/neeT as the teleportation matrix. This teleportation matrix

represents that the surfer teleports to each page with equal probability. Later, Page et al suggested

a modification. Instead of using 1/neeT , they used E = evT as the teleportation matrix. The

vector, vT , is a probability vector called personalization vector. In this vector, each entry, vT
i > 0,

represents the teleportation probability of each page i. Thus, different teleportation matrices

correspond to different personalization vectors. Since each entry of vT is positive, every node

still directly connects to every other node. This means that the matrix G is still irreducible and

aperiodic, and thus the unique stationary vector for the Markov chain still exists. Using vT instead

of 1/neT means that the teleportation probabilities are no longer uniformly distributed. Thus,

search engine companies have different options in computing PageRank vectors. As mentioned

in Chapter 1, each specific personalization vector represents specific interest of surfers in different

Web pages.

10

2.4 The Personalized PageRank Problem

Since the size of Web is large, computing several personalized PageRank vectors consumes lots

time. As mentioned in Chapter 1, how to efficiently compute several personalized PageRank

vectors is called personalized PageRank problem. In this thesis, our goal is utilizing the old

unnormalized PageRank vector to quickly deduce the new unnormalized PageRank vector. We

can formalize our goal as: Given the hyperlink matrix H, the old personalization vector v, the

old corresponding unnormalized PageRank vector π, and the new personalization vector v∗, find

the new corresponding PageRank vector π∗.

2.5 Linear System for PageRank Problem

We can regard Eq. (2.3) as a linear system instead of a Markov chain. The computation of

PageRank in Eq. (2.3) is equivalent to the problem of finding the dominant eigenvector of matrix

G. Thus, Eq. (2.3) can be rewritten as the solution of the following linear system accompanied

with πTe = 1:

πT (I− αS) = (1− α)vT .

Note the coefficient matrix (I − αS) can be a dense matrix if the number of dangling nodes is

large. This is not favorable for computing. To avoid this problem, we use the following theorem

to translate the PageRank problem into a sparse linear system formulation.

11

Theorem 1. ([13], page 73) Let x̂ be the solution of the linear system

xT (I− αH) = vT . (2.4)

Normalize x̂T as x̂T /‖x̂T‖1, where ‖x̂T‖1 is the L1-norm of x̂T . Then the normalized x̂T is the

PageRank vector.

2.6 Two-Way Reordered PageRank Model

Hsu et al noticed the existence of reverse-dangling nodes [9]. They categorize the reverse-

dangling nodes into one class, and the dangling nodes into another class. Thus, the vertices

of G are split into three disjoint classes VRD, VN , and VD such that V = VRD ∪ VN ∪ VD. The

classes VRD, VN , and VD are, respectively, defined as follow:

VRD = {v ∈ V |in(v) = 0},

VN = {v ∈ V |in(v) > 0 and out(v) > 0}, and

VD = {v ∈ V |out(v) = 0 and in(v) > 0},

where in(v) and out(v) respectively denote the in-degree and out-degree of node v. The set VRD

contains all reverse-dangling nodes including isolated nodes, VD contains all dangling nodes,

and VN contains all normal nodes. For convenience, we call reverse-dangling node as RD-node,

dangling node as D-node, and normal node as N -node.

Hsu et al reorder the indices of Web pages such that the RD-nodes and D-nodes, are respec-

tively arranged in the front and rear of the Web pages list. The resulting hyperlink matrix H

12

Figure 2.1: The transition relationship of sets VRD, VN , and VD in the Web graph.

should become:

H =

VRD VN VD

VRD 0 H12 H13

VN 0 H22 H23

VD 0 0 0

. (2.5)

We can depict the transition relationship of sets VRD, VN , and VD as Fig. 2.1. In [9], Hsu et al

prove the following theorem which splits the computation of PageRank vector πT as three parts:

RD-nodes, N -nodes, and D-nodes.

Theorem 2. ([9]) After reordering the pages, the hyperlink matrix H of Web would be as Eq.

(2.5). Partition the personalization vector vT into
(
vT

1 ,vT
2 ,vT

3

)
according to reverse-dangling

vT
1 , normal vT

2 , and dangling vT
3 . Then, the unnormalized PageRank vector can be written as

x̂T =
(
x̂T

1 , x̂T
2 , x̂T

3

)
, (2.6)

13

where

x̂T
1 =vT

1 ,

x̂T
2 =αvT

1 H12 (I− αH22)
−1 + vT

2 (I− αH22)
−1 ,

x̂T
3 =αvT

1

(
H13 + αH12 (I− αH22)

−1 H23

)
+

αvT
2 (I− αH22)

−1 H23+vT
3 . (2.7)

As shown, the unnormalized PageRanks of RD-nodes (i.e. x̂T
1) are completely determined

by their corresponding personalization values. For N -nodes (i.e. x̂T
2), the PageRank problem can

be regarded as the following linear system:

x̂T
2 (I− αH22) = vT

2 + αvT
1 H12. (2.8)

To solve this linear system, we can use iterative method like Jacobi method ([4], page 8) or

Gauss-Seidel method ([4], page 9) to solve it. With forward substitution, the PageRank problem

for D-nodes (i.e. x̂T
3) can be written as the formulation:

x̂T
3 = α(x̂T

1 H13 + x̂T
2 H23) + vT

3 . (2.9)

Thus, with forward substitution, the computation for D-nodes is straight (i.e. no iteration is

needed). Since the unnormalized PageRanks of RD-nodes are exactly their corresponding per-

sonalization values, the time of computing unnormalized PageRanks of RD-nodes is zero. With

forward substitution, the computing cost for D-nodes is proportional to the number of in-links of

14

Figure 2.2: A tiny web contains 12 pages.

all D-nodes. If we use Jacobi’s method to solve Eq. (2.8), we need O
(

log(τ)
log(α)

nnz(H22)
)

opera-

tions to reach a convergence tolerance of τ , where nnz(H22) denotes the number of nonzeros in

matrix H22 [14]. Comparing to Page et al’s original PageRank model, Hsu et al efficiently reduce

the size of the linear system.

Since such reordering efficiently reduces the size of the linear system, we can repeat the

reordering to find some more “sub-reverse-dangling” and “sub-dangling” nodes. Consider the

hyperlink matrix in Eq. (2.5). If we remove the RD-nodes, D-nodes, and their link arcs, we can

recursively find some more zero-columns or zero-rows in the remaining sub-matrix. This means

that we can get some more RD-nodes and D-nodes. Thus, recursively doing this reordering,

the number of N -nodes becomes even smaller and the size of the linear system becomes even

smaller. To be explicit, we define the following terms.

Definition 1. Assume that we do the reordering r times for retrieving RD-nodes, and d times for

retrieving D-nodes. The RD-node found in ith round reordering is defined as i-level RD-node,

and the D-node found in (d− i + 1)th round reordering is defined as i-level D-node.

Using the tiny web in Fig. 2.2 as an example, node 1 is 1-level RD-node, nodes 2 and 3 are 2-

level RD-nodes, node 11 is 1-level D-node, and node 12 is 2-level D-node. After the recursively

15

H =

0 H12 H13 · H1(r+d+1)

0 0 H23 · H2(r+d+1)
...
...
... 0

.
... H(r+1)(r+1)

.
... 0

.
...
...
0 0 H(r+d)(r+d+1)

0 0 · 0 0

(2.10)

reordering, the final matrix should be permuted as Eq. (2.10), where r is the number of blocks

of RD-nodes, and d is the number of blocks of D-nodes. In Eq. (2.10), H(r+1)(r+1) denotes the

hyperlink matrix for N -nodes. Hsu et al respectively permute the i-level RD-nodes in front of

(i + 1)-level RD-nodes, and the i-level D-nodes in front of (i + 1)-level D-nodes. Thus, we

can continuously reduce the size of the linear system, and the computational complexity can be

further reduced [9]. The complete two-way reordered PageRank algorithm is listed in Algorithm

1. In implementation, we can restrict the number of total blocks of RD-nodes and D-nodes to

accelerate the reordering. Under this situation, though there may be some more sub-reverse-

dangling and sub-dangling nodes, we regard them as N -nodes.

16

Algorithm 1 Two-Way Reordered PageRank
Input: H, α, v
Output: π (PageRank vector)

1: Reordering
Use two-way reordering method to permute the indices of Web pages. Recursively do this
reordering r times for retrieving RD-nodes, and d times for retrieving D-nodes. Thus, for
i = 1 to r, Hii represents the hyperlink matrix of i-level RD-nodes, for i = (r + 1), Hii

represents the hyperlink matrix of N -nodes, and for i = (r+2) to (r+d+1), Hii represents
the hyperlink matrix of (i− r − 1)-level D-nodes.

2: To solve the linear system
2.1 x1 = v1.
2.2 For i = 2 to r, compute xT

i = α
∑i−1

j=1 xT
j Hji + vT

i .
2.3 For i = (r +1), solve for xT

i in xT
i (I−αHii) = x∗Ti +vT

i , where x∗Ti = α
∑i−1

j=1 xT
j Hji.

2.4 For i = (r + 2) to (r + d + 1), compute xT
i = α

∑i−1
j=1 xT

j Hji + vT
i .

3: Normalization
πT =

(
xT

1 ,xT
2 , · · · ,xT

r+d+1

)
/‖ (

xT
1 ,xT

2 , · · · ,xT
r+d+1

) ‖1.

17

Chapter 3

SCC PageRank Algorithm

In this section, we discuss the details of SCC PageRank algorithm and how it addresses the per-

sonalized PageRank probelm. The SCC PageRank is developed on top of the two-way reordered

PageRank. We combine the largest strongly connected component structure in Web graph with

the two-way reordered PageRank. The space and time complexities of SCC PageRank are ana-

lyzed in Chapter 3.4.

3.1 Two-Way Reordered PageRank on Personalized PageR-
ank

In two-way reordered PageRank, there is a special phenomenon. The unnormalized PageRanks of

1-level RD-nodes are completely determined by their corresponding personalization values (see

step 2.1 in Algorithm 1). For 2-level RD-node, its unnormalized PageRank is its correspond-

ing personalization value plus the sum of the unnormalized PageRanks of all 1-level RD-nodes

pointing into this node (see step 2.2 in Algorithm 1 and recall Eq. (2.1)). For 3-level RD-node,

its unnormalized PageRank is similar except that the nodes, pointing into this node, also include

18

2-level RD-nodes. Inductively, all unnormalized PageRanks of RD-nodes depend on their an-

cestors. Totally, the computing cost for all RD-nodes is propotional to the number of all their

in-links (i.e. the computing cost is O(in(RD-nodes)), where in(RD-nodes) is the number of to-

tal in-links of all RD-nodes). For D-nodes, the situation is similar. 1-level D-nodes accumulate

the unnormalized in-PageRanks from RD-nodes and N -nodes, and then give their unnormal-

ized PageRanks to all their out-neighbors, and so on. Totally, the computing cost for RD-nodes

and D-nodes is O(in(RD-nodes+D-nodes)). If we exclude the N -nodes, the computation for

RD-nodes and D-nodes can be regarded as a propagation. In this propagation, we compute the

unnormalized PageRanks level by level. While computing new personalized PageRank vector π∗,

if the personalization values of nodes, which are at preceding levels of the propagation, stay un-

changed, we can directly get their unnormalized PageRanks from π, and thus get an improvement

in performance.

This idea sounds feasible. However, there is a problem caused by N -nodes. All N -nodes

form a single block in two-way reordered PageRank. We use the iterative method like Jacobi

to solve the corresponding linear system. When using Jacobi to solve the linear system of N -

nodes, O
(

log(τ)
log(α)

nnz(H(r+1)(r+1))
)

operations are needed [14]. The parameter τ is convergence

tolerance which is used to detect whether the computation of stationary vector completes. In [8],

the parameter τ is set to 10−10 and the parameter α is set to 0.9. Thus the computation needs to

scan the hyperlink matrix of N -nodes, H(r+1)(r+1), about 218 times. Comparing this time with

19

the time of computing RD-nodes and D-nodes, the computation for N -nodes consumes much

more time. The improvement in computing RD-nodes and D-nodes is diluted. Thus, we have to

improve the computation for N -nodes.

3.2 SCC PageRank

To improve the computation for N -nodes, we use Example 1 to analyze the block of N -nodes.

Example 1. Consider the tiny web in Fig. 2.2. Nodes 4 - 10 are N -nodes. The linear system for

these nodes is listed below:

1. x4 − 1/3αx5 = v4 + αx2,

2. x5 − αx4 = v5,

3. x6 − 1/2αx7 = v6 + αx3,

4. x7 − αx6 = v7,

5. x8 − αx9 = v8 + 1/3αx5,

6. x9 − 1/2αx8 − 1/2αx10 = v9 + 1/3αx5 + 1/2αx7,

7. x10 − 1/2αx8 = v10,

where xi represents the unnormalized PageRank of node i. From this linear system, one can see

that if we solve equations 1 and 2 simultaneously, we only need the solution of x2. Similarly,

solving x6 and x7 (equations 3 and 4) only need the solution of x3. After solving these four

20

Figure 3.1: SCC Decomposition for N -nodes in the tiny web in Fig. 2.2.

equations, we can solve equations 5, 6, and 7. This computation is similar to the propagated

computation for RD-nodes and D-nodes. In Fig. 2.2, if the personalization values of nodes 1,

2, 4, and 5 always stay unchanged, we do not need to recompute their unnormalized PageRanks

while computing new personalized PageRank vector π∗. ¤

From Example 1, one can see that if node i is the ancestor of node j, we have to solve node i

before solving node j. If a pair of nodes are both ancestors of each other, we have to solve their

corresponding equations simultaneously. In graph theory, if a pair of nodes are both ancestors of

each other, they belong to the same strongly connected component (SCC). So we decompose the

N -nodes subgraph into largest SCCs and each SCC represents a computational unit. Using Fig.

2.2 as an example, its SCC decomposition for N -nodes is depicted in Fig. 3.1.

After finding the computational units, we have to decide the computing order for each com-

putational unit. To do this, we firstly construct the corresponding SCC graph ([16], page 226)

of SCCs of N -nodes. The nodes of the SCC graph correspond to the SCCs. There is a directed

edge from SCCi to SCCj if any node in SCCi have links to any node in SCCj . Using Fig. 3.1 as

an example, its SCC graph is depicted in Fig. 3.2. In ([16], page 226), it indicates that the SCC

graph is acyclic. Thus, to decide the order of computation, we can regard the SCC graph as an

21

Figure 3.2: The corresponding SCC graph of SCCs of N -nodes in Fig. 3.1

Activity On Vertex Network (AOV-Network) and use topological sorting to sort the SCC graph.

The resulting sequence is the computing order sequence.

The topological sorting outputs several SCCs at each round. So we can use levels to index

the SCCs. An SCC outputted at the first round is called 1-level SCC, an SCC outputted at the

second round is called 2-level SCC, and so on. Using SCC graph in Fig. 3.2 as an instance,

nodes 1 and 2 are 1-level SCCs, and node 3 is 2-level SCC. Now we combine the SCC structures

with two-way reordered PageRank. Assuming there are total n levels of N -nodes, the hyperlink

matrix for N -nodes in Eq. (2.10) can be expanded to:

H(r+1)(r+1) =

A11 · · · · · · A1n

0
.

...

0 · · · 0 Ann

. (3.1)

Thus, the whole propagated computation is constructed. We can depict the propagated computa-

tion as Fig. 3.3. Using this propagated computation, the unnormalized PageRanks are computed

level by level. We call the whole processes as SCC PageRank and list it in Algorithm 2.

22

Figure 3.3: The propagated computation for the PageRank problem. Assume there are total r
levels of RD-nodes, total n levels of N -nodes, and total d levels of D nodes. The label, Li, of
each kind of nodes represents its level.

Algorithm 2 SCC PageRank
Input: H, α, v
Output: π (PageRank vector)

1: Reordering.
Use two-way reordering method to permute the indices of Web pages. Recursively doing this
reordering r times for retriving RD-nodes, and d times for retriving D-nodes.

2: SCC Decomposition.
Do SCC decomposition for N -nodes.

3: SCC graph Construction
Construct the SCC graph for N -nodes subgraph.

4: Topological Sorting.
Topologically sort the SCC graph. Assume the topological sorting runs n rounds.

5: To solve the linear system.
5.1 x1 = v1.
5.2 For i = 2 to r, compute xT

i = α
∑i−1

j=1 xT
j Hji + vT

i .
5.3 For i = (r + 1) to (r + n)

For k = 1 to w, where w is the number of SCCs at this level
solve for yT

k in yT
k (I− αHikik) = y∗Tk + vT

ik
, where y∗Tk = α

∑i−1
j=1 xT

j Hjik .
xT

i = (yT
1 ,yT

2 , · · · ,yT
w).

5.4 For i = (r + n + 1) to (r + n + d), compute xT
i = α

∑i−1
j=1 xT

j Hji + vT
i .

6: Normalization.
πT =

(
xT

1 ,xT
2 , · · · ,xT

r+n+d

)
/‖ (

xT
1 ,xT

2 , · · · ,xT
r+n+d

) ‖1.

23

3.3 SCC PageRank on Personalized PageRank

The main spirit of SCC PageRank is exploiting propagated computation. In computing the new

personalized PageRank vector, π∗, if the personalization values of nodes, which are at the preced-

ing levels of the propagation, stay unchanged, we do not need to recompute their unnormalized

PageRanks. Thus, we can get an improvement in performance. Since the individual personaliza-

tion value may be mutable (recall that the personalization value is a kind of probability), we use

a specific implementation of personalization vector. We assign each page a rating score, which

denotes a surfer’s interest in this page. Each rating score is a positive number. We set a vector

u to hold all the rating scores of all Web pages. With this rating vector, u, the personalization

vector, v, can be computed as follow:

v = u/‖u‖1. (3.2)

Thus, the personalization vector is still positive. In a uniformly distributed personalization vector,

each page has equal rating score and thus has equal personalization value (i.e. 1/n). With this im-

plementation, we discuss how SCC PageRank works on computing new personalized PageRank

vector, π∗.

Given the old rating vector is u, the new rating vector is u∗ and the constant c = ‖u‖1
‖u∗‖1 , the

following theorem indicates the new unnormalized PageRanks of all kinds of nodes.

Theorem 3. The new unnormalized PageRanks are:

24

1. For each RD-node, who has unchanged rating score, if it has no ancestors, then its new

unnormalized PageRank is c times its old one. If it has ancestors, and all its ancestors have

unchanged rating scores, then its new unnormalized PageRank is c times its old one.

2. For each SCC, K, in N -nodes, if K has no ancestors, and u∗K = uK, then the new unnor-

malized PageRanks of K are c times their old ones. If K have ancestors, and u∗K = uK,

then the new unnormalized PageRanks of K are c times their old ones as long as all ances-

tors of K have unchanged rating scores.

3. For each D-node, if all its ancestors have unchanged rating scores, then its new unnormal-

ized PageRank is c times its old one.

4. In other situation, we have to compute the new unnormalized PageRanks for the nodes.

To prove Theorem 3, we firstly prove the follwing lemmas.

Lemma 1. Given that the solution of the linear system Ax = b is x̂, then the solution of the

linear system Ax = cb is cx̂, where c is a constant.

Proof. The known condition, x̂ is the solution of Ax = b, implies Ax̂ = b. By multiplying c to

both sides of this equation, we can get cAx̂ = cb ⇒ A(cx̂) = cb. Thus, cx̂ is the solution of

the linear system Ax = cb.

Lemma 2. The new personalization value of node i, v∗i , is ‖u‖1
‖u∗‖1 times its old one as long as

ui = u∗i .

25

Proof. By Eq. (3.2), the old and new personalization values of a node are vi = ui

‖u‖1 and v∗i =

u∗i
‖u∗‖1 respectively. This implies vi‖u‖1 = ui and v∗i ‖u∗‖1 = u∗i . Since ui = u∗i , vi‖u‖1 =

v∗i ‖u∗‖1. Thus, v∗i = vi
‖u‖1
‖u∗‖1 .

Now we prove the Theorem 3.

Proof. The sufficient conditions are:

1. The new rating score of the node is the same as its old one.

2. All ancestors of the node have unchanged rating scores.

We split the proof into three parts: RD-nodes, N -nodes, and D-nodes.

1. RD-nodes:

If a node i is RD-node and has no ancestors, then it must be 1-level RD-node. We have

indicated that the unnormalized PageRank of 1-level RD-node is its corresponding per-

sonalization value. Thus, the new and old unnormalized PageRanks of node i are v∗i and

vi respectively. By sufficient condition 1 and lemma 2, we can get v∗i = cvi. Thus, the

new unnormalized PageRank of node i is c times its old one. For 2-level RD-nodes, by

step 5.2 in Algorithm 2, we know that the old unnormalized PageRanks of these nodes are

xT
2 = αxT

1 H12 + vT
2 , and their new unnormalized PageRanks are x∗T2 = αx∗T1 H12 + v∗T2 .

The ancestors of 2-level RD-nodes must be 1-level RD-nodes. We have proved that

x∗1 = cx1. By sufficient condition 1 and lemma 2, we can get v∗2 = cv2. Combining

26

these 2 results, the right hand side of the equation is c times its old one. Thus, the new

unnormalized PageRanks of 2-level RD-nodes are c times their old ones. For other RD-

nodes, the proof is similar.

2. N -nodes:

For N -nodes, we have to consider for each SCC. By step 5.3 in Algorithm 2, the unnor-

malized PageRanks of an SCC is the solution yT
k in the linear system yT

k (I − αHikik) =

y∗Tk + vT
ik

, where y∗Tk = α
∑i−1

j=1 xT
j Hjik . One can see that the right hand side of the linear

system is the unnormalized PageRanks of the ancestors plus the corresponding personaliza-

tion values. By sufficient condition 1 and lemma 2, we can get v∗Tik
= cvT

ik
. Thus, if 1-level

N -nodes have no ancestors, by lemma 1, we can prove the theorem. If 1-level N -nodes

have ancestors, the ancestors must be RD-nodes. By sufficient condition 2 and proof for

RD-nodes, we can get the new unnormalized PageRanks of the ancestors are c times their

old ones. Thus, the right hand side of the linear system is c times its old one. By lemma

1, we can prove the theorem. For 2-level N -nodes, their ancestors must be RD-nodes or

1-level N -nodes. By the preceding proof and lemma 1, we can get the result that the right

hand side of the linear system is c times its old one. Thus, we can prove the theorem for

2-level N -nodes. For other N -nodes, the proof is similar.

3. D-nodes:

The ancestors of 1-level D-nodes must be RD-nodes or N -nodes. By sufficient condition

27

2 and preceding proofs, we can get that the new unnormalized PageRanks of the ancestors

are c times their old ones. By sufficient condition 1 and lemma 2, the new personalization

values of these D-nodes are c times their old ones. Combining these results, the right hand

side of the equation, which is in step 5.4 in Algorithm 2, is c times its old one. Thus, we

can prove the theorem for 1-level D-nodes. For other D-nodes, the proof is similar.

We can interpret Theorem 3 as: If all ancestors of a set of nodes have unchanged rating scores, and

the rating scores of nodes in this set are also unchanged, then the new unnormalized PageRanks

of these node are ‖u‖1
‖u∗‖1 times their old unnormalized PageRanks. For N -nodes, if the sufficient

condition is true, we do not need to iteratively compute their new unnormalized PageRanks.

Instead, we can get their new unnormalized PageRanks by multiplying ‖u‖1
‖u∗‖1 to their old ones. In

other words, if the rating score of a node changes, we have to recompute for all its descendents.

For a specific class of users, they have the same interest in most of Web pages. We can define

a standard rating score to represent that the user have no specific interest in this page. Thus,

the rating scores of most Web pages stay unchanged while computing personalized PageRank

vectors. By this way, we expect that the improvement is feasible.

To exploit Theorem 3, we have to check the necessary recomputations. The checking al-

gorithm is listed in Algorithm 3. The whole algorithm for computing personalized PageRank

vectors includes running the checking algorithm, computing the unnormalized PageRanks for

28

necessary parts, and normalizing the unnormalized PageRank vector.

Algorithm 3 Detecting Necessary Recomputation
Input: H, r, r∗

Output: Necessary Recomputation (The marked parts)
1: Assume there are total r levels of RD-nodes, total n levels of N -nodes, and total d levels of

D-nodes.
2: For i = 1, (1-level RD-nodes)

If(r∗i 6= ri)
mark the node, whose rating score changes, and all its out-neighbors.

3: For i = 2 to r, (other RD-nodes)
If(any node at this level has been marked)

mark all out-neighbors of the node, who is marked.
If(r∗i 6= ri)

mark the node, whose rating score changes, and all its out-neighbors.
4: For i = (r + 1) to (r + n), (N -nodes)

If(any SCC at this level has been marked)
mark all out-neighbors of this SCC.

If(r∗i 6= ri)
mark the SCC, whose nodes have changed rating score, and mark all out-neighbors of

this SCC.
5: For i = (r + n + 1) to (r + n + k), (D-nodes)

If(any node at this level has been marked)
mark all out-neighbors of the node, who is marked.

If(r∗i 6= ri)
mark the node, whose rating score changes, and all its out-neighbors.

3.4 Time and Space Complexities of SCC PageRank

In this section, we formally derive the time complexity and additional storage of SCC PageRank.

Running SCC PageRank for computing single PageRank vector needs the following steps:

1. Reordering: Let B be the predetermined maximum number of square diagonal blocks in

the reordered hyperlink matrices. The time of reordering is O(B× n(H)) [8].

2. SCC Decomposition: The SCC decomposition takes O(|V |+ |E|) time ([16], page 230).

That is, O(n(H∗) + nnz(H∗)), where H∗ is H
(N-nodes)×(N-nodes)

).

29

3. Construction of SCC graph: The construction of SCC graph needs to check the edges

between all pairs of SCCs. Since these edges are exactly the links of N -nodes, the time

complexity is O(nnz(H
(N-nodes)×(N-nodes)

)).

4. Topological Sorting: The topological sorting takes O(|V | + |E|) time ([16], page 203).

That is, O(n(SCC graph) + nnz(SCC graph)).

5. Computing Unnormalized PageRank: Computing unnormalized PageRank includes 3

parts: RD-nodes, N -nodes, and D-nodes. We have indicated that the computations for RD-

nodes and D-nodes takes O(in(RD-nodes + D-nodes)) time. The time of computation for

N -nodes is the sum of time of computing each SCC. For each SCC, the Jacobi’s iteration re-

quires O(log(τ)
log(α)

nnz(SCC)) operations [14]. Thus, the total time is: O(log(τ)
log(α)

∑
all SCC nnz(SCC))

≤ O(log(τ)
log(α)

nnz(H
(N-nodes)×(N-nodes)

)).

6. Normalization: The time of normalization is O(n(H)).

In general, n(SCCG) ≤ n(N -nodes), nnz(SCCG) ≤ nnz(H
(N-nodes)×(N-nodes)

). Thus, the

time complexity of SCC PageRank can be formulated by the following theorem.

Theorem 4. Let B be the predetermined maximum number of square diagonal blocks in the

reordered hyperlink matrix. If we use the Jacobi’s method to solve the small linear subsystem of

each SCC, the time complexity of SCC PageRank is O(B×n(H)+(log(τ)
log(α)

+ c)nnz(H∗)), where

c is a constant, τ is the convergence tolerance of Jacobi’s method, α is the damping factor, and

30

H∗ is H
(N-nodes)×(N-nodes)

.

When using SCC PageRank to compute different personalized PageRank vectors, we need

detecting the change in rating vector, computing the unnormalized PageRank for necessary parts,

and normalizing the unnormalized PageRank vector. The time for detecting change is O(n(H)+

nnz(H)). Thus, when using SCC PageRank to compute the different personalized PageRank

vectors, the time is O(n(H) + nnz(H)) plus the time of computing unnormalized PageRank

vector and normalization.

The additional storage for SCC PageRank includes following items.

1. SCC Index Sequence: This sequence is used to store the index of SCC for each node.

Since each N -node belongs to only one SCC, the total storage of this sequence is O(n(N -nodes)).

2. SCC graph: The SCC graph is a graph. Using sparse matrix [18] to store this graph, the

storage is O(nnz(SCCG)).

3. Computing Order Sequence: This sequence is used to indicate the computing order of

all SCCs. Thus, the storage is O(n(SCCG)).

When using SCC PageRank on computing different personalized PageRank vectors, we need

to store the rating vector, and it requires O(n(H)) storage.

31

Chapter 4

Experimental Evaluation

To evaluate the performance of SCC PageRank, we do some experiments. We implement this

algorithm in MATLAB. The experiments are conducted on a 2.11 GHz AMD Athlon 64 X2 Dual

Core Processor with 2.0 GB RAM. Same as the experiments in [8] and [14], we set α = 0.9 as

the damping factor, τ = 10−10 as the convergence tolerance, and initial personalization vector is

uniformly distributed (i.e. vT = [1/n, 1/n, . . . , 1/n]). The maximum number of square diagonal

blocks in the reordered matrices is limited to 12 (i.e. N -nodes has 1 block, RD-nodes and D-

nodes have total 11 blocks). Also, we use Jacobi’s method to solve the linear subsystems. We

use four datasets as the input tiny webs. Dataset Hollins is generated by Webbot crawler, which

contains 6013 nodes and 23875 links 1. The California dataset contains 9664 nodes and 16150

links matching to the query topic of “California” 2. Dataset WWW was used in [2] to predict an

average distance of the Web based on their crawl of nd.edu site 3. WWW is a distinctive subset

of the Web, which contains 325729 nodes and 1497134 links. In WWW dataset, all nodes have
1Hollins was from http://www.limfinity.com/ir/
2California was from http://www.cs.cornell.edu/Courses/cs685/2002fa/
3WWW was from http://www.nd.edu/networks/resources.htm

32

at least one in-link. Thus there is no RD-node in this dataset. Stanford-Berkeley dataset was

generated from a crawl of the stanford.edu and berkeley.edu domains created in December 2002

by the Stanford WebBase project 4.

Table 4.1: The structures of the datasets
Content Hollins California WWW Stanford-Berkeley
n(H) 6013 9664 325729 683446
nnz(H) 23875 16150 1497134 7583376
n(RD-nodes) 100 8003 0 88057
n(N -nodes) 2474 346 124887 588895
n(D-nodes) 3439 1345 200842 6494
n(SCCG) 91 89 2315 9104
nnz(SCCG) 95 84 3714 12189

Table 4.2: The execution time (in seconds) of the SCC PageRank, two-way reordered Pagerank,
and power method

Algorithm Step Hollins California WWW Stanford-
Berkeley

SCC PageRank Reordering 0.056471 0.059164 5.366798 12.164499
SCC Decomposition 0.050321 0.003822 6.084947 32.577811
SCCG Construction 0.004674 0.001449 2.056503 20.349997
Topological Sort 0.004936 0.002076 0.018363 0.360674
Computing PageRank 0.167345 0.047721 5.227131 56.740593
Normalization 0.001075 0.000902 0.028297 0.097801
Total 0.284821 0.117135 18.782039 122.291375

Two-Way Reordered Reordering 0.056471 0.059164 5.366798 12.164499
PageRank Computing PageRank 0.153114 0.036794 6.825858 60.180660

Normalization 0.000502 0.000811 0.028091 0.098775
Total 0.210087 0.095358 12.220747 72.443934

Power Method Computing PageRank 0.235140 0.314254 15.252731 75.124361
Normalization 0.000412 0.000628 0.027019 0.096550
Total 0.235552 0.314882 15.279750 75.220911

The structures of these datasets are listed in Table 4.1, where SCCG is the abbreviation of

SCC graph. The structures show that n(SCCG) + nnz(SCCG)¿ nnz(H). Thus, the storage

for SCC graph is small. For performance evaluation, we input the four datasets into the SCC

4Stanford-Berkeley was from http://www.kamvar.org/personalization

33

Table 4.3: The execution time of computing personalized PageRank vectors. SCC PageRank
uses the worst case.

Algorithm Step Hollins California WWW Stanford-
Berkeley

SCC PageRank Detecting Rating Vector 0.010134 0.018148 0.755640 3.734774
Computing PageRank 0.167345 0.047721 5.227131 56.740593
Normalization 0.001075 0.000902 0.028297 0.097801
Total 0.178554 0.066771 6.011068 60.573168

Two-way Reordered Computing PageRank 0.153114 0.036794 6.825858 60.180660
Normalization 0.000502 0.000811 0.028091 0.098775
Total 0.153616 0.037605 6.853949 60.279435

Power Method Computing PageRank 0.235140 0.314254 15.252731 75.124361
Normalization 0.000412 0.000628 0.027019 0.096550
Total 0.235552 0.314882 15.279750 75.220911

Table 4.4: Number of nodes (NN) at each topological level and its corresponding computing time
(in seconds).

Topological Level Hollins California WWW Stanford-Berkeley
NN Time NN Time NN Time NN Time

1 86 0.0047 171 0.0238 53968 1.8151 76821 4.8420
2 6 0.0000 28 0.0005 27799 0.8432 37098 1.8888
3 1431 0.0593 8 0.0008 31919 1.9535 12723 0.7097
4 175 0.0356 17 0.0003 7581 0.2787 2826 0.1384
5 67 0.0104 29 0.0023 1181 0.0517 453 0.0236
6 701 0.0526 22 0.0013 2379 0.0656 2467 0.3477
7 8 0.0012 31 0.0106 38 0.0084 3348 0.1642
8 8 0.0010 11 0.0022 35 0.0049
9 2 0.0007 3 0.0004 40 0.0014

10 1 0.0003 45 0.0012
11 - 50 7 0.0014 452970 47.3053
51 - 95 69 0.0000

PageRank, two-way reordered PageRank, and power method. The power method is the simplest

and most intuitive algorithm for computing PageRank. It has no extra processes and only itera-

tively compute the PageRank until the stationary PageRank is achieved. The experimental results

are listed in Table 4.2. From Table 4.2, the experimental result shows that the computation of

PageRank in SCC PageRank is fastest if the number of nodes in Web is large. In [3], Arasu et

al used the SCC decomposition for accelerating the computation of PageRank. Our experimental

34

result conforms their expectation. However, if the number of nodes in Web is small, the computa-

tion of PageRank in SCC PageRank is slower. This is because we have to do some I/O operations

for retrieving the small linear subsystems. Thus, the I/O overhead lowers the performance. The

experimental result also shows that the total running time of SCC PageRank is longer than that

of the other two methods. The extra time is mainly consumed in SCC decomposition and con-

struction of SCC graph. Since we do a DFS search in the SCC decomposition and a topological

sorting, the I/O overhead results in the extra time penalty.

In computing different personalized PageRank vectors, we do not need to reconstruct the hi-

erarchical structure of Web. We only need to detect the change in rating vector and recompute

the necessary recomputation. The acceleration in computing different personalized PageRank

vectors is hard to measure. Thus, we do an experiment to discuss the worst case. The worst case

of SCC PageRank is that all Web pages need to be recomputed. Thus, in the worst case, SCC

PageRank needs to check the change in rating vector and recompute PageRank for all nodes. The

experimental result is listed in Table. 4.3. For WWW and Stanford-Berkeley datasets, the perfor-

mance of worst case of SCC PageRank is about the same as that of two-way reordered PageRank,

and is betterr than that of power method. If there is any saving of redundant recomputation, the

SCC PageRank would perform better than two-way reordered PageRank. For Hollins and Cal-

ifornia datasets, the performance of SCC PageRank is worse than that of two-way reordered

PageRank. This is resulted by the I/O overhead.

35

To discuss the possible improvement, we analyze the structures of N -nodes in four datasets.

Since the topological order directly affects the performance of SCC PageRank, we compute the

number of nodes at each topological level and their corresponding computing time. The results

are listed in Table 4.4. Recall that indicated in Theorem. 3, if the rating score of a node changes,

we have to recompute all its descendents. Thus, when checking the necessity of recomputation for

N -nodes, we need to take the change of RD-nodes into account. For WWW dataset, the situation

is special because it has no RD-nodes. The number of nodes, at first topological level in WWW,

is 53968. In our statistic, these 53968 nodes belong to two different SCCs. If all these 53968

pages have unchanged rating scores, we can save about 1.8151 seconds at each recomputation. If

surfers have different interest in any of these two SCCs, we have to recompute all its descendents.

For Stanford-Berkeley dataset, the number of all RD-nodes plus the number of 1-level N -nodes

is 164878. It is about 25% of the total number of pages in this dataset. If surfers only have

different interest in other 75% pages, we can prevent much recomputation. How much redundant

recomputation can be prevented depends on the hierarchical structure of Web, content of pages,

and surfers’ interest.

36

Chapter 5

Related Work

In this section, we review some important works related to this thesis. In [6], Broder et al propose

the SCC structure in Web. In their research, the Web forms a structure which Broder et al call

“bow-tie.” The bow-tie structure is similar to the hierarchical structure in this thesis.

As mentioned in Chapter 1, there are much research elaborated on the personalized PageR-

ank problem. We have mentioned two promising methods, the scalable personalized PageRank

method and BlockRank. Since the spirit of both BlockRank and SCC PageRank is preventing

some redundant recomputations, we indicate the differences between them as follow.

1. SCC PageRank can be looked as a top-down decomposition method. BlockRank can be

looked as a button-up construction method.

2. In implementation, SCC PageRank needs a DFS search, and thus it takes more I/O opera-

tions than BlockRank needs.

3. The personalization vector used in BlockRank represents probabilities that surfer teleports

between hosts. The personalization vector used in SCC PageRank represents probabilities

37

that surfer teleports between pages.

4. In computing personalized PageRank vectors, no matter what the difference between new

personalization vector and old personalization vector is, BlockRank needs to run the stan-

dard PageRank algorithm once. However, SCC PageRank computes only some parts of the

whole linear system under some circumstances.

38

Chapter 6

Conclusions

SCC PageRank algorithm decomposes the Web into hierarchical structure and uses this struc-

ture to compute the personalized PageRank vector. For computation of different personalized

PageRank vectors, SCC PageRank avoids redundant recomputation and thus gets a performance

improvement. By using the implementation of personalization vector we conducted, the im-

provement of SCC PageRank on personalized PageRank problem is feasible. The future work of

the SCC PageRank includes: SCC link structure between crawled pages and uncrawled pages,

choosing best base personalization vector such that we can get the least recomputation, utilization

on spamming and other topics of personalized PageRank.

39

Bibliography

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms.

Addison Wesley, 1983.

[2] Albert, H. Jeong, and A.-L. Barabasi. Diameter of the world wide web. Nature, 401:130–

131, 1999.

[3] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. Pagerank computation and the structure of

the web: Experiments and algorithms. In Proceedings of the 11th International World Wide

Web Conference, Poster Track, 2002.

[4] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

[5] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Pagerank as a function of the damping

factor. In Proceedings of the 14th international conference on World Wide Web, pages 557–

566, New York, NY, USA, 2005. ACM Press.

40

[6] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan,

Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in the web. Comput.

Netw., 33(1-6):309–320, 2000.

[7] Junghoo Cho and Hector Garcia-Molina. The evolution of the web and implications for an

incremental crawler. In Proceedings of 26th International Conference on Very Large Data

Bases, September 10-14, 2000, Cairo, Egypt, pages 200–209, 2000.

[8] C. M. Hsu. On the Processing and Measurement of High Dimensional Data. PhD thesis.

[9] C. M. Hsu and M. S. Chen. Efficient web matrix processing based on dual reordering. In

Proceedings of ACM 17th Conference on Information and Knowledge Management, 2008.

[10] G. Jeh and J. Widom. Scaling personalized web search. Technical report, Stanford Univer-

sity, 2002.

[11] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and Gene H. Golub.

Exploiting the block structure of the web for computing pagerank. Technical Report 2003-

17, Stanford University, 2003.

[12] A. N. Langville and C. D. Meyer. Deeper inside pagerank. Internet Mathematics, 1(3):335–

400, 2004.

[13] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond: The Science of Search

Engine Rankings. Princeton University Press, 2006.

41

[14] A. N. Langville and C. D. Meyer. A reordering for the pagerank problem. SIAM J. Scientific

and Statistical Computing, 27(6):2112–2120, 2006.

[15] C. P. Lee, G. H. Golub, and S. A. Zenios. A fast two-stage algorithm for computing pager-

ank. Technical Report SCCM-2003-15, Stanford University, 2003.

[16] Udi Manber. Introduction to Algorithms: A Creative Approach. Addison Wesleyd, 2003.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing

order to the web. Technical Report 2003-17, Stanford University, 1998.

[18] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied

Mathematics, 2003.

[19] E. Seneta. Non-negative Matrices and Markov Chains (Revised Printing). Springer, 2006.

42

	Cover.pdf
	Acknowledge.pdf
	EngAbstract.pdf
	TCAbstract.pdf
	Main.pdf

