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中文摘要 

迴歸分析是最常被使用的統計方法，然而，在迴歸分析中常會遇到的問題就

是共線性，共線性是來自於獨立變變數之間的高度相關所引起的，也就是說，在

資料向量中，存在有微小角度的問題存在。 

文獻上，有兩種用來垂直化向量群的方法，一個是知名的葛蘭-史密特垂直

化過程(Gram-Schmidt Process)，另一個是由 R. M. Johnson 學者在 1966 年所提出

來的，我們稱之為 R. M. Johnson method，然而，Gram-Schmidt Process 沒有一個

有意義的機制來決定向量群垂直化的優先順序，而經由 R. M. Johnson method 所

轉換出來的垂直向量群也無法具有解釋能力，特別是在具在有高相關的資料向量

的情況中。 

本篇研究中，我們嘗試去發展一個演算法來決定向量群垂直化的優先順序並

且達到資訊轉換最小化，稱之為 Gram-Schmidt 轉換過程最小化演算法

(Gram-Schmidt Transformation Minimization algorithm, GSTM algorithm)，它把在

向量投影過程中的資訊轉換最小化，但是在執行 GSTM algorithm 之前，有一些

前置處理需要先進行，進行完之後，再針對這些資料向量執行 GSTM algorithm，

並在這些垂直向量群執行迴歸分析，最後再針對這些分析結果做解釋。 

我們發現此演算法不僅克服在迴歸分析中共線性的問題和最小化在向量投

影過程中的資訊轉換，也使得分析的結果更具有解釋能力。 

 

 

 

 

 

 

關鍵字： 迴歸分析 共線性 葛蘭-史密特垂直化過程 資訊轉換最小化 向量投影 
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Abstract 

Regression analysis is the most used statistical method. However, we may 

encounter the multicollinearity problem in regression analysis. Multicollinearity is 

due to high correlation among independent variables, namely, small angles among 

data vectors of the independent variables. 

In the literature, there are two methods to orthogonalize vectors. One is the 

well-known Gram-Schmidt Process and the other is a method proposed by R.M. 

Johnson in 1966, referred to as the R.M. Johnson method. However, the 

Gram-Schmidt Process has no meaningful mechanism to determine the sequence 

order of vector orthogonalization; while the results transformed by the R.M. Johnson 

method can not be interpreted meaningfully, especially in a case with highly 

correlated data vectors. 

In this research, we attempt to develop an algorithm to determine the sequence 

order of the Gram-Schmidt Process with minimized transformation, called the 

Gram-Schmidt Transformation Minimization (GSTM) algorithm. It minimizes 

information subtraction during the vector projection processes. But before performing 

the GSTM algorithm, some procedures need to be done first. After those procedures, 

we perform the GSTM algorithm on data vectors, and with the orthogonalized data 

vectors, we perform regression analysis. Finally, we interpret the analysis results in 
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regression analysis by the GSTM algorithm. 

We find that this proposed algorithm not only overcomes the multicollinearity 

problem in regression analysis and minimizes information subtraction during the 

vector projection processes but also makes the analysis results more interpretable. 

 

Keyword:  Regression Analysis   Multicollinearity   Gram-Schmidt Process   

Information Transformation Minimization   Vector Projection 
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Chapter 1.   Introduction 

1.1.   Multicollinearity in Regression Analysis 

With the enhancement of information technology, we can easily collect any kind of 

data we are interested in and the scales of these data are usual very large. Thus, how 

to extract meaningful information behind the enormous data, namely, to interpret 

these data correctly, is an extremely important issue before any decision is made. 

Usually, we use data mining and/or statistical methods to analyze data, and one of the 

most used statistical methods is regression analysis. For example, we collect some 

statistics, such as the employment rate, GNP, population, etc, and we want to know 

which variable affects the employment rate most and how it affects the employment 

rate. 

Regression analysis is a statistical method to help us to make decisions. It mainly 

consists of two kinds of variables, namely, the independent variables, such as GNP 

and population in the above example, and the dependent variable, such as the 

employment rate in the above example. It uses some collected data to construct a 

mathematical model and uses this model to predict the value of the dependent variable, 

or called the response. In regression analysis, the statistical significance of the effect 

of each independent variable is judged through the p-value of the t-statistic. If the 

p-value is below a given constant, such as 0.05, the independent variable 
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corresponding to this p-value is said to have significant effect on the dependent 

variable. Then, these significant independent variables will be included in the final 

model. Mathematically, suppose that there are three independent variables x1, x2, and 

x3, and one dependent variable y. Then, we can construct a mathematical model by 

regression analysis if these three independent variables are all significant, as showed 

in (1.1). 

3322110 xbxbxbby +++=)                                             (1.1) 

where 

y) is the predicted value of the dependent variable; 

bi is the estimated parameter   for i = 0,1,2,3 

However, in regression analysis, we may encounter a common problem, namely, 

the multicollinearity problem. The problem rises when there are two or more 

independent variables providing reduplicative information about the dependent 

variable so that we can not clearly measure how a single independent variable affects 

the dependent variable. Multicollinearity among independent variables will mislead 

decision makers to make wrong decisions. Thus, how to perform regression analysis 

with the existence of multicollinearity is crucial to effective decision makings. 

Let’s take the Longley’s dataset as an example to explain the multicollinearity 

problem and this example will be used through out this thesis. This dataset, given in 
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Longley, British, has been used to check the numerical accuracy of regression 

problems in 1967 [1]. It consists of one dependent variable, Total, and six independent 

variables, Def, GNP, Unemp, AF, Population, and Year, and its sample size is 17, as 

showed in Table 1-1. 

Table 1-1   The Longley’s Dataset 

To ta l D ef G N P U nem p A F Po pu la tion Y ear

60323 83 234289 2356 1590 107608 1947

61122 88 .5 259426 2325 1456 108632 1948

60171 88 .2 258054 3682 1616 109773 1949

61187 89 .5 284599 3351 1650 110929 1950

63221 96 .2 328975 2099 3099 112075 1951

63639 98 .1 346999 1932 3594 113270 1952

64989 99 365385 1870 3547 115094 1953

63761 100 363112 3578 3350 116219 1954

66019 101 .2 397469 2904 3048 117388 1955

67857 104 .6 419180 2822 2857 118734 1956

68169 108 .4 442769 2936 2798 120445 1957

66513 110 .8 444546 4681 2637 121950 1958

68655 112 .6 482704 3813 2552 123366 1959

69564 114 .2 502601 3931 2514 125368 1960

69331 115 .7 518173 4806 2572 127852 1961

70551 116 .9 554894 4007 2827 130081 1962  

The following are descriptions of variables in this dataset: 

y: total derived employment, abbreviated as Total 

x1: GNP implicit price deflator with year 1954 = 100, abbreviated as Def 

x2: gross national product, abbreviated as GNP 

x3: unemployment, abbreviated as Unemp 

x4: size of armed force, abbreviated as AF 

x5: non-institutional population aged 14 and over, abbreviated as Population 

x6: time, abbreviated as Year 

As mentioned above, we want to construct a mathematical model to predict the value 
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of the dependent variable and also want to measure how these six independent 

variables affect the dependent variable by regression analysis. 

Table 1-2 shows the sample correlation matrix of the Longley’s dataset with the 

dependent variable “Total” arranged in the first column and the six independent 

variables arranged in the remaining six columns. As seen in the sample correlation 

matrix of the Longley’s dataset, we observe that the four independent variables Def, 

GNP, Population, and Year, are highly correlated with Total. Therefore, we may 

expect to see that these four independent variables should be significant in regression 

analysis. Unfortunately, the analysis result does not meet our expectation. From Table 

1-3, we can see that among the four independent variables, only “Year” is statistical 

significant with a p-value below 0.05. This is due to the multicollinearity problem 

among the four independent variables. From the sample correlation matrix of this 

dataset, it can be easily seen that Def, GNP, Population, and Year are highly correlated 

among themselves. Because of the multicollinearity problem, we can’t clearly 

measure how a single independent variable affects the response, even these 

independent variables highly correlated to the response. This dataset is a typical 

multicollinearity case. 

 

 



 5

Table 1-2   Sample Correlation Matrix of the Longley’s Dataset 

Total Def GNP Unemp AF Population Year

Total 1

Def 0.970898525 1

GNP 0.983551611 0.991589178 1

Unemp 0.502498084 0.620633393 0.60426094 1

AF 0.4573074 0.464744188 0.446436792 -0.17742063 1

Population 0.960390572 0.979163433 0.991090069 0.686551516 0.364416267 1

Year 0.971329459 0.99114919 0.995273484 0.668256605 0.41724515 0.993952846 1  

Table 1-3   Summary of Estimated Parameters and P-values of the Longley’s 

Dataset 

Estimated Parameter P-value

Intercept -3482258.635 0.003560404

Def 15.06187227 0.863140833

GNP -0.035819179 0.312681061

Unemp -2.020229804 0.002535092

AF -1.033226867 0.000944367

Population -0.051104106 0.826211796

Year 1829.151465 0.003036803  
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1.2.   Angle between Vectors and Statistical Correlation 

The multicollinearity problem in regression analysis is the main problem this 

research is intending to deal with. But before dealing with the multicollinearity 

problem, we must first relate two concepts: the angle between two vectors and 

statistical correlation between two vectors. Suppose that there are two 

vectors
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

na

a
M
1

a and
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

nb

b
M
1

b in the Euclidean Coordinate System. We can calculate 

the cosine of the angle between the two vectors: 

∑∑

∑

==

==•=
n

i
i

n

i
i

n

i
ii

ba

ba

1

2

1

2

1),cos(
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baba                                      (1.2) 

We know that cos(a,b) is zero when the two vectors are perpendicular to each other; 

while cos(a,b) is 1 or -1 when the angle between the two vectors is 0o or 180o, 

respectively, namely, one vector could be expressed as a multiple of the other vector. 

Thus, the cosine of the angle between two vectors could be viewed as a measure of 

how close the two vectors are. 

Now, we discuss the concept of statistical correlation. If not specially noted, 

“correlation” refers to the sample Pearson correlation. Statistical correlation indicates 

the strength and direction of a linear relationship between two variables a and b, as 

showed in (1.3). 
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If we center the two variables, namely, subtracting averages, a and b , from 

observed values, ai and bi, respectively, the two centered variables ac and bc will 

have 0=ca and 0=cb . Then, the correlation between two centered variables 

becomes: 
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Observing (1.2) and (1.4), we can easily see that the statistical correlation is actually 

equivalent to taking the cosine of the angle between two centered data vectors, ac and 

bc, drawn from two centered variables, ac and bc. That is, the angle between two 

centered data vectors reflects their correlation strength and direction. The smaller the 
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angle, the stronger their correlation is. When the two data vectors are perfectly 

positively or negatively correlated, the angle would be 0o or 180o, respectively. When 

two data vectors are not correlated at all, the two centered vectors will be 

perpendicular to each other. 
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1.3.   Vector Orthogonalization 

As illustrated in the Longley’s dataset, the multicollinearity problem is due to the 

small angles among the data vectors. In the literature, there are mainly two methods to 

orthogonalize the vectors. One is the well-known Gram-Schmidt Process [2] and the 

other is a transformation method proposed by R.M. Johnson in his paper “The 

Minimal Transformation to Orthonormality” in 1966 [3]. We refer to this method as 

the R.M. Johnson method in this thesis. Each method has its advantages and 

disadvantages, respectively. We will discuss the two methods in detail below. 

 

1.3.1.   Gram-Schmidt Process 

This method is well-known for transforming a set of independent vectors into a set 

of orthogonal vectors using a sequence of vector projections [2]. We use a simple 

example to explain how the Gram-Schmidt Process transforms. Suppose that there are 

three vectors a1, a2 and a3 in the Euclidean Coordinate System. The Gram-Schmidt 

Process takes the following steps to complete: 

 Step 1 

  Arbitrarily, select a1 as the first vector of the desired set of the orthogonal vectors 

and unitize a1 as q1, namely,
1

1
1 a

aq = , where 1a is the norm (or length) of a1, as 

showed in Figure 1-1. 
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Figure 1-1   Vector Unitization of a1 

 Step 2 

Project a2 on q1 and subtract the part projected on q1 from a2, 

namely, 1212
'
2 )( qaqaa T−= , as showed in Figure 1-2. Then take the remaining part 

and unitize it as q2, namely,
'
2

'
2

2 a
a

q = , where 2a is the norm (or length) of a2, as 

showed in Figure 1-3. q2 will be the second vector of the desired set of the orthogonal 

vectors. 

 

Figure 1-2   Projection of a2 on q1 

q1

a2

a2
’ 

(q1
Ta2)q1 

a1

q1
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Figure 1-3   Vector Unitization of a2
’ 

 Step 3 

Project a3 on q1 and q2 and subtract parts projected on q1 and q2 from a3, 

namely, 2321313
'
3 )()( qaqqaqaa TT −−= , as showed in Figure 1-4. Then take the 

remaining part and unitize it as q3, namely,
'
3

'
3

3 a
a

q = , where 3a is the norm (or length) 

of a3, as showed in Figure 1-5. q3 will be the third vector of the desired set of the 

orthogonal vectors. 

 

Figure 1-4   Projection of a3 on q1 and q2 

q2

a3a3
’ 

(q2
Ta3)q2 

a2
’

q2

(q1
Ta3)q1 

q1
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Figure 1-5   Vector Unitization of a3
’ 

  After performing three steps mentioned above, we obtain a set of orthogonal 

vectors q1, q2 and q3. These new vectors meet the following conditions: 

3,2,1for    1 == ii
T
i qq                                                 (1.5) 

jijij
T
i ≠==  and 3,2,1,for    0qq                                       (1.6) 

Above are procedures of the Gram-Schmidt Process by a simple example. If we take 

the Longley’s dataset as an example to perform the Gram-Schmidt Process, the 

sample correlation matrix of the Longley’s dataset after performing the Gram-Schmidt 

Process by the original order is presented in Table 1-4. It should be noted that the 

vector with the sign “⊥” denotes the vector after orthogonalization. From Table 1-4, 

we can see these new data vectors are almost orthogonal. With orthogonalization, the 

multicollinearity problem is expected to be resolved by using the orthogonalized 

dataset in regression analysis. 

 

 

a3
’

q3 
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Table 1-4   Sample Correlation Matrix of the Longley’s Dataset after 

Performing the Gram-Schmidt Process by the Original Order 

Def GNP⊥ Unemp⊥ AF⊥ Population⊥ Year⊥

Def 1

GNP⊥ -3.88246E-10 1

Unemp⊥ -2.48556E-11 3.1457E-10 1

AF⊥ -3.64647E-10 -8.54362E-11 1.02632E-10 1

Population⊥ -2.58181E-10 -3.92069E-10 2.32049E-10 -3.99497E-10 1

Year⊥ -4.51946E-10 -1.95459E-10 1.8647E-10 -5.79587E-10 3.06332E-10 1  

However, the Gram-Schmidt Process has a vital problem which is not clearly 

addressed in the process. That is, no meaningful mechanism is available to determine 

the sequence order of vector orthogonalization. Besides, the Gram-Schmidt Process 

has a special characteristic: vectors in the front of the sequence order of vector 

orthogonalization will keep more original information. This is due to the fact that the 

latter a vector orthogonalized, its larger portion is projected on the subspace spanned 

by the vectors in front of it and is subtracted from it. The first vector in the sequence 

order of vector orthogonalization is thus 100% intact because no vector is in front of it. 

Because of this characteristic, vectors with different priorities of vector 

orthogonalization will result in totally different results. Thus, a meaningful 

mechanism must be proposed to determine the sequence order of vector 

orthogonalization of the Gram-Schmidt Process. 
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1.3.2.   The Minimal Transformation to Orthonormality 

This method is proposed by R.M. Johnson in 1966. Its main idea is to orthogonalize 

a set of independent vectors to a set of orthogonal vectors while preserving maximal 

correlations between each original vector and its corresponding transformed vector [3]. 

That is, the algorithm keeps maximal original information in the vector 

orthogonalization process. 

Mathematically, suppose that there is an n by p data matrix X, as showed in (1.7). 

[ ]p

npn

p

aa

aa
aaX L

L

MOM

L

1

1

111

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=                                     (1.7) 

where 

n is the sample size; 

p is the number of vectors 

The main purpose of this method is to find a transformation matrix T to transform X 

into X* with orthonormal columns, namely, X*TX* = I. And at the same time, its 

another objective is to minimize the summation of squared elements of (X-X*), 

namely, to minimize tr(X -X*)T(X -X*). We rewrite the whole problem as below: 

*

**

**

       
   s.t.

)()- tr(min

XXT
IXX

XXXX

=
=

−
T

T

                                            (1.8) 

The R.M. Johnson method takes the following steps to complete: 
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 Step 1 

Without losing generality, perform Singular Value Decomposition (SVD) on X, as 

showed in (1.9). 

X = PΔQT                                       (1.9) 

where 

columns of P consist of eigenvectors of XXT; 

columns of Q consist of eigenvectors of XTX; 

Δ is a diagonal matrix with square roots of eigenvalues of XXT (or XTX) in its 

diagonal 

 Step 2 

According to the main purpose of this method, (1.10) is established: 

XT = X*                                                         (1.10) 

Substitute X with PΔQT
 into (1.10), to obtain: 

PΔQTT = X*                                                      (1.11) 

Then, multiply (1.11) by TTQΔPT = X*T, to obtain: 

TTQΔPTPΔQTT = X*T X*                                            (1.12) 

Because PTP = I and X*T X* = I, (1.12) becomes: 

TTQΔ2QTT = I                                                    (1.13) 

Rewrite (1.13) and Set ΔQTT = M: 
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(ΔQTT)T(ΔQTT) = I                                                (1.14) 

MTM = I                                                        (1.15) 

 Step 3 

Back to another objective of this method, namely, to minimize tr(X -X*)T(X -X*), 

substituting (1.10) into this objective, the objective becomes: 

) - () -  tr(min XTXXTX
T

T                                            (1.16) 

Expand (1.16), to have: 

) tr( )2tr(- ) tr(min XTXTXTXXX
T

TTTT +                                (1.17) 

Because XTX and TTXTXT = X*T X* = I are given, only the second term, namely, 

-2tr(XTXT), needs to be minimized. That is, we only need to: 

) tr(max XTX
T

T                                                     (1.18) 

Substitute (1.9) into (1.18), to become: 

) tr(max 2 TQQ
T

TΔ                                                   (1.19) 

Since )tr()tr( 22 TQQTQQ TT Δ=Δ and set ΔQTT = M, the objective finally becomes: 

) tr(max MQ
M

Δ                                                     (1.20) 

 Step 4 

  Since M and Q are both orthogonal matrices and Δ is a diagonal matrix, to 

maximize we need to have MQ equal to I, so that the diagonal elements of Δ can be 

preserved: 
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MQ = I                                                          (1.21) 

That is, the optimal M must be equal to QT. Substituting M =ΔQTT, we have the 

optimal T to be: 

T* = QΔ-1QT                                                      (1.22) 

Substituting (1.22) into (1.10), we finally obtain: 

X* = (PΔQT)(QΔ-1QT) = PQT                                        (1.23) 

Similarly, we use the Longley’s dataset to perform the R.M. Johnson method and 

the sample correlation matrix of the Longley’s dataset after performing the R.M. 

Johnson method is presented in Table 1-5. It should be noted that the vector with the 

superscript “*” is the vector after orthogonalization by the R.M. Johnson method. We 

can see this method also works well. These new data vectors are almost orthogonal. 

The multicollinearity problem in regression analysis may be now resolved by the 

orthogonalized dataset. 

Table 1-5   Sample Correlation Matrix of the Longley’s Dataset after 

Performing the R.M. Johnson Method 

Def* GNP* Unemp* AF* Population* Year*

Def* 1

GNP* 5.34295E-16 1

Unemp* -1.78026E-16 3.48679E-16 1

AF* 2.18575E-16 -1.63064E-16 -3.31007E-16 1

Population* 1.38778E-16 1.16573E-15 -1.82146E-17 3.22659E-16 1

Year* -2.81893E-17 4.54498E-16 1.23491E-16 3.43258E-16 6.8695E-16 1  

The R.M. Johnson method not only orthogonalizes the data vectors but also 
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minimizes the summation of squared elements of tr(X -X*)T(X -X*). Unfortunately, it 

still has a shortcoming. Its interpretation of the orthogonalized vectors becomes very 

different especially when the original vectors are highly correlated in nature. For 

example, suppose that there are two highly correlated vectors, a1 and a2, as showed in 

Figure 1-6. After performing the R.M. Johnson method, the orthogonalized vectors 

are produced, namely, a1
* and a2

*, respectively, in Figure 1-7. A question immediately 

rises: what do these orthogonalized vectors mean? In fact, we can’t find a meaningful 

explanation to interpret correlations between the original vectors and these 

orthogonalized vectors. 

 

Figure 1-6   Two Highly Correlated Vectors a1 and a2 

 

Figure 1-7   Two Highly Correlated Vectors a1, a2 and Orthogonalized Vectors 

a1
*, a2

* by Performing the R. M. Johnson Method 

a1

a2

a1
*(?)

a2
*(?)

a1

a2
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In contrast, if the Gram-Schmidt Process is applied to the same set of vectors, at 

least one of the vectors, a1
*, is completely preserved with the other orthogonalized 

vector, a2
*, interpreted as the left-over part after reduplicate information is removed, 

as showed in Figure 1-8 

 

Figure 1-8   Two Highly Correlated Vectors a1, a2 and Orthogonalized Vectors 

a1
*, a2

* by Performing the Gram-Schmidt Process in a Sequence Order 

[ ]21 aas =  

 

 

 

 

 

 

 

 

 

a1= a1
*

a2

a2
*



 20

1.4.   Problem Definition 

We have briefly explained the deficiencies of two vector orthogonalization methods, 

namely, the Gram-Schmidt Process’s lack of meaningful sequence order of vector 

orthogonalization and the R.M. Johnson method’s lack of interpretation for highly 

correlated data vectors. For dealing with the multicollinearity problem in regression 

model, the best way is deleting redundant variables from this model directly, i.e., to 

try to avoid the multicollinearity problem by not including redundant variables in the 

regression model [5]. But sometimes, it is hard to decide which variables are 

redundant. Another way to delete redundant variables is to perform a principal 

component analysis (PCA) [6]. With principal component regressions, we create a set 

of artificial uncorrelated variables that can then be used in the regression model. 

Although principal component variables are deleted from the model, when the model 

is transformed back, there will be other biases, too [7]. Then, in Lin’s paper [8], he 

also proposes a method called the Nested Estimate Procedure to deal with the 

multicollinearity problem. But there are still some problems. 

Therefore, with the problems mentioned above, the objective of this research is to 

propose a method to avoid these deficiencies. More specifically, we want to develop a 

new algorithm to determine the sequence order of vector orthogonalization of the 

Gram-Schmidt Process with minimized transformation. This proposed algorithm, 
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referred to as the Gram-Schmidt Transformation Minimization (GSTM) algorithm, 

will be then applied to regression analysis with the multicollinearity problem. The 

Longley’s dataset will be used through out to demonstrate the proposed methodology. 
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1.5.   Thesis Organization 

This chapter describes a common problem encountered in regression analysis, 

namely, the multicollinearity problem and its effect on decision making. Two vector 

orthogonalization methods and their deficiencies to deal with the multicollinearity 

problem are then introduced. In Chapter 2, the GSTM algorithm is proposed to 

overcome the deficiencies. Chapter 3 uses the GSTM algorithm together with a 

clustering method to solve the multicollinearity problem in regression analysis. 

Finally, one case study to validate the proposed methods is presented in Chapter 4. 

Chapter 5 concludes the contributions of this research and discusses possible future 

researches. 
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Chapter 2. Gram-Schmidt Transformation Minimization 

(GSTM) Algorithm 

In this Chapter, we will introduce the GSTM algorithm in detail, including 

procedures and meanings behind each step of this algorithm. But before entering the 

GSTM algorithm, two data preprocessing steps must be first introduced: centering and 

unitizing. 

 

2.1.   Preprocessing of Data 

As mentioned in Section 1.2, the angle between two centered data vectors is closely 

related to the statistical correlation between them. Data centering is to make the 

product of two data vectors equal to zero when their correlation coefficient is zero. 

Data unitizing is to keep the differences during the transformation process in the same 

level of comparison. Because different scales of data will result in different levels of 

differences during the transformation process, we uniformly unitize data so that we 

can compare the levels of transformation differences between different methods. 

Besides, data unitizing is also to keep the norm of every vector uniform. That is 

because different norms of vector will result in unsure results in the R.M. Johnson 

method. For avoiding the situation mentioned above, we uniformly unitize data to unit 

length. 
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Suppose that there is a data matrix, as showed in (2.1). 
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where 

raw ofcolumn th   theis 
 vector;ofnumber   theis 
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Xa i
p
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After centering Xraw, Xc is produced, as showed in (2.2). 
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Here, we show that two centered vectors are orthogonal when their correlation 

coefficient is zero. For example, suppose that there are two 

vectors  
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to
1

))((
3

1
2211

−

−−∑
=

n

aaaa
i

ii

, when the product of the two centered vectors is zero, i.e., 

the two centered vectors are orthogonal, the sample covariance would be zero, i.e., the 

correlation coefficient is also zero. 

After centering, columns of Xc are unitized to produce X, as showed in (2.3). 
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where 
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Again, let’s take the Longley’s dataset as an example. Table 2-1 shows six data 

vectors drawn from the six independent variables of the Longley’s dataset after 

centering and unitizing. We can see that the mean of each data vector is almost equal 

to zero and the norm (length) of each data vector is one. 
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Table 2-1   The Longley’s Dataset after Centering and Unitizing 

Def GNP Unemp AF Population Year

-0.4469679 -0.3985127 -0.2313552 -0.3772096 -0.3643536 -0.4067446

-0.3153748 -0.3332142 -0.2399207 -0.4269261 -0.3263444 -0.352512

-0.3225526 -0.3367782 0.13502771 -0.3675632 -0.2839924 -0.2982794

-0.2914488 -0.2678221 0.04357014 -0.3549485 -0.2410836 -0.2440468

-0.1311445 -0.1525463 -0.3023661 0.18265693 -0.198546 -0.1898142

-0.085685 -0.1057252 -0.3485093 0.36631098 -0.1541896 -0.1355815

-0.0641516 -0.0579638 -0.3656403 0.34887312 -0.0864857 -0.0813489

-0.0402256 -0.0638684 0.1062918 0.27578252 -0.0447276 -0.0271163

-0.0115144 0.02538106 -0.079939 0.163735 -0.0013363 0.02711631

0.06983406 0.08177986 -0.1025962 0.09287051 0.04862502 0.08134892

0.16075293 0.14305717 -0.0710972 0.07098043 0.11213448 0.13558154

0.21817537 0.14767329 0.41105827 0.01124649 0.16799757 0.18981415

0.2612422 0.24679658 0.17122391 -0.0202901 0.22055713 0.24404677

0.29952382 0.29848315 0.20382812 -0.0343888 0.29486803 0.29827938

0.33541285 0.33893464 0.44559663 -0.0128697 0.38706997 0.35251199

0.36412407 0.43432502 0.22482744 0.08173996 0.46980673 0.40674461

Mean -1.527E-16 -3.816E-17 1.0408E-17 -8.674E-18 6.9389E-18 1.0408E-17

Norm 1 1 1 1 1 1  
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2.2.   GSTM Algorithm 

Back to the objective of this research, namely, to develop a new algorithm to 

determine the sequence order of vector orthogonalization of the Gram-Schmidt 

Process with minimized transformation, a question immediately rises: what does 

“minimized transformation” mean? The algorithm to be proposed should be able to 

determine a sequence order such that the summation of squared differences between 

the original vectors and the transformed vectors by the Gram-Schmidt Process is 

minimized. Let X be the preprocessed data matrix and X* be the transformed data 

matrix with columns orthogonalized by the Gram-Schmidt Process in a particular 

sequence order s. The algorithm is then to: 

)-()- tr(min * XXXX
s

T                                               (2.4) 

If the number of columns is p, then the possible number of sequence orders would be 

“p!”. In this research, we attempt to develop an algorithm to find the sequence order 

minimizing (2.4) without going through all “p!” possible sequence orders. For 

example, the Longley’s dataset has six independent variables and there would be a 

total of 6! = 720 possible sequence orders for the Gram-Schmidt Process. 

However, how do we find the sequence order? Obviously, we need an index as the 

basis to find the sequence order for the Gram-Schmidt Process. The index we use is 

the angle between two vectors. Since the Gram-Schmidt Process is through a 
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sequence of projections, projection of two vectors with a larger angle between them 

will result in smaller information subtraction between the original vectors and the 

transformed vectors. On the other hand, projection of two vectors with a smaller angle 

between them would result in larger information subtraction between the original 

vectors and the transformed vectors. 

For example, suppose that there is a data matrix ][ 321 aaaX = . Let a1 be chosen 

already to be the first vector of the desired sequence of the orthogonal vectors. Then 

we want to determine which one, a2 or a3, should be the second vector to go through 

the Gram-Schmidt Process. We must first calculate the angleθ1 between a1 and a2 

and the angleθ2 between a1 and a3 respectively. Supposeθ1＞θ2, as showed in 

Figure 2-1. 

                    

(a)                                         (b) 

Figure 2-1   Angles of Two Vectors, θ1＞θ2 

With the example above, we will validate the reason of using the angle between 

two vectors as an index to find the sequence order. We project a2 and a3 on a1, and 

subtract parts projected on a1 from a2 and a3, respectively. The remaining part of a2 

a3 
θ2 

a1 

a2 

a1

θ1 
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and a3 could be obtained to be a2
’ and a3

’, respectively, as in Figure 2-2. Becauseθ1 

and θ 2 are both acute angles and θ 1 ＞ θ 2, we know that the inequality 

)
2

( 1θπ − < )
2

( 2θπ − holds, where )
2

( 1θπ − is the angle between a2 and a2
’ and )

2
( 2θπ − is 

the angle between a3 and a3
’. In Section 1-2, we have demonstrated that the angle 

between two vectors is a measure of how close the two vectors are. Thus, the 

inequality )
2

( 1θπ − < )
2

( 2θπ − implies that a2 and a2
’ are closer than a3 and a3

’ are. 

Since the objective is to minimize the summation of squared differences between the 

original vectors and the transformed vectors, we would like to choose a2 as the second 

vector of the desired sequence of the orthogonal vectors because the information 

subtraction after projecting a2 onto a1 is smaller than that after projecting a3 onto a1. 

That is, we use the angle between two vectors as an index to preserve as much 

original information as possible during the sequence of projections by the 

Gram-Schmidt Process. 

                  

(a)                                         (b) 

a3 
a1 

θ2 

−
2
π

θ2

a1

θ1 

a2
’ 

−
2
π

θ1

a2
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Figure 2-2   Angle of Two Vectors after Projecting on a1 

The above example is just a case to determine the next vector with only one already 

chosen vector, i.e., a1, already chosen in the desired sequence of the orthogonal 

vectors. How do we determine the next vector with multiple vectors already chosen in 

the desired sequence of the orthogonal vectors? We project each of the vectors, which 

are not yet chosen into the sequence order, onto the subspace spanned by the vectors 

already chosen into the sequence order. Then, we calculate each angle between the 

vector to be chosen and its projection onto the subspace. Let a1…ak be the vectors 

already chosen and Pk be the matrix with columns formed by these column vectors. 

The projection of a vector, ai, onto the column space of Pk will be: 

i
T

i aPPPPa kkkk
k 1)( −=                                                (2.5) 

The cosine of the angle between ai and the column space of Pk is then: 

k

k

k aa
aa

ii

i
T
i

i =θcos                                                    (2.6) 

We know that when the angle between two vectors is greater than 90o, the cosine of 

the angle will be negative. It should be noted that when there are negative values in 

these cosines, we uniformly take the absolute value of these cosines. Letθbe the 

angle between two vector, a and b, andθis greater than 90o, as showed in Figure 2-3. 
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Figure 2-3   Angles of Two Vectors, θ>90o 

As in Section 1-2, we have demonstrated that the angle between two vectors is a 

measure of how close the two vectors are. The smaller the angle between two vectors, 

the stronger positive correlation between them is. From the relationship of the 

Triangular Function, we know that the equation )180cos(cos θθ −−= o holds. Thus, 

when the angleθis greater than 90o, the larger the angle, the stronger the negative 

correlation between a and b, as showed in Figure 2-3. Whenθis equal to 180o, -a and 

b are perfectly positive correlated; that is, a and b are perfectly negative correlated. 

To measure only the degree of the correlation regardless of the direction, we take the 

absolute value of the cosine: 

k

k

k aa

aa

ii

i
T
i

i =θcos .                                                  (2.7) 

With (2.7), when there are k vectors chosen earlier, we choose the vector, with the 

largest angle, i.e., the smallest value of the cosine of the angles, between itself and its 

projection, to be the next vector to enter the sequence order of the orthogonal vectors. 

Thus, we summarize the core of the GSTM algorithm: a vector, with the largest angle 

a
b 

θ
180-θ

-a 
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between itself and its projection on the subspace spanned by earlier vectors, will be 

chosen as the next vector to enter the sequence for the Gram-Schmidt Process. 

Below, we will describe steps of this algorithm in detail. Suppose that there is a 

matrix [ ]paaX L1= : 

 Step 1 

  Compute the absolute value of the cosines of the angles between any two vectors 

among p vectors, as in (2.8): 

pijpi
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j
T
i

ij 1,...,   and   1-,...,1for    )(cos +===
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θ .                    (2.8) 

Select the two vectors, with the minimum absolute value of the cosine; i.e., the 

maximal angle among all paired vector angles, as the first two vectors into the 

sequence of the orthogonal vectors. Furthermore, we must decide which vector should 

be the first in the sequence. For convenience, suppose that the first two vectors are ai 

and aj. Then, 
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That is, the vector with the largest angle away from the space spanned by the rest of 

vectors, is selected to be the first vector in the sequence. 

 Step 2 

  Project the remaining p-2 vectors respectively on the columns space of P2 with two 

columns formed by the first two vectors selected in Step 1: 

2
12    )( spaaPPPPa 2222 −∈= −

kk
TT

k                                     (2.10) 
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Then, compute the absolute value of the cosine of the angles between each of the 

remaining p-2 vectors and their projections on the columns space of P2 and select the 

vector with the largest angle to be the third vector in the sequence: 
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Suppose that there are l vectors (2 ≦ l ≦ p-2) selected into the sequence order. To 

select the (l+1)th vector from the rest of the vectors, we project the remaining p-l 

vectors on the column space of Pl with columns formed by the l vectors selected in 

the sequence: 
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where 
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Then, compute the absolute value of the cosine of the angles between each of the 

remaining p-l vectors and their projections on the columns space of Pl and select the 

vector with the largest angle to be the (l+1)th vector in the sequence: 
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 Step 3 

  Repeat Step 2 until the pth vector, a(p), has been selected into the final sequence 

order: 

P* = [a(1), a(2), a(3),…, a(p)]                                           (2.14) 

From procedures of this algorithm, it always emphasizes on the vector with the 

“largest” angle between itself and its projection on the subspace spanned by chosen 

vectors. It is just an idea like “gradient”, namely, to go in the direction with the 

“largest” improvement. This is the core of the GSTM algorithm. 

Now, we use a simulated example to demonstrate the steps above. This example is 

a 10 by 5 data matrix, as showed in Table 2-2. Note that the number “10” is the 

sample size and “5” is the number of vectors. 
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Table 2-2   A Simulated Example 

X1 X2 X3 X4 X5

7 9 5 3 3

6 4 7 7 2

8 9 2 3 5

3 8 8 5 5

9 4 3 3 8

4 6 9 10 3

3 9 6 5 3

8 8 6 8 6

3 9 5 4 6

3 4 9 5 9  

As mentioned in Section 2-1, we need to do data centering and data unitizing first. 

Table 2-3 shows the result after centering and unitizing, namely, X defined above. 

Table 2-3   A Simulated Example after Centering and Unitizing 

X1 X2 X3 X4 X5

0.21693046 0.29488391 -0.1414214 -0.3249443 -0.2886751

0.08134892 -0.4423259 0.14142136 0.24017625 -0.4330127

0.35251199 0.29488391 -0.5656854 -0.3249443 0

-0.3253957 0.14744196 0.28284271 -0.042384 0

0.48809353 -0.4423259 -0.4242641 -0.3249443 0.4330127

-0.1898142 -0.147442 0.42426407 0.66401669 -0.2886751

-0.3253957 0.29488391 0 -0.042384 -0.2886751

0.35251199 0.14744196 0 0.3814564 0.14433757

-0.3253957 0.29488391 -0.1414214 -0.1836642 0.14433757

-0.3253957 -0.4423259 0.42426407 -0.042384 0.57735027

Mean -5.551E-17 0 5.5511E-18 2.7756E-17 -1.11E-17

Norm 1 1 1 1 1  

  Then, we follow steps of this algorithm to calculate the performance: 

 Step 1 

  Angles between any two vectors among five vectors are summarized in Table 2-4. 

We can see that the two vectors with the largest angle between them are X1 and X5. 
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Thus, X1 and X5 are chosen in the order sequence of orthogonal vectors. 

Table 2-4   Summary of Angles between Two Vectors among Five Vectors 

X1 X2 X3 X4 X5

X1 0

X2 84.26359 0

X3 46.34863 70.51117 0

X4 77.61171 75.52441 47.20939 0

X5 85.51041 71.38417 84.14207 70.95731 0  

 Step 2 

  We project the remaining vectors, X2, X3 and X4, on the column space spanned by 

X1 and X5, and calculate angles between each vector and its projection on the column 

space. Table 2-5 shows the summary of angles between the remaining vectors and the 

column space. We can see that the vector with the largest angle between itself and the 

column space is X2. Thus, X2 is chosen in the order sequence of orthogonal vectors. 

Table 2-5   Summary of Angles between the Remaining Vectors and the 

Column Space Spanned by X1 and X5 

X2 X3 X4

70.85512 46.21552 67.83034  

Again, we project the remaining vectors, X3 and X4, on the column space spanned by 

X1, X5 and X2, and calculate angles between each vector and its projection on the 

column space. Table 2-6 shows the summary of angles between the remaining vectors 

and the column space. We can see that the vector with the largest angle between itself 

and the column space is X4. Thus, X4 is chosen in the order sequence of orthogonal 
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vectors. 

Table 2-6   Summary of Angles between the Remaining Vectors and the 

Column Space Spanned by X1, X5 and X2, 

X3 X4

34.80161 57.13706  

 Step 3 

  With the selection of the fourth vector into the sequence order, the final vector 

would also be known, i.e., the final vector is X3. Thus, the new sequence order P＊= 

[X1, X5, X2, X4, X3]. 

  We perform the Gram-Schmidt Process by the new sequence order. The 

orthogonalized vectors, namely, X* defined above, are presented in Table 2-7. It 

should be noted that the vector with the sign “⊥” denotes the vector after 

orthogonalization. 

Table 2-7   A Simulated Example after Performing the Gram-Schmidt Process 

by the New Order Attained from the GSTM Algorithm 

X1 X5⊥ X2⊥ X4⊥ X3⊥

0.21693 -0.3066 0.233726 -0.33625 0.589795

0.081349 -0.44073 -0.60534 -0.13719 -0.08833

0.352512 -0.02768 0.340293 -0.14907 -0.28218

-0.3254 0.02555 0.130094 -0.06373 0.359777

0.488094 0.396021 -0.28564 -0.24843 -0.23348

-0.18981 -0.27466 -0.26697 0.516599 -0.12451

-0.3254 -0.26401 0.190426 -0.14274 -0.23815

0.352512 0.117103 0.23209 0.695187 0.168424

-0.3254 0.170332 0.334039 -0.08374 -0.44222

-0.3254 0.604677 -0.30272 -0.05063 0.290883  
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The GSTM algorithm always finds the vector with the “largest” angle between 

itself and its projection on the subspace spanned by vectors chosen before it. Such a 

Greedy algorithm can not guarantee an optimum solution. In the following Section, 

we will evaluate the performance of the proposed algorithm with some cases. 
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2.3.   Performance Evaluation of GSTM Algorithm 

  In this Section, we will use several cases with different properties to evaluate the 

performance of the GSTM algorithm and compare it with other values, such as the 

performance of the R.M. Johnson method, etc. But before introducing cases, we must 

first define the performance. We just directly use tr(X- X*)T(X- X*) as an index, i.e., 

the smaller tr(X- X*)T(X- X*), the performance better. 

The following are some cases with different properties: 

 Case 1 

Table 2-8   Case 1 for Performance Evaluation 

X1 X2 X3 X4 X5 X6 X7

1 0.5 0.353553 0.288675 0.25 0.223607 0.204124

0 0.866025 0.353553 0.288675 0.25 0.223607 0.204124

0 0 0.866025 0.288675 0.25 0.223607 0.204124

0 0 0 0.866025 0.25 0.223607 0.204124

0 0 0 0 0.866025 0.223607 0.204124

0 0 0 0 0 0.866025 0.204124

0 0 0 0 0 0 0.866025  

Table 2-9   Sample Correlation between any Two Vectors among Seven Vectors 

of Case 1 

X1 X2 X3 X4 X5 X6 X7

X1 1

X2 0.384492 1

X3 0.173055 0.25556 1

X4 0.058926 0.087018 0.106739 1

X5 0.025254 0.037294 0.045746 0.053572 1

X6 0.097686 0.144258 0.176951 0.207224 0.238058 1

X7 0.166667 0.246125 0.301903 0.353553 0.40616 0.462775 1  
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Table 2-9 shows sample correlations between any two vectors among seven vectors of 

Case 1. We use Case 1 to represent the case with a property that there are no 

significant highly correlated vectors 

Table 2-10   Summary of Four Kinds of Performances for Case 1 

Performance

GS with the optimum order 1.580773214

GS with the worst order 1.607695155

GSTM algortihm 1.5807976

R.M. Johnson 0.927250752  

Table 2-10 shows the summary of four kinds of performances in Case 1. We can see 

that there is a small distance between the performance of the GSTM algorithm and 

that of the Gram-Schmidt Process with the optimum transformation order. That is, in a 

case like Case1, the GSTM algorithm is not an optimum solution. In the following, 

we will show gradually the advantage of the GSTM algorithm by cases. 

 Case 2 

Table 2-11   Case 2 for Performance Evaluation 

X1 X2 X3 X4 X5 X6 X7

1 0.999848 0.706999 0.577262 0.499924 0.447145 0.408186

0 0.017452 0.706999 0.577262 0.499924 0.447145 0.408186

0 0 0.017452 0.577262 0.499924 0.447145 0.408186

0 0 0 0.017452 0.499924 0.447145 0.408186

0 0 0 0 0.017452 0.447145 0.408186

0 0 0 0 0 0.017452 0.408186

0 0 0 0 0 0 0.017452  
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Table 2-12   Sample Correlation between any Two Vectors among Seven 

Vectors of Case 2 

X1 X2 X3 X4 X5 X6 X7

X1 1

X2 0.999851 1

X3 0.645386 0.658469 1

X4 0.471309 0.480863 0.7427 1

X5 0.353468 0.360633 0.557003 0.762988 1

X6 0.258127 0.26336 0.406763 0.557188 0.744956 1

X7 0.166667 0.170045 0.262637 0.359763 0.481001 0.6633 1  

Table 2-11 shows sample corrleations between any two vectors among seven vectors 

of Case 2. We use Case 2 to represent a case with a property that there is a smaller 

angle between vectors, i.e., x1 and x2 is almost overlapped. 

Table 2-13   Summary of Four Kinds of Performances for Case 2 

Performance

GS with the optimum oreder 6.56142846

GS with the worst oreder 11.79057112

GSTM algorithm 6.56142846

R.M.Johnson 4.12866758  

Table 2-13 shows the summary of four kinds of performances in Case 2. We can see 

that the performance of the GSTM algorithm is equal to that of the Gram-Schmidt 

Process with the optimum transformation order. This implies that in the case with the 

multicollinearity problem the GSTM algorithm will at least be good as the optimum 

transformation order. Let’s see the extreme case with a property that there are highly 

correlated vectors between any two vectors. 

 Case 3 
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Table 2-14   Case 3 for Performance Evaluation 

X1 X2 X3 X4 X5 X6 X7

1 0.990179 0.972416 0.953386 0.931873 0.914414 0.880944

0 0.020306 0.087405 0.081485 0.098282 0.09473 0.139778

0 0.050939 0.06702 0.114399 0.134354 0.183816 0.210468

0 0.039634 0.111561 0.142372 0.146066 0.139628 0.139186

0 0.090455 0.104368 0.139938 0.179463 0.21426 0.243932

0 0.07754 0.110761 0.154492 0.208347 0.210854 0.242494

0 0.027812 0.081666 0.087224 0.083382 0.105939 0.149748  

Table 2-15   Sample Correlation between any Two Vectors among Seven 

Vectors of Case 3 

X1 X2 X3 X4 X5 X6 X7

X1 1

X2 0.99745 1

X3 0.998778 0.997843 1

X4 0.996095 0.998576 0.998028 1

X5 0.989674 0.996299 0.993098 0.99764 1

X6 0.986335 0.995099 0.987741 0.994364 0.99742 1

X7 0.984852 0.993912 0.985191 0.990687 0.994794 0.998513 1  

Table 2-15 shows sample correlations between any two vectors among five vectors of 

Case 3. We use Case 3 to represent the case with a property that there is the obvious 

multicollinearity problem. 

Table 2-16   Summary of Four Kinds of Performances for Case 3 

Performance

GS with the optimum order 10.71987499

GS with the worst order 11.46082788

GSTM algorithm 10.71987499

R.M.Johnson 7.627229417  

Table 2-16 shows the summary of four kinds of performances in Case 3. We can see 

that the performance of the GSTM algorithm is equal to that of the Gram-Schmidt 
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Process with the optimum order. It shows again that the GSTM algorithm will at least 

be good as the optimum order when there are obviously highly correlated data vectors. 

That is, the advantage of the GSTM algorithm will be showed up in a case with the 

multicollinearity problem. 
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Chapter 3.   Regression Analysis with the GSTM 

Algorithm 

In this Chapter, we will propose a series of more complete analysis procedures to 

perform regression analysis using the GSTM algorithm. For a start, we need to group 

features. Every feature represents a data vector collected for a variable. The GSTM 

algorithm is then applied to each cluster of features before the regression analysis is 

performed. Finally, we will provide meaningful interpretation to explain the analysis 

results. 

 

3.1.   Clustering of Features 

Clustering of features is to group features to several clusters so that features in the 

same cluster have minimal dissimilarities; while features from different clusters have 

maximal dissimilarities. The question is how to define and measure the dissimilarity. 

“Dissimilarity” is a measure of how different two features are. In the literature, there 

are several kinds of dissimilarity measures, such as the Euclidean distance, the 

Pearson correlation coefficient, etc [4]. In this research, the sample Pearson 

correlation coefficient is adopted, as showed in (3.1). 
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Since higher the correlation coefficient, more similar the two features in terms of their 

effects on the response are. The “dissimilarity” measure is taken to be 1 minus the 

squared correlation coefficient [4], as showed in (3.2). This measure is also proven 

quite robust in Lin’s research [4]. 

21 ijij rD −=                                                         (3.2) 

where 

rij is the sample Pearson correlation coefficient between two variables xi and xj 

In clustering, “linkage” measure represents a measure of the dissimilarity between 

two clusters with two or more features in each cluster. In general, there are three 

measures: Single linkage, Complete linkage, and Average linkage. Each kind of 

linkage has its meanings and properties. For example, let there be two clusters, cluster 

1 and cluster 2, with features 1, 2, 3 and features 4, 5 in each cluster, respectively. And 

let the dissimilarity between two clusters be expressed by the Euclidean distance, as 
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showed in Figure 3-1. “Single linkage” is the shortest distance between any two 

features from each cluster. The solid line in Figure 3-1 represents the single linkage 

because the distance between feature 3 in cluster 1 and feature 4 in cluster 2 is the 

shortest among the paired features. “Complete linkage” is the longest distance 

between any two features from each cluster. The dashed line in Figure 3-1 represents 

the complete linkage because the distance between feature 1 in cluster 1 and feature 5 

in cluster 2 is the longest among the paired features. “Average linkage” is the average 

length of all paired distances from each cluster, including the distance between feature 

1 in cluster 1 and feature 4 in cluster 2, the distance between feature 1 in cluster 1 and 

feature 5 in cluster 2, the distance between feature 2 in cluster 1 and feature 4 in 

cluster 2, the distance between feature 2 in cluster 1 and feature 5 in cluster 2, the 

distance between feature 3 in cluster 1 and feature 4 in cluster 2 and the distance 

between feature 3 in cluster 1 and feature 5 in cluster 2, i.e., the average length of the 

six distances. 

 

Figure 3-1   Two Clusters with Multiple Features 

Cluster 1 Cluster 2 

1 

2 

3 
4

5
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In Lin’s research [4], there are four kinds of evaluation ways for different linkages: 

the percentage of variance explained, mean correlation between clusters, mean 

correlation within a cluster, and group size distribution. Each evaluation way has its 

goal to pursuit. The percentage of variance explained is expected to be large as 

possible because the larger the percentage of variance explained, the greater the 

explanatory power on the variance of data is; mean correlation between clusters is 

expected to be as small as possible because we want to make features from different 

clusters to have maximal dissimilarities; mean correlation within a cluster is expected 

to be large as possible we want to make features in the same cluster to have minimal 

dissimilarities; group size distribution is expected to be small as possible because we 

want the size of each cluster to be uniform as possible. Based on the results of Lin’s 

research, in most of four evaluation ways, Complete linkage seems more appreciate 

than other two linkages. Thus, Complete linkage is adopted in this research. 

  Even though the dissimilarity and the linkage are already known, the most critical 

problem is not solved. That is how to determine the optimal number of clusters. 

Actually, this is a problem with no sure solutions, namely, it is up to users to decide. 

But we still propose an evaluation way for users as a criterion to evaluate the results 

of clustering of features below. Suppose that there are n features and we must first 

understand that we are able to make up the number of clusters from 1 to n. The 
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number of clusters “1” means that all features are grouped to one cluster totally; while 

the number of clusters “n” means that every feature is grouped to one cluster 

individually. The following are steps of this evaluation way: 

 Step 1 

  For i clusters (1 ≦ i ≦ n), perform Principle Component Analysis (PCA) on each 

cluster and select the eigenvalue corresponding to PC1, i.e., the maximal eigenvalue, 

from each cluster. By the way, if there is only one feature in a cluster, the maximal 

eigenvalue from this cluster is 1.Then sum up these maximal eigenvalues from all 

clusters and divide it by the number of features to obtain the percentage of variance 

explained: 
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 Step 2 

  Draw the number of clusters on the horizontal axis and percentage of variance 

explained on the vertical axis. 

Take the Longley’s dataset as an example to demonstrate the evaluation way. The 

horizontal axis of Figure 3-2 is the number of cluster and the vertical axis of Figure 
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3-2 is the percentage of variance explained. We can observe that the more the number 

of clusters, the higher percentage of variance explained is. That is because more 

clusters will provide higher explanatory power on the variance of data. When the 

number of clusters equal to the number of features, percentage of variance explained 

is 100%. By the way, the graph “% Variance Explained” will present different patterns 

according to different data structures, namely, different cases may have different 

shapes on this graph. 

 

 Figure 3-2   % Variance Explained of the Longley’s Dataset 

Empirically, the optimal number of clusters will be a number, denoted as N*, when 

there is no significant enhancement of percentage of variance explained from the 

number of clusters N* to the number of clusters N*+1. In the Longley’s dataset, N* 

would be “3”. But if the optimal number of clusters can not be decided easily from the 

graph, an empirical rule is that we can choose the optimal number of clusters with 
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percentage of variance explained exactly over 70%. Another auxiliary way to help us 

to decide the optimal number of clusters is to observe the tree view of clusters. In the 

Longley’s dataset, the optimal number of clusters is decided to be “3” since there is no 

significant enhancement of percentage of variance explained from the number of 

clusters “3” to the number of clusters “4”. Figure 3-3 shows the tree view of clusters 

of the Longley’s dataset: one cluster consists of Population, Def, GNP, and Year; 

another cluster consists of Unemp; the other cluster consists of AF. 

 

Figure 3-3   Tree View of Clusters and R2 Values Corresponding to Each 

Cluster of the Longley’s Dataset 
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3.2.   Regression Analysis with the GSTM Algorithm 

After determining the optimal number of clusters, we must measure the explanatory 

power of each cluster. Thus, for each cluster, we perform regression analysis and 

calculate the explanatory power of each cluster, namely, R2 values. Then, we rank all 

clusters by their R2 values. The meaning of this procedure is that we want to put 

clusters with higher explanatory powers in the front of the sequence order of the 

Gram-Schmidt Process. This allows us to preserve the original information of the 

more important clusters, in terms of explanatory power, during the Gram-Schmidt 

Process. That is, in order to preserve more original information, more important 

features should be put in the front of the sequence order of the Gram-Schmidt 

Process. 

After ranking clusters by their R2 values, the GSTM algorithm has to be applied to 

clusters and to features with clusters. The GSTM algorithm is first used to reorder the 

features in the first ranked order for the Gram-Schmidt Process. The GSTM algorithm 

is then applied to features in the following clusters given the features of the previous 

cluster in the sequence already. 

Take the Longley’s dataset as an example to explain this procedure more concretely. 

From Figure 3-4, there are three clusters and we rank them by their R2 values. Then, 

we project Unemp on the column space spanned by the four features, or called data 
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vectors, Population, Def, GNP, and Year, and subtract the projection of Unemp from 

Unemp. The remaining part of Unemp is independent of features in the first cluster. 

Similarly, we project AF on the column space spanned by the five features, Population, 

Def, GNP, Year, and Unemp, and subtract the projection of AF from AF. The 

remaining part of AF is independent of features in the first cluster and the second 

cluster. More generally, all features in the ith cluster must be independent of all 

features in the clusters ranked before the ith cluster. After finishing a series of 

projections and subtractions, we perform the GSTM algorithm on each cluster. 

By the way, two special cases need to be discussed particularly when we perform 

the GSTM algorithm. One special case is that when there is only one feature in a 

cluster, such as the second cluster or the third cluster in the Longley’s dataset, we just 

need to return the only feature back because it is meaningless to perform the GSTM 

algorithm when there is only one feature; the other special case is that when there are 

two features in a cluster, we must calculate correlation coefficients between these two 

features and the response respectively first and then rank them by their correlation 

coefficients with the response, i.e., the feature with higher correlation with the 

response will put in the front of the other feature. 

Up to now, we summarize the analysis procedures step by step, below: 

 Step 1 
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  Group features to several clusters, and determine the optimal number of clusters by 

the evaluation way we suggest. 

 Step 2 

  Perform regression analysis for each cluster, and rank these clusters by their R2 

values. 

 Step 3 

Perform the GSTM algorithm on the first ranked cluster and then on the following 

clusters given the features of the previous cluster in the sequence already. 

 Step 4 

  Performed regression analysis with the orthogonalized vectors transformed by the 

sequence order attained from the GSTM algorithm. 

Mathematically, we use a general form to describe the GSTM algorithm with 

regression analysis. Suppose that there are p features and the optimal number of 

clusters is denoted as N* ( pN ≤≤ *1 ), i.e., all features are grouped to one cluster 

totally when N* is 1; while every feature is grouped to one cluster individually when 

N* is p. And we define fij as the ith feature in jth cluster ranked by the GSTM 

algorithm and Nj as the number of the jth cluster ranked by the explanatory power of 

every cluster ( *1 Nj ≤≤ and pN
N

j
j =∑

=

*

1
). After deciding the optimal number of 

clusters, we must rank the clusters and the features within every cluster. 
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First, we rank the clusters, i.e., use the explanatory power of each cluster to reorder 

the order of clusters. We will obtain a new order of clusters Nnew: 

{ }
)()1(

new
*,...,

N
NNN =                                                (3.4) 

where 

N(j) is the jth cluster ranked by the explanatory power for *1 Nj ≤≤  

Secondly, we perform the GSTM algorithm within every cluster, i.e., reorder the 

features in the first ranked order N(1) and the features in the following clusters given 

the features of the previous cluster in the sequence already. For the jth cluster N(j), we 

will obtain a new order of features N(j)
new: 

{ }jNjj j
ff ,...,1

new
)( =N                                                  (3.5) 

where 

fij is the ith feature ranked by the GSTM algorithm in the jth cluster for jNi ≤≤1  

  Finally, through the ranking of clusters and the ranking of features within every 

cluster, we will obtain a new order of the whole set of features Nwhole: 

{ }whole
)(

whole
)1(

whole ,..., pff=N                                              (3.6) 

where 

f(i)
whole is the ith feature of the new whole set of features for pi ≤≤1  

Then we use this new order of the whole set of features to perform the Gram-Schmidt 

Process to obtain the orthogonalized features: 
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{ }orthogonal
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)2(

orthogonal
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orthogonal ,...,, pfff=N                                (3.7) 

where 

f(i)
orthogonal is the ith feature of the new whole set of features after performing the 

Gram-Schmidt Process with the order Nwhole for pi ≤≤1  

With the orthogonalized features, we perform Regression Analysis without the 

multicollinearity problem: 

orthogonalorthogonal
110 *...*ˆ pp fbfbby +++=  

where 

y) is the predicted value of the dependent variable; 

bi is the estimated parameter   for i from 0 to p 

fi
orthogonal is the ith feature after performing the Gram-Schmidt Process 

Finally, through Regression Analysis, we can interpret these orthogonalized features 

on the response. 

In this paragraph, we will discuss another topic about the computation complexity 

(CC) of the GSTM algorithm which affects the computing time. Suppose that there 

are p features: 

 Step 1 

First, we must compute the absolute value of the cosines of the angles between any 

two vectors among p vectors. Thus, the computation complexity from Step 1, denoted 
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as CC1, equals to pC2 . 

 Step 2 

Secondly, we must compute the absolute value of the cosine of the angles between 

each of the remaining p-2 vectors and their projections. Thus, the computation 

complexity from Step 2, denoted as CC2, equals to p-2. 

 Step 3 

Finally, we must repeat the process of finding the new vector until the last vector is 

decided. Thus, the computation complexity from Step 3, denoted as CC3, equals 

to 23...)4()3( +++−+− pp . 

We sum up these CCs together to obtain: 

22
2321 223...)3()2( pppppCCCCCCCCC p ≈−=+++−+−+=++=  

Thus, we can obtain the computation complexity of the GSTM algorithm 

approximating to p2 
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3.3.   Interpretation 

Because of the multicollinearity problem, we can’t clearly measure how a single 

variable affects the response. Thus, we must deeply go into the essence of the problem 

to analyze which variable is really important and which variable just “seems” 

important. Through the GSTM algorithm, we can extract really effective variables on 

the response. Not only data vectors drawn from the orthogonal features in the 

Gram-Schmidt Process are orthogonal. More importantly, independence among the 

transformed features, namely, previous called variables, can make every feature show 

its unique effect on the response. This not only overcomes the multicollinearity 

problem but also can clearly measure how a single variable affects the response 

because of independence among them. 

  Let’s complete the final step of the whole analysis procedure of the Longley’s 

dataset. After performing the GSTM algorithm on each cluster, we just can obtain the 

transformation order of the Gram-Schmidt Process with minimized transformation. 

The transformation order is Population, Def, GNP, Year, Unemp, and AF. We use this 

new order to perform the Gram-Schmidt Process, and then we perform regression 

analysis with the orthogonal features. Table 3-1 shows that there are four significant 

orthogonal features, namely, Population, Def⊥, GNP⊥, and AF⊥. It should be noted 

that the vector with the sign “⊥” denotes the vector after orthogonalization. 
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Table 3-1   Summary of Estimated Parameter and P-Value of the Longley’s 

Dataset after performing the GSTM algorithm 

Estim ated  Param eter P-value

In tercep t 65317 2 .04127E-23

Popu lation 13063 .03563 1 .02474E-11

Def⊥ 2044.162416 8 .79963E-05

GNP⊥ 2631.985886 1 .19801E-05

Year⊥ 249 .5562708 0 .434148679

Unem p⊥ -447 .6254268 0 .176076964

AF⊥ -1470 .001863 0 .000944367  

The sample correlation matrix of the Longley’s dataset after performing the 

Gram-Schmidt Process by the order obtained from the GSTM algorithm is presented 

in Table 3-2. It should be noted that the vector with the sign “⊥” denotes the vector 

after orthogonalization. We can see these new data vectors are almost or thogonal. 

Table 3-2   Sample Correlation Matrix of the Longley’s Dataset after 

Performing the Gram-Schmidt Process by the Order Obtained from the GSTM 

Algorithm 

Population Def⊥ GNP⊥ Year⊥ Unemp⊥ AF⊥

Population 1

Def⊥ 1.13798E-15 1

GNP⊥ 2.42861E-15 -1.045E-14 1

Year⊥ 4.13558E-15 -1.12133E-14 -1.89154E-14 1

Unemp⊥ -1.22471E-15 -8.04912E-16 -1.11196E-15 1.13277E-15 1

AF⊥ -1.72085E-15 -1.38778E-15 -9.22873E-16 4.64906E-16 2.2855E-15 1  

Finally, we can interpret the analysis results as below: 

1. Population is the main variable affecting the total employment. We can understand 

that if there are many people in a place in which there will be much employment 

demand. This conjecture is reasonable. Thus, the total employment will be 
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significantly influenced by Population. 

2. After excluding the explanatory power on the total employment from the variable 

Population, Def and GNP are also effective variables on the total employment. We 

can understand that if a country or a region has powerful productivity, namely, a 

country with the high level of GNP, it will have abundant employment demand. 

Thus, the total employment will be also influenced by the two variables Def and 

GNP. 

3. Besides, another effective variable is AF. We can understand that the army could 

provide some employment opportunities for people in some situations. For example, 

if a country decides to extend its scale of army, it will also produce much 

employment demand. Thus, AF also affects the total employment slightly. 
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Chapter 4.   Case Study 

In this chapter, we will demonstrate a case with the multicollinearity problem and 

analyze this case step by step. By the way, we have used the Longley’s dataset as an 

example to go through this thesis and also interpreted meanings behind this case, so 

we will not discuss this case anymore. 

 

4.1. The CDU Dataset 

In semiconductor fabrication, the Critical Dimension Uniformity (CDU) of wafer is 

always an important topic for manufacturers because it will obviously affects the final 

performance of IC products. Thus, how to control this essential factor to improve the 

performance is worthy of discussing. The main factor affecting the within-wafer CDU 

is the temperature control of the post-exposure-bake (PEB) hot plate. Through the 

parameter tunings of the hot plate, we can optimize the CDU, i.e., make the CDU as 

small as possible. But before optimizing the CDU, we must first recognize if there is a 

systematic pattern on the wafer and what kind of a pattern is. 

In order to describe the pattern on the wafer, we develop four features to attempt to 

cover all patterns. The first feature is X which measures if there is a pattern correlated 

with the X-coordinate of each site on the wafer. We use the sample Pearson 

correlation between the CD values of sites and the X-coordinates of sites as an index 
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to measure the relationship between them. Figure 4-1 shows the pattern highly 

correlated with the feature X. 

 

Figure 4-1   The Pattern Highly Correlated with the Feature X 

The second feature is Y which measures if there is a pattern correlated with the 

Y-coordinate of each site on the wafer. Similarly, we use the sample Pearson 

correlation between the CD values of sites and the Y-coordinates of sites as an index 

to measure the relationship between them. Figure 4-2 shows the pattern highly 

correlated with the feature Y. 

 

Figure 4-2   The Pattern Highly Correlated with the Feature Y 

The third feature is Bowl which measures if there is a pattern correlated with the bowl 

shape. Bowl is made by a function consisting of the radiuses of sites. Suppose that 
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Then, we use the sample Pearson correlation between the CD values of sites and B as 

an index to measure the relationship between them. Figure 4-3 shows the pattern 

highly correlated with the feature Bowl. 

 

Figure 4-3   The Pattern Highly Correlated with the Feature Bowl 

The final feature is Donut which measures if there is a pattern correlated with the 

donut shape. Donut is made by a function consisting of the radiuses of sites. Then the 

feature Donut could be obtained: 
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Then, we use the sample Pearson correlation between the CD values of sites and D as 

an index to measure the relationship between them. Figure 4-4 shows the pattern 

highly correlated with the feature Donut. 

 

Figure 4-4   The Pattern Highly Correlated with the Feature Donut 

Besides four pattern features, we need to drill down to zone features divided by the 

hot plate to see which zone is the root cause. Once finding the problematic zone, we 

just can tune the offset to change the CD to make the CDU as small as possible. 

Figure 4-5 shows 7 zones divided by the hot plate.  

 

ch1

ch2

ch3

ch4

ch6

ch7ch5

Pattern area

Wafer Size

ch1

ch2

ch3

ch4

ch6

ch7ch5

Pattern area

Wafer Size

ch1

ch2

ch3

ch4

ch6

ch7ch5 ch1

ch2

ch3

ch4

ch6

ch7ch5

Pattern area

Wafer Size



 64

Figure 4-5   7 Zones Divided by the Hot Plate 

According to the defined area of each zone, we can define 7 zone features. Suppose 

that the number of sites is n, and then the zone feature is defined as: 

nij
ji

zij 1,..., and   1,...,7for 
otherwise   0

    zonein  located is siteth  if   1
==

⎩
⎨
⎧

=            (4.3) 

The same, we use the sample Pearson correlation between each zone feature between 

the CD values as an index to measure the relationship between them  

We take a set of the CD values with 577 sites as the response, as showed in Figure 

4-6. 

 

Figure 4-6   The Scatter Plot of 577 Sites by 7 Zones 

Table 4-1 shows the sample correlation matrix with the response, CD, arranged in the 

first columns and four pattern features, X, Y, Bowl, and Donut, arranged in the 

remaining four columns. 
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Table 4-1   Sample Correlation Matrix of CD and Four Pattern Features 

CD X Y Bowl Donut

CD 1

X -0.00781 1

Y -0.09175 4.46E-18 1

Bowl -0.35187 0.049993 0.053056 1

Donut 0.17766 -0.06884 -0.07306 -0.45493 1  

We can see that X and Y are almost orthogonal already and Bowl and Donut are 

negatively correlated with each other. Thus, for four pattern features, we cluster 

features. Figure 4-6shows the percentage of variance explained. According to the 

evaluation way we suggest, the optimal number of clusters should be 3. 

 

Figure 4-7   % Variance Explained of Four Pattern Features 

Combining the tree view of four pattern features, as showed in Figure 4-8, we rank 

three clusters by their R2 values. 
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Figure 4-8   Tree View of Clusters and R2 Values Corresponding to Each 

Cluster of Four Pattern Features 

After performing the GSTM algorithm for each cluster, we obtain a sequence order, 

Bow, Donut, Y, and X, for the Gram-Schmidt Process. With the orthogonalized 

vectors, we perform regression analysis. Table 4-2 shows the summary of estimated 

parameters and p-values in regression. It should be noted that the vector with the sign 

“⊥” is the vector after vector orthogonalization. 

Table 4-2   Summary of Estimated Parameter and P-Value of Four Pattern 

Features after performing the GSTM algorithm 

Estimated Parameter P-Value

Intercept 51.39839272 0

Bowl -2.251727421 2.8353E-18

Donut⊥ 0.126370877 0.612907428

Y⊥ -0.462104575 0.064676417

X⊥ 0.066746088 0.789283981  

We can interpret the analysis result, as below: 

1. In this case, the main variable affecting the response, i.e., the CD values, is the 

feature Bowl. 

2. Basically, X and Y are already almost orthogonal and X and Y are lowly correlated 



 67

with Bow and Donut before vector orthogonalization. Thus, after vector 

orthogonalization, it will not change the explanatory powers of X and Y severely. 

If we use the R.M. Johnson method to transform the four features, the result is showed 

in Table 4-3. 

Table 4-3   Summary of Estimated Parameter and P-value of Four Pattern 

Features after performing the R.M. Johnson Method 

Estimated Parameter P-value

Intercpet 51.39839272 0

X* 0.01655554 0.947149

Y* -0.516539188 0.038985

Bowl* -2.152456436 6.46E-17

Donut* 0.635677693 0.011147  

Although Y*, Bowl*, and Donut* is significant in regression analysis, but there 

orthogonalized vectors are not interpretable. 

 

 

 

 

 

 

 

 



 68

Chapter 5.   Conclusion 

5.1.   Conclusion 

From the Gram-Schmidt Process to the R.M. Johnson method, researchers attempt 

many methods to solve the multicollinearity problem due to small angles among data 

vectors. But unfortunately, these two methods still have their respective shortcomings, 

including the Gram-Schmidt Process’s lack of meaningful orthogonalization order and 

the R.M. Johnson method’s lack of interpretation for highly dependent data vectors.  

Thus, we develop an algorithm, called the GSTM algorithm, to determine the 

transformation order of the Gram-Schmidt Process with minimized transformation. 

This proposed algorithm not only overcomes the multicollinearity problem and 

minimizes information subtraction during the vector projection process but also 

makes the analysis result can be interpreted meaningfully. We also use an example to 

go through this thesis and demonstrate our idea about the algorithm by this example. 

The following are contributions from this proposed algorithm: 

1. We propose a systematic algorithm to determine the transformation order of 

Gram-Schmidt Process with minimized transformation. 

2. This algorithm makes minimum information subtraction during the vector 

projection process 

3. The analysis results can be interpreted easily and meaningfully. 
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5.2.   Future Research 

After addressing the advantages of this algorithm, we think that maybe this 

algorithm can be applied to or replace other statistical methods. Thus, we think that 

the GSTM algorithm maybe can replace Forward Regression. This is a new idea for 

variable selection. We know that Forward Regression select one variable according to 

its partial F-value. But this procedure is very time-consuming. Because we need to 

calculate many partial F-values until one of these partial F-values meets one given 

criterion. 

In fact, after we group features, or called variables, into several clusters, features in 

the same cluster not only have the lowest dissimilarities but also can be treated as 

having explanatory power in the same level; while features from different clusters not 

only have the highest dissimilarities but also can be treated as having explanatory 

power in different levels. From every cluster, which represents a kind of level of 

explanatory power, maybe we just need to select significant features with potential 

influences and eliminate insignificant features without potential influences. Somehow 

this is also a kind of variable selection! 

Taking the Longley’s dataset as an example, Table 3-1 shows that there are 

potential influences in the four variables, Population, Def, GNP, and AF. Thus, we 

maybe could just select the four independent variables as effective variables on the 
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dependent variable without performing Forward Regression. If there are researchers 

interested in this topic, maybe this is a worth research direction. 
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