
 

 

國立臺灣大學管理學院資訊管理學研究所 

博士論文 

Department of Information Management 

College of Management 

National Taiwan University 

Doctoral Dissertation 

 
 
 

時間序列資料庫之封閉性樣式探勘 

Mining Closed Patterns in Time-Series Databases 

 

 
 

吳惠雯 

Huei-Wen Wu 

 
 

指導教授：李瑞庭 博士 

Advisor: Anthony J. T. Lee, Ph.D. 

 
 

中華民國 99 年 1 月 

January, 2010 

國

立

臺

灣

大

學 

資
訊
管
理
學
研
究
所 

博
士
論
文    

時
間
序
列
資
料
庫
之
封
閉
性
樣
式
探
勘         

吳
惠
雯  

撰   

99
1 



 

 

國立臺灣大學管理學院資訊管理學研究所 

博士論文 

Department of Information Management 

College of Management 

National Taiwan University 

Doctoral Dissertation 

 

時間序列資料庫之封閉性樣式探勘 

Mining Closed Patterns in Time-Series Databases 

 

 

 

吳惠雯 

Huei-Wen Wu 

 

 
指導教授：李瑞庭 博士 

Advisor: Anthony J. T. Lee, Ph.D. 

 

中華民國 99 年 1 月 

January, 2010



 

 

時間序列資料庫之封閉性樣式探勘 

Mining Closed Patterns in Time-Series Databases 

 

 

 

 

By Huei-Wen Wu 

 

 

 

A dissertation submitted to  

the Graduate School of Information Management 

of National Taiwan University 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

 

 

 

 

 

January, 2010 



 

 



 

 

謝辭 

 三年半的求學生涯即將在論文完成之際劃下完美的句點，看著投注所有心力

的研究成果，心中備感欣慰及榮耀。回首過去苦澀艱辛的日子，一切都是值得與

甘美的。 

這一路走來，衷心感謝指導教授李瑞庭老師，在論文研究過程中細心、耐心

地給予殷殷指導，每當我遇到瓶頸時，老師總能引領我分析、思考與解決問題，

並提出許多建議，幫助我克服許多困難，讓我得以順利完成論文。老師對研究認

真、熱忱、嚴謹的態度，以及對學生的親切關懷，更是我學習的最佳典範。另外，

我要特別感謝系上謝清佳老師，謝老師不僅在知識層面上給予我許多啟發，也提

升了我心靈層面上的體悟，而謝老師對我的鼓勵與肯定，更給予我繼續堅持的勇

氣與信心。 

論文口試期間，承蒙口試委員魏志平老師、諶家蘭老師、呂永和老師及陳建

錦老師的悉心指正及建議，使得論文更臻完善與嚴謹，在此謹致上最誠摯的謝意。 

 求學期間，感謝一直陪伴在我身邊的好友們嘉韡、柏吟、及明俊，不時為我

加油打氣、給予協助，令我感動至深。另外，感謝實驗室的同儕及學弟妹，帶給

我許多溫暖及歡樂。 

在此，我謹將論文獻給我最敬愛的父親及母親，感謝父親對我的關愛及栽培，

讓我能心無旁鶩地在學業上衝刺；感謝母親時時刻刻陪伴在我身旁，不斷地鼓勵、

安慰及包容，讓我更有力量去面對挑戰，也感謝最疼愛我的哥哥，在我苦惱煩悶

時，總是不厭其煩地傾聽與開導，讓我能保有開朗的心情，在此衷心感謝家人為

我付出的一切。 

最後，感謝老天的眷顧，豐富了我生命的版圖。 

 

 

吳惠雯 謹識 

          于國立台灣大學資訊管理學研究所 

          中華民國九十九年一月 

 



 

i 
 

論文摘要 

論文題目：時間序列資料庫之封閉性樣式探勘 

作者：吳惠雯           九十九年一月 

指導教授：李瑞庭 博士 

 

 近年來，探勘封閉性樣式已成為知識探索領域中重要的研究議題，其主要目

的在於找出隱藏在大量資料中具有代表性的樣式。本論文針對如何從時間序列資

料庫中探勘封閉性樣式，提出了三個有效率的演算法，分別為 CMP (Closed 

Multi-sequence Patterns mining)、 CFP (Closed Flexible Patterns mining)與 CNP 

(multi-resolution Closed Numerical Patterns mining)。 

 CMP 演算法主要著重於多時間序列資料庫中樣式的分析，而 CFP 演算法可從

時間序列資料庫中探勘具「彈性間隔」的封閉性樣式。CMP 與 CFP 演算法先將時

間序列轉換成符號序列，然後再探勘封閉性樣式。將時間序列轉換成符號序列可

減少雜訊並簡化探勘程序，然而可能導致樣式遺失或差異很大的序列卻支持相同

樣式的問題。 

    為避免將時間序列轉換到符號序列所造成的問題，CNP 演算法可從多時間序

列資料庫中直接找出具有代表性的樣式。此外，CNP 演算法加入多層解析度 

(multi-resolution)的概念以找出封閉性樣式，可讓使用者以不同的觀點來檢視資

料。 

 上述三個演算法皆以深度優先探勘的方式，並配合投影資料庫以減少搜尋空

間，除了加速探勘的過程外，透過有效的修剪策略及檢查封閉性的機制，可避免

產生不必要的候選樣式。 

本研究結果顯示 CMP 演算法比改良式 Apriori 以及 BIDE 演算法快了數十倍; 

CFP 演算法比改良式 Apriori 演算法更有效率; CNP 演算法執行速度亦較改良式

A-Close 演算法快。 

 

關鍵詞: 資料探勘、封閉性樣式、時間序列資料庫。 
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Dissertation Abstract 

Mining Closed Patterns in Time-Series Databases 

 

By Huei-Wen Wu 

JANUARY 2010 

ADVISOR: Dr. Anthony J. T. Lee 

 

Closed pattern mining is a critical research issue in the area of knowledge 

discovery and data mining with the aim of discovering interesting patterns hidden in a 

large amount of data. In this dissertation, we propose three algorithms, called CMP 

(Closed Multi-sequence Patterns mining), CFP (Closed Flexible Patterns mining), and 

CNP (multi-resolution Closed Numerical Patterns mining) to solve various issues 

extended from the problem of mining closed patterns. 

The CMP algorithm is designed to find closed patterns in a multi-sequence 

time-series database. The CFP algorithm is developed to solve the problem of mining 

closed flexible patterns in a time-series database. Both the CMP and CFP algorithms 

involve a transformation of time-series sequences into symbolic sequences in the first 

phase. Although analyzing on symbolic sequences is ideal to reduce the effect of noises 

and ease the mining process, these approaches may lead to pattern lost and the 

sequences supporting the same pattern may look quite different. 

To overcome the problem raised in symbolic sequence analysis, the CNP algorithm 

is proposed to mine closed patterns without any transformation from time-series 

sequences to symbolic sequences. The method also employs the Haar wavelet transform 

to discover patterns in the multiple resolutions in order to provide different perspectives 

on datasets. 

All the proposed algorithms have employed the concept of projected databases to 

localize the pattern extension that leads to a significant runtime improvement. Moreover, 
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effective closure checking schemes and pruning strategies are devised respectively in 

each of the proposed algorithms to avoid generating redundant candidates. 

The experimental results show that the CMP algorithm significantly outperforms 

the modified Apriori and BIDE algorithms. The CFP algorithm achieves better 

performance than the modified Apriori algorithm in all cases. And, the CNP algorithm 

has demonstrated a significant runtime improvement in comparison to the modified 

A-Close algorithm. 

 

Keywords: Data mining, closed pattern, time-series database. 
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Chapter 1 Introduction 

Insightful analysis of business trends and accurate forecasts of future patterns are 

critical strategic weapons which can be used to build competitive advantages for 

individuals or enterprises. These trends or patterns are usually hidden in a large amount 

of data and have not yet been articulated. Thus, mining such patterns has become a 

critical research area in recent years. 

Data mining is a process of extracting or mining meaningful patterns from large 

amounts of data [19]. In this discipline, one major line of research aims at developing 

efficient algorithms for mining frequent patterns. A pattern is frequent if its support is 

not less than a user-specified minimum support threshold, where the support of a pattern 

is defined as the number of transactions containing the pattern in the database. Mining 

such frequent patterns helps decision-makers to perceive significant relationships 

hidden within data and assists in solving problems for various domains, such as finance, 

medical science, marketing, biology, meteorology, etc. 

Several main streams of pattern mining, such as time-series mining, sequential 

pattern mining, have been introduced to cope with different types of datasets in mining 

frequent patterns. Time-series mining methods incorporate concrete notions of time in 

the process of finding patterns. Previous studies in this field include searching similar 

patterns in time-series databases [1], matching query patterns in time-series databases 

[17][25], and mining long periodic patterns [18]. Regardless of notions of time, 

sequential pattern mining methods consider only order of events in data. A wide range 

of problems derived from classic sequential pattern mining are investigated, such as 

mining long sequential patterns [45], mining patterns with quantities [27], and mining 

inter-sequence patterns [60]. 

Although frequent pattern mining has played a pivotal role in the field of data 

mining, it suffers from two disadvantages: (1) the number of frequent patterns 

discovered may be overwhelming and it is hard for users to comprehend and (2) it 
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consumes more time and space to mine all frequent patterns. To overcome these 

disadvantages, closed pattern mining has been proposed to condense the frequent 

patterns while preserving the same information. A closed pattern is defined as a pattern 

that is frequent and has no super-pattern with the same support. Generally speaking, the 

algorithms of mining closed patterns are more efficient than those of mining frequent 

patterns [43][44]. Moreover, mining closed patterns is lossless because a complete set of 

frequent patterns and their exact supports can be derived from the closed patterns mined. 

Therefore, closed pattern mining is an alternative approach that preserves the same 

information as frequent pattern mining but provides a succinct and yet more efficient 

solution.  

In this dissertation, we focus on the problem of mining closed patterns in 

time-series databases in three aspects. The first aspect is to mine closed multi-sequence 

patterns in multi-sequence time-series databases. A multi-sequence time-series database 

is a database that contains time-series records (or transactions), where each transaction 

contains multiple time-series sequences. The second is to mine closed flexible patterns 

in time-series databases. The third is to mine multi-resolution closed numerical patterns 

in multi-sequence time-series databases. 

In this chapter, the motivations of the dissertation are discussed in Section 1.1, the 

contributions are presented in Section 1.2, and the dissertation layout is organized in 

Section 1.3. 

 

1.1 Motivations 

In the field of medical science, chronic liver disease is one of the major health 

problems in Asia. Most patients routinely take blood tests to determine the level of liver 

enzymes, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) 

in order to diagnose their liver cell damage. The measurements of these two liver 

enzymes have been widely recognized as the indicators of liver disease [3][34][49]. 
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According to [34], elevated ALT and AST are associated with a significantly increased 

standardized mortality ratio. Pockros et al. [48] evaluated the effect of oral IDN-6556, 

an antiapoptotic caspase inhibitor, on the patients with elevated ALT and AST, where 

the levels of both liver enzymes were recorded in two time-series sequences. The result 

indicated that IDN-6556 progressively lowered the ALT and AST levels of the patients 

in a treatment period of 14 days.  

Many diseases are believed to be associated with different indicators. If we could 

identify which indicators are likely to relate to a disease, we could routinely track the 

measurements of these indicators to prevent the illness or to predict the possible risks.  

We further speculate other real-world applications that need the closed patterns of 

multi-sequence time-series transactions. In the field of seismology, earthquake 

prediction is still the greatest challenge. Song et al. [51] analyzed the groundwater 

anomaly before and after the Chi-Chi Earthquake in Taiwan and found that groundwater 

level and groundwater chemistry can be used to forecast earthquakes. We have doubted 

whether there is a pattern that corresponds to an unusual event before earthquakes. Thus, 

we may focus on the factors like changes in groundwater levels, changes in the 

concentration of anions in groundwater, etc. We could visualize a database with 

historical earthquake records where each record contains two sequences: the values of 

ground water level and the values of anion concentration in ground water and these 

values are recorded on a daily basis for a month before an earthquake takes place. We 

may apply the CMP algorithm to discover meaningful patterns and expect that these 

patterns could help seismologists predict earthquakes. 

In microelectronics, wafers are the critical components in the fabrication of 

semiconductor devices. To manufacture such components, many factors are taken into 

consideration, including temperature and humidity [42]. Manufacturers usually rely on 

past experience to determine the adequate temperature and humidity in order to produce 

high quality wafers. In order to address the issue of finding the adequate temperature 
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and humidity, we may apply the CMP algorithm to mine time-series patterns from a 

database where each record contains both temperature and humidity readings (multiple 

sequences) during the process of producing a wafer in a semiconductor facility. 

Accordingly, based on the frequency of these patterns, we can determine the acceptable 

range of temperature and humidity to produce the best wafer.  

Likewise, weather forecasts are required to predict the possibility of deteriorating 

weather conditions, especially approaching tornados or hurricanes. However, making 

such accurate predictions is difficult because many factors are involved, such as 

temperature, humidity, pressure, etc [2]. If we could recognize what conditions are 

likely to cause a tornado or a hurricane, we could take actions before the storm arrives, 

and save a lot of costs or lives. 

Therefore, these applications have inspired us to propose an algorithm, called CMP, 

to efficiently mine closed patterns in time-series databases, where each transaction in 

the database contains multiple time-series sequences. For example, Fig. 1.1 shows an 

example database containing three transactions, where each transaction contains two 

time-series sequences. 

 

Transaction 1 
Sequence 1 -2.50 0.33 1.80 -3.90 -0.21 -0.08

Sequence 2 -0.41 -0.25 -0.54 -1.39 0.23 -0.88

Transaction 2 
Sequence 1 -7.80 6.52 0.17 -3.68 0.19 0.02

Sequence 2 -0.06 -2.89 0.13 4.30 0.42 -0.47

Transaction 3 
Sequence 1 -2.42 5.37 -1.84 -3.55 0.32 -4.64

Sequence 2 -0.42 3.12 0.11 -0.99 0.39 -5.97
Fig. 1.1. A database containing three multi-sequence transactions.  

 

The CMP algorithm consists of three phases. First, we transform every sequence in 

the time-series database into the Symbolic Aggregate approXimation (SAX) 

representation [37]. Second, we scan the transformed database to find all frequent 
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1-patterns (the patterns of length one), and build a projected database for each frequent 

1-pattern, where the projected database of a pattern comprises all transactions 

containing the pattern. Third, for each frequent pattern found, we recursively use its 

projected database to generate its frequent super-patterns in a depth-first search manner. 

Moreover, we apply some closure checking and pruning strategies to prune frequent but 

non-closed patterns during the mining process. By using the projected databases, the 

CMP algorithm can localize support counting, candidate pruning, and closure checking 

in the projected databases. Therefore, it can efficiently mine the closed patterns from a 

time-series database. 

Most previous studies [45][61][66] require exact sequence alignments in 

discovering patterns from sequence databases. However, they are not capable of dealing 

with noisy environments, such as a set of deviated sequences in a database. In order to 

address this issue, we incorporate the idea of allowing flexible gaps between items in a 

pattern. For example, a[0, 3]b is a flexible pattern where the number of gaps between a 

and b ranges from 0 to 3. Mining such sequential patterns with flexible gaps can provide 

decision-makers a broader view on data. For example, given a web log recording URL 

that each user visits at each minute, a web analyzer would like to determine how many 

users spend less than 5 minutes browsing web page A before switching to web page B. 

That can be denoted as a flexible pattern A[0, 5]B, which means that users who are 

browsing web page A are likely to traverse to web page B within 5 minutes. However, 

the previously proposed approaches cannot mine such a pattern since they can only 

mine the patterns to show that users browse web page A before web page B [35]. 

The subprime mortgage crisis in the United States has had a major impact on house 

prices and stock markets worldwide [5]. How house price index varies over time since 

the outbreak of the subprime crisis would become a major concern for consumers. In 

this case, we could analyze the house price index data to see if there is a significant 

variation in house price for all cities in the United States. Since the timing of house 
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price declination or acceleration is different among cities, no patterns may be 

discovered by traditional pattern mining. Dealing with flexibility, we aim to give 

consumers a big picture on the underlying trend in house prices. 

Inspecting whether the crime rate increases or drops in the same trend among 

different cities in a country provides polices a clue to find the major causes, such as 

unemployment, economic recession, drugs prevailing, etc. A flexible pattern found 

could be “south cities increase in crime lagged behind the rise in the north cities’ crime 

rate for several months when unemployment rate drops sharply”. However, traditional 

data mining techniques, such as clustering analysis, association rule mining, and 

sequential pattern mining, are not capable of retrieving such information [9]. 

Effective inventory control is vital to the success of the business in many industries. 

For example, predicting the bestselling books at the right time and ensuring sufficient 

inventory have a major impact on profitability for a book store. An interesting flexible 

pattern could be “if a book has been made into a movie, it is likely that the movie will 

resurrect the sales of the book; the book would become the bestseller in one or two 

weeks after the movie is in theatres”. Since none of the previously developed algorithms 

consider flexibility in the mining process, they are not capable of discovering such a 

pattern. 

The problems outlined above have sparked our motivations to extend the problem 

of closed pattern mining to a second aspect; therefore, the second algorithm, called CFP, 

is designed to mine closed flexible patterns in a time-series database. 

The CFP algorithm has three phases involved in mining closed flexible patterns in a 

time-series database. Given a time-series database, we first transform it into a symbolic 

database based on the SAX representation [37]. From the transformed database, we 

recursively mine closed flexible patterns in a depth-first search manner. Specifically, we 

first obtain all frequent patterns of length one (frequent 1-patterns) and meanwhile, we 

build a projected database for each 1-pattern. Then, we grow each frequent k-pattern p 
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by joining it to each nominee in p’s projected database, where a k-pattern is a pattern of 

length k, a nominee is a frequent 1-pattern in the projected database, and the number of 

gaps between p and the nominee is bounded by a user-specified maximum gap threshold. 

The process is repeated until no more closed flexible patterns can be generated. 

Both the CMP and CFP algorithms involve a transformation of time-series 

sequences into symbolic sequences in the first phase. Although analyzing on symbolic 

sequences is ideal to reduce the noises and ease the mining process, these approaches 

may lead to pattern lost and the sequences supporting the same pattern may look quite 

different. 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

Fig. 1.2. Multi-sequence time-series X, Y, and Z. 

 

In the SAX representation, two closed values may fall into different symbols if a 

breakpoint is set in between them. For example, the values 0.42 and 0.43 are very close 

to each other but they are assigned to different symbols if the breakpoint is set to 0.43. 

Let the breakpoints be -0.43 and 0.43 in the SAX representation, that is, we assign 

symbol a to each value less than -0.43, symbol b to each value greater than or equal to 

-0.43 and less than 0.43, and symbol c to each value greater than or equal to 0.43. As 
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shown in Figs. 1.2a, 1.2b, and 1.2c, three multi-sequences have the same pattern 

⎭
⎬
⎫

⎩
⎨
⎧

cb
aa

b
b

aba
bbc

. However, multi-sequence Z is quite different from X and Y. 

To overcome the issue raised in symbolic sequence analysis, we have intrigued to 

mine closed patterns directly from the raw data. That is, we mine the patterns without 

any transformation from numerical values to symbols. For the sequences shown in Figs. 

1.2a and 1.2b, we will have the pattern 
⎭
⎬
⎫

⎩
⎨
⎧ −−−

−−−
−

8.02.0
6.05.0

4.0
1.0

5.03.06.0
2.04.05.0

 

since both sequences of X and Y are close to each other. 

Visualizing data in the multiple resolutions helps decision-makers to make 

high-quality decisions. The multi-resolution views provided by Discrete Wavelet 

Transformation (DWT), such as the Haar wavelet transform, improve visualization and 

make patterns, trends, surprises, and relationships easier to identify [50]. Figs. 1.2a, 

1.2b, and 1.2c show time-series X, Y, and Z in the high resolution, respectively, whereas 

Figs. 1.2d, 1.2e, and 1.2f show the transformed time-series X, Y, and Z in the low 

resolution, respectively. As observed, different perspectives of data are captured in 

different resolutions; the time-series in the low resolution show overall trends, whereas 

the time-series in the high resolution involve some fluctuations and reveal more detailed 

information. This awareness has motivated us to integrate the concept of 

multi-resolution visualizations in the mining process. 

Therefore, we propose an algorithm, called CNP, for mining multi-resolution 

closed numerical patterns in a time-series database, where each time-series consists of 

multiple sequences. Given a time-series database, we first apply the Haar wavelet 

transform [19] to convert each time-series in the database into a sequence in the low 

resolution. Second, we find all frequent patterns of length one (frequent 1-patterns) from 

the transformed database (low resolution). Third, we recursively extend each frequent 

k-pattern to form frequent (k+1)-patterns. Subsequently, we restore closed patterns back 

to the high (original) resolution. Finally, we obtain all closed patterns in the low and 
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high resolutions. The advantage of applying a wavelet transform on data is that we can 

view data from different perspectives by discovering patterns in different resolutions. 

Moreover, we have shown that the mining process is speeded up and the final outcomes 

would be the same as those without wavelet transform. 

To inspire the study of the CNP algorithm, let us consider the following examples. 

Initially, a hospital has applied the CNP algorithm to visualize the medical data related 

to disease X and find significant patterns in different resolutions about symptoms, such 

as a pattern found in the low resolution could be “body temperature movements appear 

to be cyclic and meanwhile the blood pressure remains high in the first few weeks”, 

whereas a pattern found in the high resolution could be “body temperature remains 

above normal for four consecutive days and drops in the normal range for five 

consecutive days and then increases again. Meanwhile, the blood pressure has little 

fluctuations throughout the day but shows an increasing trend in overall”. To diagnose 

whether a patient has disease X, a doctor may first use the pattern in the low resolution 

to reject the possibility if the patient’s symptoms do not conformed to the pattern. 

Otherwise, the doctor may take a closer look on the pattern in the high resolution to 

confirm the diagnosis. 

Let us consider a case of embracing the use of the CNP algorithm in the business 

world. Corporation W has over hundred fast food chain stores. In order to improve the 

operational efficiency and assist managers in decision making, data analyzers apply the 

CNP algorithm to find patterns in a database where each record in the database 

represents a branch and each record contains two sequences: the number of customers 

and the delay to fulfill the meal order and these values are recorded on a hourly basis for 

each day. Since the CNP algorithm is able to generate patterns in the multiple 

resolutions, decision-makers can focus on a targeted area of their interests. For instance, 

the chief executive officer (CEO) of the corporation may be only interested in a broader 

view on data, and hence he/she focuses on the patterns found in the low resolution, 
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whereas the branch managers may concern more detail information in data and thus 

they concentrate on the patterns found in the high resolution. These patterns may help 

the corporation to make staffing decisions and improve service delivery efficiency. As 

seen from the above examples, the study on mining patterns in the multiple resolutions 

can be used for many real-world applications.  

The choice of symbolic or numerical methods depends on the visualizations 

required by the users or the applications in different areas. For instance, we may apply 

the symbolic method to discover patterns in the fields of finance or meteorology 

because users simply demand an overview of trends, whereas in the field of medical 

science or disaster forecasting (e.g. hurricane), the numerical method is adopted because 

doctors or experts need rigorous patterns that can help them to diagnose diseases or 

predict disasters.  

 

1.2 Contributions 

The work of the CMP algorithm in this dissertation has been published on Data and 

Knowledge Engineering Journal [32] and the work of the CFP algorithm has been 

published on Expert Systems with Applications Journal [64]. We summarize the 

contributions of this dissertation as follows. 

1. A novel concept of mining closed multi-sequence patterns from a time-series 

database is presented.  

2. An efficient algorithm, called CMP, is proposed to mine closed multi-sequence 

patterns and it requires only one database scan and can localize support 

counting, candidate pruning, and closure checking in the projected databases. 

Therefore, it can efficiently mine closed patterns. 

3. The innovative idea of using flexible-range of consecutive gaps is stated to 

overcome the limitations of exact sequence alignments.  

4. A novel algorithm, called CFP, is proposed to mine closed flexible patterns in a 
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time-series database and two pruning strategies and a closure checking scheme 

are designed to reduce the search space and thus speed up the algorithm. 

5. To overcome the issue raised in the symbolic sequence mining, we tackle the 

problem of mining numerical patterns in a time-series database. 

6. A novel algorithm, called CNP, is proposed to mine multi-resolution closed 

numerical multi-sequence patterns in a time-series database. It integrates the 

concept of the Haar wavelet transform to mine patterns in different resolutions. 

It also adopts two pruning strategies to accelerate the mining process. 

7. The performance of the proposed algorithms is evaluated with both synthetic 

and real datasets. The experimental results show that the CMP algorithm 

outperforms the modified Apriori and BIDE algorithms by one or two orders of 

magnitude; the CFP algorithm outperforms the modified Apriori algorithm by 

an order of magnitude; and the CNP algorithm outperforms the modified 

A-Close algorithm by one or two orders of magnitude. 

 

1.3 Dissertation layout 

The remainder of this dissertation is organized as follows. Chapter 2 provides a 

literature review to support the study undertaken in this dissertation. Chapter 3 presents 

the CMP algorithm for mining closed multi-sequence patterns. Chapter 4 introduces the 

CFP algorithm for mining closed flexible patterns. Chapter 5 explains the CNP 

algorithm for mining multi-resolution closed numerical patterns. Chapter 6 illustrates 

the performance evaluation of the proposed algorithms. Finally, we conclude our works 

and suggest some future research directions in Chapter 7. 
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Chapter 2 Literature Review 

In this chapter, a review of existing studies is presented to support the research 

undertaken in this dissertation. 

 

2.1 Time-series mining 

A time-series database consists of sequences of values (or events) changing over 

time. The values are typically measured at equal time intervals [19]. The analysis of 

time-series is often associated with the discovery of patterns, such as query matching 

patterns, periodic patterns, and similar patterns, etc. 

To find patterns in a time-series database, Faloutsos et al. [17] proposed a method 

to find the subsequences similar to the query pattern in the database. Kontaki et al. [28] 

used the IDC-index to provide an efficient access method for query processing. Berndt 

and Clifford [6] presented a dynamic programming approach to find patterns in a 

time-series database. Lee et al. [33] developed a method to find fuzzy candlestick 

patterns for financial prediction. Teoh et al. [59] proposed a hybrid fuzzy time-series 

model, which combines cumulative probability distribution approach and rough set rule 

induction to forecast stock markets. Han et al. [18] designed an algorithm to find 

periodic patterns. Yang [67] showed an approach to detect intrusions. Takeuchi and 

Yamanishi [58] proposed a probabilistic model for detecting outliers and change points 

from time-series databases. Wang et al. [63] presented an approach to derive group 

patterns of mobile users based on their movement data. 

 

2.2 Sequential pattern mining 

Sequential pattern mining has emerged since Srikant and Agrawal [52] first defined 

the problem of mining sequential patterns in 1995. The GSP algorithm [54] adds time 

constraints to find all sequential patterns. However, it suffers from poor performance 

with respect to long sequences. Han et al. [20] introduced the idea of data projection and 
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developed the FreeSpan algorithm to recursively mine sequential patterns. Pei et al. [45] 

proposed the PrefixSpan algorithm for mining long sequential patterns in large sequence 

databases. It continuously mines the patterns from projected databases, which speed up 

the candidate subsequence generation. Kim et al. [27] considered the importance of 

quantitative information associated with each item. They extended naïve algorithms, 

both Apriori and PrefixSpan, to mine sequential patterns with quantities. Wang and Lee 

[60] presented an approach, called EISP-Miner, to mine inter-sequence patterns, where 

they considered not only the relationships between items in a sequence but also the 

relationships between sequences in inter-sequence patterns. Masseglia et al. [39] pushed 

the time constraints into the process of mining sequential patterns. They built sequence 

graphs with respect to the constraint of window size and gap constraints, and used them 

to count the support of each candidate pattern. Chu et al. [13] proposed an algorithm, 

called EFI-Mine, to mine emerging frequent patterns from data streams. The EFI-Mine 

algorithm is to find patterns that are infrequent in the previous time window and may 

become frequent in the following time windows. Masseglia et al. [40] presented an 

algorithm for incremental mining of sequential patterns when new transactions are 

added to the database. Lee and Wang [31] developed a method for mining calling path 

patterns in GSM networks. Chen and Hsu [10] proposed an approach to discover 

tree-like patterns in a large dataset. Other researchers adopted different representations 

to improve the efficiency of mining long sequential patterns. SPADE [69] is based on a 

vertical id-list format and uses a lattice-theoretical approach to decompose the original 

search space into smaller spaces. SPAM [4] adopts a vertical bitmap representation. It 

has been shown that SPAM is more efficient in mining long sequential patterns than 

SPADE and PrefixSpan; however, it consumes more space. Lin et al. [38] presented the 

METISP algorithm to mine sequential patterns with various time constraints, including 

minimum gaps, maximum gaps, exact gaps, sliding windows, and durations. They also 

introduced the idea of using time-indexes to minimize the search space of potential 
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patterns. 

Recently, several variations and applications on sequential pattern mining are 

proposed. Perera et al. [47] analyzed online collaborative learning data and exploited 

group interactions in order to improve the teaching activities. They have applied 

clustering and sequential pattern mining in seeking interesting patterns. Huang et al. [23] 

considered both time and location information and developed a framework to mine 

sequential patterns in a large spatio-temporal database. Peng and Liao [46] believed that 

events may occur in multiple domains and thus they introduced a novel mining task, 

called the multi-domain sequential pattern mining problem. Chen and Huang [11] 

applied a concept hierarchy and fuzzy techniques for mining fuzzy multi-level 

sequential patterns. Although the performance of their method is worse than the 

traditional models, they could discover more interesting patterns. Huang et al. [22] 

proposed a progressive algorithm, called Pisa, to mine sequential patterns in both 

dynamic and static types of databases. 

 

2.3 Closed pattern mining 

A closed pattern is defined as a pattern that is frequent and has no super-pattern 

with the same support. The concept of mining closed patterns has been proposed to 

avoid unnecessary frequent patterns while preserving the same information. Pasquier et 

al. [43] proposed an algorithm, called A-Close, which adopts the same join step as the 

Apriori algorithm to form candidate generators and then compute closures of these 

generators to find all frequent closed itemsets. Although some pruning strategies have 

been employed, the cost of candidate generation and closure computation still lead to an 

efficiency bottleneck. To reduce the memory and search space for closure checking, 

TFP [21] adopts a two-level hash indexed tree structure to store the already mined 

closed itemset candidates. CHARM [70] adopts a vertical data format to mine closed 

itemsets and uses four pruning properties to remove non-closed itemsets. The CLOSET 
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[44] and CLOSET+ [62] algorithms both adopt the FP-growth framework to find 

frequent closed itemsets, where a FP-tree is built to speed up pattern discovery. Yan et al. 

[66] proposed an algorithm, called CloSpan, for mining closed sequential patterns. It 

first generates a set of closed candidates stored in a hash indexed tree and then performs 

post-pruning on those candidates. Because CloSpan needs to maintain the set of closed 

candidates, it consumes a large amount of memory for closure checking. Wang and Han 

[61] introduced an algorithm, called BIDE, for mining closed sequential patterns 

without maintaining candidates. They used forward and backward directional extension 

checking to perform closure checking and to prune the redundant patterns in the mining 

process. Lee et al. [30] introduced a method, called ICMiner, that efficiently mines 

closed inter-transaction itemsets. ICMiner involves the concept of an ID-tree and 

domain attributes and applies effective pruning strategies to avoid generating 

unnecessary candidates. In order to meet the dynamic characteristic of online data 

streams, Li et al. [36] proposed an algorithm, called NewMoment, to mine closed 

patterns. The NewMoment algorithm uses an effective bit-sequence representation to 

simplify the support calculation, and hence results in less memory and execution time. 

Ji et al. [24] introduced the idea of partitioning the original data sets to accelerate the 

task of mining frequent closed patterns on dense data sets. Yuan et al. [68] proposed an 

algorithm, called CISpan, to find closed sequential patterns in an incremental database. 

The key idea is to build an incremental lattice to store current closed patterns and handle 

the insertion and the removal of sequences using different strategies, such as merge and 

split. Chang et al. [8] presented an effective algorithm to mine closed sequential patterns 

over sliding windows in a data stream environment. They designed a synopsis structure 

IST to store closed sequential patterns in memory and adopted some strategies to prune 

search space. 
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2.4 SAX representation 

The objective of the Symbolic Aggregate approXimation (SAX) representation [37] 

is to transform a time-series sequence into a symbolic sequence. The method contains 

two steps as follows. 

In the first step, a time-series of length n is divided into m equal segments, and the 

average of each segment is calculated by: 

iT  = 
x

T
xi

ixj
j∑

+−= 1)1(

         

 

The numerator represents the sum of all elements within a segment while the 

denominator x represents the number of elements falling within a segment (x = n/m). 

Thus, we obtain 1T  as the average of the first segment and 2T as the average of the 

second segment, and so forth. As a result, a new representation of the time-series 

sequence is presented as mTTTT ,...,, 21= , also known as Piecewise Aggregate 

Approximation (PAA) representation. 

 

Table 2.1. The breakpoint table [29]. 

α 

Bi 

3 4 5 

B1 -0.43 -0.67 -0.84 

B2 0.43 0 -0.25 

B3  0.67 0.25 

B4   0.84 

 

In the second step, the PAA representation is transformed into a symbolic sequence 

according to the breakpoints in a breakpoint mapping table. According to empirical 

experiments [37], the normalized subsequences have highly Gaussian distributions. 

Thus, the “breakpoints” can be determined so that equal-sized areas are produced under 
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a Gaussian curve. The breakpoints are defined as a list of ordered numbers B = B1, 

B2, …, Ba−1 such that the area under an N(0,1) Gaussian curve from Bi to Bi+1 = 1/α. The 

statistical table [29] is used to determine the breakpoint for different values of α, as 

shown in Table 2.1. 

For example, if α = 3, three breakpoint regions are [-∞, -0.43), [-0.43, 0.43), [0.43, 

∞]. All PAA coefficients falling within the first region are mapped to symbol “a” and 

the others falling within the second and third regions are mapped to symbols “b” and 

“c”, respectively. Fig. 2.1 illustrates how a time-series sequence is transformed into a 

symbolic sequence, where n = 30, m = 6, and α = 3. The time-series sequence is 

mapped to the symbolic sequence “ccbabc.” 

 

          
Fig. 2.1. A SAX example. 

 

 It is important to note that some time-series data may violate the Gaussian 

assumption. To deal with such data, several discretization methods can be used to 

transform time-series sequences into symbolic sequences. The Equal Frequency (EQF) 

method [19] divides the value range into bins, where each bin has equal frequency of 

values and is represented by a symbol. For the Equal Width (EQW) method [19], the 

range of data is divided into segments of equal length and each segment is represented 

by a symbol. The clustering-based method [15] discretizes time-series by grouping 

similar data values in a cluster and assigning a symbol to each cluster. The Persist 
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algorithm [41] determines cut points in an adaptive way. It continuously chooses the 

best cut point from a set of candidates until the desired number of bins is obtained. 

 

2.5 Discussion 

 In this chapter, we have surveyed the literatures of time-series mining, sequential 

pattern mining, and closed pattern mining, and the concept of SAX representation. In 

time-series mining, the main research interests are finding the most similar time-series 

in a database to a query time-series, finding groups of similar time-series, finding 

periodic patterns, and detecting anomalies contained in a given time series. In sequential 

pattern mining, researchers focus on the problem of discovering frequent patterns in 

one-sequence databases, that is, each transaction consists of single sequence in the 

database. Moreover, they require exact sequence alignments in discovering patterns 

without the consideration of noisy environments. In closed pattern mining, researchers 

recognize the drawback of sequential pattern mining, that is, identifying all frequent 

patterns is very time-consuming due to a large number of patterns generated. Thus, they 

incorporate the concept of closed patterns to overcome this drawback.  

 Most previously proposed methods in these areas did not consider multiple 

sequences in a transaction and the gaps between the events in a pattern, and hence they 

are not suitable for mining closed patterns in a multi-sequence time-series database. 

Therefore, in this dissertation, we focus on the problem of mining closed patterns in a 

database, where each transaction contains multiple time-series sequences. To the best of 

our knowledge, there is no method specially designed to relax the constraint of exact 

sequence alignments in discovering patterns. Thus, in this dissertation, we introduce the 

problem of mining closed flexible patterns in a time-series database, where a flexible 

number of gaps between items in a pattern are allowed. Although a significant amount 

of research efforts has been devoted to pattern mining, no mining results can provide 

multiple perspectives on datasets to decision-makers. In this dissertation, we explore the 
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idea of mining multi-resolution patterns in time-series databases. 

 Based on the above analysis, in this dissertation, we propose three algorithms, 

CMP, CFP, and CNP algorithms, to mine closed multi-sequence patterns, closed flexible 

patterns, and multi-resolution closed numerical patterns in time-series databases. These 

algorithms are described in detail in chapters 3, 4, and 5. 
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Chapter 3 Mining Closed Patterns in Multi-Sequence 

Time-Series Databases 

In this chapter, we propose an efficient algorithm, called CMP (Closed 

Multi-sequence Patterns mining), to mine closed patterns in a time-series database, 

where each transaction in the database contains multiple time-series sequences. The 

proposed algorithm consists of three phases. First, we transform each time-series 

sequence in a transaction into a symbolic sequence. Second, we scan the transformed 

database to find frequent patterns of length one. Third, for each frequent pattern found 

in the second phase, we recursively enumerate frequent patterns by a frequent pattern 

tree as described in Section 3.2 in a depth-first search manner. 

 

3.1 Preliminaries and problem definitions 

Given a database where each transaction consists of multiple time-series sequences, 

we first transform each sequence into a SAX symbolic sequence and then mine closed 

patterns in the transformed database. Note that the database may contain transactions 

with different lengths. As well, multiple time-series sequences contained in each 

transaction can be in different lengths. 

Definition 3.1 Let I = {i1, i2,…, in} be a set of distinct items. A sequence S is an ordered 

list of items, denoted as <e1e2…em>, where ei is an item, ei ∈ I, for 1 < i < m. Assume 

there exists a lexicographical ordering ≦ among the items in I.  

For example, a ≦ b ≦ c or x ≦ y ≦ z. To represent a sequence flexibly, we 

introduce a gap symbol “_”, which is a wild card symbol and may be substituted by any 

item in I. The lexicographical order of the gap symbol is greater than any item in I. 

Moreover, multiple time-series sequences of different lengths contained in a transaction 

can be padded with gap symbols until they have the equal length. For example, a 

transaction is consisted of two time-series sequences 
⎭
⎬
⎫

⎩
⎨
⎧

__
a

yx
aba

, where the 
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second sequence is padded with gap symbols to achieve the same length with the first 

sequence. 

Another important feature to point out is that we allow time non-alignment between 

multiple sequences in a transaction and missing values in the sequences. We simply use 

gap symbols to adjust the non-alignment and replace all missing values with gaps. In 

other words, the non-aligned parts of the sequences may be filled up with gap symbols. 

For example, non-aligned sequences in a transaction 
⎭
⎬
⎫

⎩
⎨
⎧

yxzx
bba

 can be 

replaced by 
⎭
⎬
⎫

⎩
⎨
⎧

yxzx
bba __

_
.  

Since a transaction in the database consists of multiple sequences, a pattern in the 

database is formed by multiple sequences. 

Definition 3.2 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

aaa

aaa
aaa

skss

k

k

K

MMM

K

K

21

22221

11211

 is a pattern of length k, where aij is an item in I 

or a gap symbol. A pattern of length k is called a k-pattern. 

For example, both 
⎭
⎬
⎫

⎩
⎨
⎧

x
a

 and 
⎭
⎬
⎫

⎩
⎨
⎧

x
b

 are 1-patterns; 
⎭
⎬
⎫

⎩
⎨
⎧

xyx
caa

 is a 3-pattern; 

⎭
⎬
⎫

⎩
⎨
⎧

zyyx
cbba

S
S

__
__

2

1  is a 10-pattern, where ab occurs in sequence 

S1, after two time units bc occurs in S1 and xy simultaneously occurs in sequence S2, and 

after two time units yz occurs in S2. Note that the gap symbols after bc in S1 and before 

xy in S2 may be omitted. 

Definition 3.3 The concatenation between patterns p1 and p2 is denoted as p1Θp2. 

For example, 
⎭
⎬
⎫

⎩
⎨
⎧

xyy
bba

Θ
⎭
⎬
⎫

⎩
⎨
⎧

yx
bc

 = 
⎭
⎬
⎫

⎩
⎨
⎧

yxxyy
bcbba

. 

Definition 3.4 A pattern p = 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

aaa

aaa
aaa

snss

n

n

K

MMM

K

K

21

22221

11211

 is contained by another pattern p’ 
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= 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

bbb

bbb
bbb

smss

m

m

K

MMM

K

K

21

22221

11211

 if there exists an integer j such that aik = bi(k+j) or aik = “_”, 

0 < j < m–n, n < m, 1 < i < s, 1 < k < n. We may also say that p’ is a super-pattern of p, 

or that p is a sub-pattern of p’. 

Definition 3.5 The support of a pattern p is defined as the number of transactions 

containing p in the database. 

Definition 3.6 A pattern is frequent if its support is not less than a user-specified 

minimum support threshold, δ. 

Definition 3.7 A frequent pattern p is closed if there does not exist any frequent 

super-pattern of p with the same support.  

Note that the gap symbol in a pattern may be substituted by any item. If one pattern 

with the substituted items is a super-pattern of the other, and both patterns have the 

same support, we would delete the latter one. For example, 
⎭
⎬
⎫

⎩
⎨
⎧

x
a

 is a super-pattern of 

⎭
⎬
⎫

⎩
⎨
⎧

_
a

. If 
⎭
⎬
⎫

⎩
⎨
⎧

x
a

 and 
⎭
⎬
⎫

⎩
⎨
⎧

_
a

 have the same support, we should delete the pattern 
⎭
⎬
⎫

⎩
⎨
⎧

_
a

 

because it is less representative. 

Definition 3.8 The projection of a pattern p in a transaction t is defined as the rest of t 

behind p, where t contains p.  

Note that since a pattern p may appear more than once in a transaction, there exists 

a projection for each occurrence of p. That is, a transaction may contain multiple 

projections of p. For example, the projections of 
⎭
⎬
⎫

⎩
⎨
⎧

x
a

 in a transaction 
⎭
⎬
⎫

⎩
⎨
⎧

y
a

xyx
aba

 

are 
⎭
⎬
⎫

⎩
⎨
⎧

y
a

xy
ab

 and 
⎭
⎬
⎫

⎩
⎨
⎧

y
a

. 

Definition 3.9 The projected database of a pattern p contains all the projections of p in 

the database. 

Since a pattern may contain many gaps, discovering all such patterns may require a 
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lot of resources, but a user may only be interested in patterns with a certain number of 

gaps. Therefore, to avoid wasting resources by mining unwanted patterns, we introduce 

a parameter called a user-specified maximum gap threshold τ. When mining closed 

patterns, we only mine the patterns so that the number of gaps between any two 

adjacent 1-patterns in the patterns is not greater than τ. 

To mine closed patterns, we build the projected database of a pattern and check if 

there exists any frequent 1-pattern in its projected database. Since the number of gaps 

between any two adjacent 1-patterns is not greater than τ, to grow a pattern p, we may 

find the frequent 1-patterns only from the first τ+1 positions in p’s projected database.  

For example, assume that δ = 2 and τ = 1. Given two transactions 
⎭
⎬
⎫

⎩
⎨
⎧

zxyx
caba

and 
⎭
⎬
⎫

⎩
⎨
⎧

xzzx
cbca

, we first find all 1-frequent patterns, namely, 
⎭
⎬
⎫

⎩
⎨
⎧

x
a

, 
⎭
⎬
⎫

⎩
⎨
⎧

_
a

, 
⎭
⎬
⎫

⎩
⎨
⎧

_
b

, 

⎭
⎬
⎫

⎩
⎨
⎧

z
c

, 
⎭
⎬
⎫

⎩
⎨
⎧

_
c

, 
⎭
⎬
⎫

⎩
⎨
⎧

x
_

 and 
⎭
⎬
⎫

⎩
⎨
⎧

z
_

, where their supports are all equal to 2. From the projected 

database of 
⎭
⎬
⎫

⎩
⎨
⎧

x
a

, we know that 
⎭
⎬
⎫

⎩
⎨
⎧

x
a

 appears at the first and third positions of the first 

transaction, and at the first position of the second transaction. In the projected database 

of 
⎭
⎬
⎫

⎩
⎨
⎧

x
a

, formed by the first position of the first transaction and the first position of the 

second transaction, we cannot find any frequent 1-pattern from the first two positions in 

the projected database since τ = 1. However, in 
⎭
⎬
⎫

⎩
⎨
⎧

x
a

’s projected database formed by 

the third position of the first transaction and the first position of the second transaction, 

we find three frequent 1-patterns from the first two positions in the projected database, 

namely, 
⎭
⎬
⎫

⎩
⎨
⎧

z
c

, 
⎭
⎬
⎫

⎩
⎨
⎧

_
c

, and 
⎭
⎬
⎫

⎩
⎨
⎧

z
_

. Therefore, we obtain three frequent 2-patterns, namely, 

⎭
⎬
⎫

⎩
⎨
⎧

zx
ca

, 
⎭
⎬
⎫

⎩
⎨
⎧

_x
ca

, and 
⎭
⎬
⎫

⎩
⎨
⎧

zx
a _

, where their supports are all equal to 2. Since 
⎭
⎬
⎫

⎩
⎨
⎧

_x
ca

 

and 
⎭
⎬
⎫

⎩
⎨
⎧

zx
a _

 
are sub-patterns of 

⎭
⎬
⎫

⎩
⎨
⎧

zx
ca

, they are not closed. Since we cannot find 
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any frequent 1-patterns in the projected databases of 
⎭
⎬
⎫

⎩
⎨
⎧

zx
ca

, 
⎭
⎬
⎫

⎩
⎨
⎧

_x
ca

, and 
⎭
⎬
⎫

⎩
⎨
⎧

zx
a _

, 

we stop growing these patterns.  

To find the closed patterns in 
⎭
⎬
⎫

⎩
⎨
⎧

_
a

’s projected database is quite similar to that in 

⎭
⎬
⎫

⎩
⎨
⎧

x
a

’s projected database. Next, we examine 
⎭
⎬
⎫

⎩
⎨
⎧

_
b

’s projected database to see if any 

frequent 1-patterns exist in the projected database, and find a frequent 1-pattern 
⎭
⎬
⎫

⎩
⎨
⎧

x
_

. 

Thus, we obtain a frequent 2-pattern 
⎭
⎬
⎫

⎩
⎨
⎧

x
b
_

_
. Since we cannot find any frequent 

1-pattern in 
⎭
⎬
⎫

⎩
⎨
⎧

x
b
_

_
’s projected database, we stop growing the pattern. Similarly, we 

may obtain all frequent patterns by growing all frequent 1-patterns as described above. 

Finally, we may obtain two closed patterns, namely, 
⎭
⎬
⎫

⎩
⎨
⎧

zx
ca

, and 
⎭
⎬
⎫

⎩
⎨
⎧

x
b
_

_
. 

 

3.2 Frequent pattern tree 

The CMP algorithm uses a frequent pattern tree to enumerate frequent patterns, 

which may be constructed in the following way. The root of the tree is labeled by ∅. 

Next, we scan the database and find all frequent 1-patterns in the database and add these 

1-patterns to level 1 of the frequent pattern tree. Then, we can recursively extend a 

frequent pattern p at level l (> 1) to get its frequent super-pattern at the next level by 

appending g gaps and a frequent 1-pattern in p’s projected database, where 0 < g < τ. 

Note that g = 0 means that no gap is appended. 

It has been shown that the algorithm based on the depth-first search (DFS) 

approach is more efficient in mining long patterns than that based on the breadth-first 

search (BFS) approach [4]. Hence, the CMP algorithm enumerates the frequent patterns 

by a frequent pattern tree in a DFS manner. Fig. 3.2 illustrates the frequent pattern tree 

for the example database in Fig. 3.1, where δ = 3, τ = 1, the number after the pattern is 

the support of the pattern, and the patterns in the bold circles are closed patterns, and 
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those in the dotted circles are not. Note that the children of a node are sorted 

lexicographically and the gap symbol “_” may be included in a pattern. 

 

T1: 
⎭
⎬
⎫

⎩
⎨
⎧

xyxxyy
bbacba

 

T2: 
⎭
⎬
⎫

⎩
⎨
⎧

xyzyxy
bbabca

 

T3: 
⎭
⎬
⎫

⎩
⎨
⎧

xyxyzy
abaaca

 

Fig. 3.1. An example of a transformed multi-sequence database. 

 

 
Fig. 3.2. The frequent pattern tree. 

 

3.3 Closure checking and pruning strategies 

When we generate a new frequent pattern, we need to do some closure checking to 

assure whether the pattern generated is closed. Following a similar concept used in 

BIDE [61], we use bi-directional (forward and backward) checking to determine if the 

pattern generated is closed. 

Lemma 3.1 (Forward checking). A pattern p is not closed if a frequent 1-pattern q 

exists such that (1) q appears after p and occurs in every transaction of p’s projected 

database, and (2) the distance between p and q is the same in every transaction of p’s 
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projected database and not greater than τ+1 positions. 

Proof. If a frequent 1-pattern q exists such that (1) q appears after p and occurs in every 

transaction of p’s projected database, and (2) the distance between p and q is not greater 

than τ+1 positions, it means that we can always find another frequent pattern formed by 

p and q whose support is equal to p’s support. Therefore, p must not be closed. 

 Note that p may appear more than once in a transaction. If we cannot find any q 

after the current appearance of p, we need to perform the same check on the next 

appearance of p in the transaction. 

Next, we illustrate the forward checking strategy as follows. Assume 

⎭
⎬
⎫

⎩
⎨
⎧

zy
c

x
ba

_
_

 is a frequent pattern. If we find a 1-pattern 
⎭
⎬
⎫

⎩
⎨
⎧

y
_

 at the first 

position of every transaction in its projected database, then we can assure that 

⎭
⎬
⎫

⎩
⎨
⎧

zy
c

x
ba

_
_  is not closed because 

⎭
⎬
⎫

⎩
⎨
⎧

yzy
c

x
ba

_
_

is its 

super-pattern and has the same support.  

Lemma 3.2 (Backward checking). A pattern p does not need to be grown if a frequent 

1-pattern q exists such that (1) q appears before p and occurs in every transaction of p’s 

projected database, and (2) the distance between q and p is the same in every 

transaction of p’s projected database and not greater than τ+1 positions. 

Proof. If a frequent 1-pattern q exists such that (1) q appears before p and occurs in 

every transaction of p’s projected database, and (2) the distance between q and p is the 

same in every transaction of p’s projected database and not greater than τ+1 positions, it 

means that we can always find another frequent pattern formed by q and p and its 

support is equal to p’s support. Therefore, p is not closed and it does not need to be 

grown. 

Note that p may appear more than once in a transaction. Thus, we need to check if 

q exists before every appearance of p in the transaction. 

 Next, we illustrate the backward checking strategy as follows. Assume pattern 
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⎭
⎬
⎫

⎩
⎨
⎧

yx
ba __

 is a frequent pattern. If we find a pattern (for example, 
⎭
⎬
⎫

⎩
⎨
⎧

_
b

) 

right before 
⎭
⎬
⎫

⎩
⎨
⎧

yx
ba __

 
in every transaction of the projected database, we 

can conclude that 
⎭
⎬
⎫

⎩
⎨
⎧

yx
ba __

 does not need to be grown since there must 

exist another frequent pattern 
⎭
⎬
⎫

⎩
⎨
⎧

yx
bab __

 whose support is equal to 

the support of 
⎭
⎬
⎫

⎩
⎨
⎧

yx
ba __

. Thus, pattern 
⎭
⎬
⎫

⎩
⎨
⎧

yx
ba __

 may be 

pruned because the pattern 
⎭
⎬
⎫

⎩
⎨
⎧

yx
bab __

 would be generated later. 

Lemma 3.3 (Same projections). A pattern p can be pruned during the process of 

mining closed patterns if (1) p shares the same parent with a pattern q in the frequent 

pattern tree, (2) q contains p, and (3) p’s projections are identical to q’s projections.  

Proof. Since both patterns p and q share the same projections and q contains p, every 

pattern generated from p is contained by a pattern generated from q and both patterns 

generated have the same support. That is, every pattern generated from p is not closed. 

Thus, p may be pruned during the process of mining closed patterns. 

For example, as shown in Fig. 3.2, pattern 
⎭
⎬
⎫

⎩
⎨
⎧

y
ba

_  
contains pattern 

⎭
⎬
⎫

⎩
⎨
⎧

__
ba

 and 

both patterns share the same parent in the frequent pattern tree. Moreover, both patterns 

have the same projections since both patterns appear at the first and fourth positions of 

the first transaction, at the fourth position of the second transaction, and at the fourth 

position of the third transaction. Therefore, pattern 
⎭
⎬
⎫

⎩
⎨
⎧

__
ba

 may be pruned. 

 

3.4 The CMP algorithm 

The proposed CMP algorithm is shown in detail in Fig. 3.3. First, we transform 

every sequence in the time-series database into the SAX representation [37] as 

described in Section 2.4. That is, the time-series database is transformed into a database 
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where each transaction in the database contains multiple symbolic sequences. Second, 

we scan the transformed database to find all frequent 1-patterns, and build a projected 

database for each frequent 1-pattern. Third, for each frequent pattern found, the 

algorithm calls the CMP-Growth procedure to recursively use a frequent k-pattern and 

its projected database to generate its frequent super-patterns at the next level in the 

frequent pattern tree, where k ≥ 1.  

 

Algorithm: CMP 

Input: an input database DB, a minimum support threshold δ, a maximum gap 

threshold τ 

Output: all closed patterns CP 

1 Transform each sequence in DB into a symbolic sequence by using the SAX 

 representation; 

2 Let CP be ∅; 

3 Scan the transformed database to find all frequent 1-patterns. Let P1 be all 

 frequent 1-patterns found in DB; 

4 for each 1-pattern p in P1 do 

5  Let PDB be the projected database of p; 

6  call CMP-Growth (PDB, p, δ, τ, CP); 

7 end for 

8 return CP; 
Fig. 3.3. The CMP algorithm. 

 

Fig. 3.4 shows the CMP-Growth procedure. In step 1, for each frequent k-pattern p, 

we build its projected database and find candidate frequent 1-patterns that occur within 

the first τ+1 positions in the projected database. In steps 3-8, we use the backward 

checking strategy to check if p can be pruned. If not, we use the forward checking 

strategy to check if p is closed. If so, it is added to the closed pattern pool (CP). In steps 

10-16, for each frequent 1-pattern c found in step 1, we concatenate p, g gaps and c 

together to generate a frequent (k+g+1)-pattern, where 0 < g < τ. Then, we check if the 
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concatenated pattern is contained by any sibling pattern and both share the same 

projected database. If not, the CMP-Growth procedure is called recursively to 

enumerate the frequent super-patterns of the newly generated frequent (k+g+1)-pattern. 

The process is repeated until no more patterns can be generated. 

 

Algorithm: CMP-Growth (PDB, p, δ, τ, CP) 

Input: a projected database PDB, a prefix pattern p, a minimum support threshold δ, a 

maximum gap threshold τ 

Output: a set of closed patterns CP 

1 Let candidate be a set of frequent 1-patterns within the first τ+1 positions in PDB; 

2 Let sup be the support of p; 

3 if (sup is not less than δ and p passes the backward checking strategy) then 

4   if (p passes the forward checking strategy) then 

5    if (p is closed with respect to CP) then 

6     Add p to CP; 

7    end if 

8   end if 

9   if (candidate is not empty) then 

10    for each 1-pattern c in candidate do 

11     for g = 0 to τ do 
12      Let PDB’ be the projected database of pΘGΘc where G  

      contains g gaps in each sequence; 
13      Check if pΘGΘc is contained by any sibling pattern and  

      both share the same projections; 
14      if not, call CMP-Growth (PDB’, pΘGΘc, δ, τ, CP); 

15     end for 

16    end for 

17   end if 

18 end if 

19 return CP; 
Fig. 3.4. The CMP-Growth procedure. 

 



 

30 
 

Lemma 3.4 Each pattern found by the CMP algorithm is frequent and closed. 

Proof. In step 3 of the CMP algorithm, we generate all frequent 1-patterns by scanning 

the database once. In step 1 of the CMP-Growth procedure, we find a set of candidate 

frequent 1-patterns, which appear within the first τ+1 positions in the projected database 

of a frequent k-pattern p. These candidates are then concatenated with p and with gaps 

to form frequent (k+g+1)-patterns, k > 1. Since we have always checked the support of 

each newly pattern found against the minimum support threshold, we assure each 

pattern found by the CMP algorithm is frequent. Moreover, at each level of extension, 

we adopt the forward and backward checking strategies to eliminate non-closed patterns. 

Therefore, every pattern found by the CMP algorithm is frequent and closed. 

Lemma 3.5 Every closed pattern can be found by the CMP algorithm. 

Proof. Since we scan the database once to find all frequent 1-patterns, every frequent 

1-pattern in the database can be found by the CMP algorithm. To extend each frequent 

k-pattern p, we combine it with gaps and with all possible candidate frequent 1-patterns 

found in the p’s projected database to generate all its frequent super-patterns of p. Thus, 

every frequent k-pattern in the database can be found by the CMP algorithm. Once a 

frequent k-pattern is found, we adopt the forward and backward checking strategies to 

eliminate non-closed patterns. Therefore, every closed pattern can be found by the CMP 

algorithm. 

Theorem 3.1 The CMP algorithm enumerates all closed patterns in the database. 

Proof. By Lemma 3.4, every pattern found by the CMP algorithm is frequent and closed. 

By Lemma 3.5, every closed pattern can be found by the CMP algorithm. Therefore, we 

can conclude that the CMP algorithm enumerates all closed patterns in the database. 

Theorem 3.2 The time and space complexities of the CMP algorithm are bounded by 

O(|N|*|D|) and O(lp*|D| + |CP|), respectively, where the size of a time-series database, 

the number of nodes in a frequent pattern tree, the length of the longest frequent pattern, 

and the number of closed patterns are |D|, |N|, lp, and |CP|, respectively. 
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Proof. To transform a time-series database into a symbolic database, the SAX operation 

is applied to each numerical value, and hence the time complexity of transforming all 

time-series in the database into symbolic sequences is bounded by O(|D|). By scanning 

the transformed database, we obtain all frequent 1-patterns and this requires O(|D|) time. 

Next, let us consider a pattern p of various lengths. If p is a frequent 1-pattern, the 

number of extensions is bounded by |C|, where |C| is the average number of local 

frequent 1-patterns in a projected database. Likewise, if p is a frequent 2-pattern, the 

number of extensions is bounded by |C|. Thus, we know that if p is a frequent k-pattern, 

the number of extensions is again bounded by |C|. Moreover, for each frequent k-pattern, 

its projected database is scanned once to find candidate frequent 1-patterns that occur 

within the first τ+1 positions in the projected database. Thus, the time complexity of 

scanning a projected database is bounded by O(|D|). Since the number of total nodes in 

the frequent pattern tree is |N|, the time complexity of the CMP algorithm is bounded by 

O(|D| + |D| + |N|*(|C| + |D|)) = O(|N|*|D|). As we have shown that the CMP algorithm 

mines patterns in a DFS manner, the maximum number of nodes that kept in the 

memory is bounded by lp, where each node also maintains a projected database that 

requires O(|D|) space in the worse case. Moreover, the closed pattern pool requires 

O(|CP|) space. Therefore, the space complexity of the CMP algorithm is bounded by 

O(|D| + lp*|D| + |CP|) = O(lp*|D| + |CP|). 

 

3.5 An example 

Let us take the database shown in Fig. 3.1 as an example. Assume that δ = 3 and τ = 

1. First, we scan the database to find all frequent 1-patterns 
⎭
⎬
⎫

⎩
⎨
⎧

y
a

, 
⎭
⎬
⎫

⎩
⎨
⎧

_
a

, 
⎭
⎬
⎫

⎩
⎨
⎧

y
b

, 
⎭
⎬
⎫

⎩
⎨
⎧

_
b

, 

⎭
⎬
⎫

⎩
⎨
⎧

_
c

, 
⎭
⎬
⎫

⎩
⎨
⎧

x
_

, and 
⎭
⎬
⎫

⎩
⎨
⎧

y
_

. After that, we check 
⎭
⎬
⎫

⎩
⎨
⎧

y
a

 against the backward checking 

strategy and find that it cannot be pruned. We further use the forward checking strategy 

to check if it is closed. Consequently, it is a closed pattern and is inserted to the closed 
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pattern pool. Since there is no frequent 1-pattern in 
⎭
⎬
⎫

⎩
⎨
⎧

y
a

’s projected database, we can 

stop growing the pattern. 

Next, we grow the frequent 1-pattern 
⎭
⎬
⎫

⎩
⎨
⎧

_
a

 to find its frequent super-patterns by 

using the frequent 1-patterns in its projected database. There are four frequent 1-patterns 

within the first two positions in 
⎭
⎬
⎫

⎩
⎨
⎧

_
a

’s projected database, namely, 
⎭
⎬
⎫

⎩
⎨
⎧

y
b

, 
⎭
⎬
⎫

⎩
⎨
⎧

_
b

, 
⎭
⎬
⎫

⎩
⎨
⎧

y
_

, 

and 
⎭
⎬
⎫

⎩
⎨
⎧

x
_

. We first grow the frequent 1-pattern 
⎭
⎬
⎫

⎩
⎨
⎧

_
a

 by appending 
⎭
⎬
⎫

⎩
⎨
⎧

y
b

to it and 

obtain the frequent 2-pattern 
⎭
⎬
⎫

⎩
⎨
⎧

y
ba

_
. Since 

⎭
⎬
⎫

⎩
⎨
⎧

y
ba

_  
does not pass the forward 

checking strategy, it is not closed. We then continue to grow 
⎭
⎬
⎫

⎩
⎨
⎧

y
ba

_
 by appending a 

frequent 1-pattern in its projected database and obtain a frequent 3-pattern 
⎭
⎬
⎫

⎩
⎨
⎧

xy
ba

_
_

, 

which passes the forward and backward checking strategies. Thus, it is a closed pattern. 

Since we could not find any frequent 1-patterns in 
⎭
⎬
⎫

⎩
⎨
⎧

xy
ba

_
_

’s projected database, 

we can stop growing the pattern. 

Furthermore, we grow the frequent 1-pattern 
⎭
⎬
⎫

⎩
⎨
⎧

_
a

 by appending 
⎭
⎬
⎫

⎩
⎨
⎧

_
b

 to it and 

find that 
⎭
⎬
⎫

⎩
⎨
⎧

__
ba

 
has the same projected database as 

⎭
⎬
⎫

⎩
⎨
⎧

y
ba

_
. Thus, pattern 

⎭
⎬
⎫

⎩
⎨
⎧

__
ba

 may be pruned by using Lemma 3.3. Similarly, pattern 
⎭
⎬
⎫

⎩
⎨
⎧

y
a
_

_
 may be 

pruned as well. After that, we continue to grow the frequent 1-pattern 
⎭
⎬
⎫

⎩
⎨
⎧

_
a

 by 

appending one gap and 
⎭
⎬
⎫

⎩
⎨
⎧

x
_

. Consequently, we obtain a frequent 3-pattern 

⎭
⎬
⎫

⎩
⎨
⎧

x
a

__
__

. However, it is not closed since it is a sub-pattern of pattern 
⎭
⎬
⎫

⎩
⎨
⎧

xy
ba

_
_

 

and both patterns have the same support. By growing other frequent patterns in a similar 

manner as described above, we can get all closed patterns. Finally, we obtain five closed 
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patterns 
⎭
⎬
⎫

⎩
⎨
⎧

y
a

, 
⎭
⎬
⎫

⎩
⎨
⎧

yx
b_

, 
⎭
⎬
⎫

⎩
⎨
⎧

_
_
y

c
, 

⎭
⎬
⎫

⎩
⎨
⎧

xy
ba

_
_

, and 
⎭
⎬
⎫

⎩
⎨
⎧

___
_ ba

 as enumerated in 

the frequent pattern tree shown in Fig. 3.2. 
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Chapter 4 Mining Closed Flexible Patterns in Time-Series 

Databases 

In this chapter, we propose an efficient algorithm, called CFP, for mining closed 

flexible patterns in a time-series database, where flexible gaps are allowed in a pattern. 

The proposed algorithm involves three phases: transforming a time-series database into 

a symbolic database, generating all frequent patterns of length one from the transformed 

database, and mining closed flexible patterns in a depth-first search manner. 

 

4.1 Preliminaries and problem definitions 

Given a time-series database, we first transform each time-series sequence in the 

database into the SAX representation [37], where each transaction in the database 

contains only one time-series sequence. That is, each time-series sequence is 

transformed into a symbolic sequence. Then, we mine the closed flexible patterns from 

those transformed symbolic sequences. Note that the database may contain transactions 

with different lengths. And, each transaction may contain gap symbols “_”, which can 

be used to replace any missing values. 

Definition 4.1 Let I = {i1, i2, …, in} be a set of items (or events), and S = <e1e2…em> be 

a sequence, where ij is an item, and ek ∈ I, 1 < j < n, 1 < k < m.  

Definition 4.2 A flexible pattern, denoted as e1[x1, y1]e2[x2, y2]…[xm−1, ym−1]em, contains 

a sequence of items and gap intervals, where ei ∈ I, xj and yj are non-negative integers, 1 

< i < m, 1 < j < m−1, 0 < xj < yj < τ, and τ is a user-specified maximum gap threshold.  

Definition 4.3 A gap interval [xi, yi] between ei and ei+1 denotes that the number of gaps 

between both items ranges from xi to yi.  

Note that (1) if xi = yi = 0, the gap interval [xi, yi] can be omitted; (2) if m = 1, there 

is no gap interval in the pattern, that is, the pattern is denoted as e1. For example, a[0, 

3]b illustrates that the number of gaps between a  and b  ranges from 0 to 3. That is, 
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a[0, 3]b contains the following patterns: ab, a_b, a_ _b, and a_ _ _b. ab means that b 

appears right after (or one position after) a while a_b means that there is a gap between 

a and b, or b appears two positions after a.  

Definition 4.4 The length of a pattern p is defined as the number of items in p. A pattern 

of length k is called a k-pattern. 

For example, a[0, 3]b is a 2-pattern. 

Definition 4.5 A pattern e1[x1, y1]e2[x2, y2]…[xm−1, ym−1]em is contained by a sequence if 

every item in the pattern appears in order in the sequence and the number of gaps 

between ei and ei+1 in the sequence is between xi and yi.  

For example, a[0, 1]b is contained by <a c b d c>. 

Definition 4.6 A gap interval [x1, y1] contains another gap interval [x2, y2] if x1 < x2 < y2 

< y1.  

Definition 4.7 A pattern p = p1[xp1, yp1]p2[xp2, yp2]…[xp(m−1), yp(m−1)]pm is a sub-pattern 

of a pattern q = q1[xq1, yq1]q2[xq2, yq2]…[xq(n−1), yq(n−1)]qn if there exists an integer j such 

that pi = qi+j, and [xpi, ypi] contains [xq(i+j), yq(i+j)], where m < n, 0 < j < n−m, i = 1, 2, …, 

m. We can also say that q is a super-pattern of p. 

Definition 4.8 The support of a pattern is defined as the number of sequences 

containing the pattern in the database.  

Definition 4.9 A pattern is said to be frequent if its support is not less than a 

user-specified minimum support threshold, δ.  

Definition 4.10 A pattern is closed if it is frequent and there exists no super-pattern with 

the same support.  

For example, if a[0, 3]b and a[0, 3]b[0, 2]c are frequent and both have the same 

support, a[0, 3]b is not closed. Let us consider another example where a[0, 3]b and a[0, 

1]b are frequent and both have the same support. Since a[0, 3]b and a[0, 1]b have the 

same support, a[0, 3]b is less representative. Hence, a[0, 3]b is not closed. 

Definition 4.11 Given a sequence S and a pattern p, a subsequence s of S is called a 
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projection of S with respect to p if p appears in S and s contains all items in S that occur 

after the last item of p.  

Definition 4.12 The projected database of a pattern p contains the projection of each 

sequence in a database with respect to p.  

For example, the projected database of a[0, 1]c in a database {<a b c d e>, <a c d e 

b a>} is {<d e>, <d e b a>}.  

Definition 4.13 Given a pattern p, nominee(p) contains all frequent 1-patterns that occur 

in p’s projected database.  

To find nominee(p), we only need to scan the first τ+1 items for each sequence in 

p’s projected database since the number of gaps between two successive items in a 

pattern should not be greater than τ. Consider the last example. If δ = 2 and τ = 2, 

nominee(a[0, 1]c) = {d, e}. 

 

4.2 Sequence tree 

In order to enumerate all frequent patterns, we adopt a tree structure, called 

sequence tree, to store all frequent patterns, where each node represents a frequent 

pattern and the root node represents an empty pattern. All frequent k-patterns are 

recorded at level k of the tree, where k ≥ 1. That is, all frequent 1-patterns are recorded 

at level 1 of the tree and all frequent 2-patterns are recorded at level 2, and so on. 

Moreover, if a pattern at level k is derived from the pattern of its parent node at level 

k−1, we use an edge to connect both nodes. Specifically, we extend frequent patterns 

from the root node level down to the leaf node level.  

The CFP algorithm also enumerates the frequent patterns by a sequence tree in a 

DFS manner. For instance, an example database is illustrated in Fig. 4.1 and the 

corresponding sequence tree is shown in Fig. 4.2, where the number after a pattern 

denotes the support of the pattern, the pattern in a dotted circle is non-closed, the other 

patterns are closed, δ = 3, and τ = 2. 
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Sequence ID Sequence 

S1 <a b c d b a>

S2 <e b e a c a>

S3 <e b e c b d>

S4 <a b f c c d> 
Fig. 4.1. An example database containing four sequences. 

 

 
Fig. 4.2. The frequent patterns mined from the database in Fig. 4.1. 

 

4.3 Support counting 

In order to calculate the support of a pattern p[x, y]r, we investigate p’s projected 

database and create an index table to facilitate the computation, where r ∈ nominee(p). 

The column i of the index table records a list of sequences in p’s projected database so 

that the number of gaps between p and r is equal to i in these sequences, i ≥ 0. Since the 

maximum gap threshold is τ, we have τ+1 columns in the table. For example, assume 

that τ = 3, r = b, and there are four sequences {S1:<d b f c c>, S2:<b b b b f>, S3:<e c b d 

c>, S4:<d b f b e>} in p’s projected database. Since there is one b in S1 and the number 

of gaps between p and b is 1, we add S1 to the column 1 of the index table. There are 

four b’s in S2. Thus, we add S2 to the columns 0, 1, 2, and 3. Similarly, we can add S3 

 

a : 3 d : 3c : 4b : 4

a [0, 2] c : 3 b [0, 1] c : 3 b [0, 2] c : 4 c [0, 1] d : 3b [1, 2] c : 3 c [0, 2] d : 3

b [0, 1] c [0, 1] d : 3 b [0, 1] c [0, 2] d : 3 b [0, 2] c [0, 1] d : 3 b [0, 2] c [0, 2] d : 3

Level 0

Level 1

Level 2

Level 3
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and S4 to the index table. Finally, we obtain the index table as illustrated in Fig. 4.3. 

 
Column 0 Column 1 Column 2 Column 3 

 
 
 
 

 
Fig. 4.3. An index table used to count the support of p[x, y]b. 

  

From Fig. 4.3, we know that the supports of p[0, 0]b, p[1, 1]b, p[2, 2]b, and p[3, 

3]b are 1, 3, 2, and 2, respectively. To determine the supports of other patterns, such as 

p[0, 1]b, p[0, 2]b, etc, we simply merge the lists of the corresponding columns based on 

the gap interval. For example, to count the support of p[1, 2]b, we merge the lists of 

columns 1 and 2 and obtain a list containing S1, S2, S3, and S4. Since there are four 

sequences in the list, the support of p[1, 2]b is 4. 

 

4.4 Closure checking and pruning strategies 

To efficiently mine closed flexible patterns, we adopt a closure checking scheme 

and two pruning strategies: redundant extension pruning and redundant projection 

pruning. Lemma 4.1 is a closure checking scheme that helps to exclude non-closed 

patterns during the mining process. It uses the concept of projected databases as 

described in BIDE [61] to localize the checking. Upon generating a new frequent 

pattern, we check whether it is closed by applying this lemma.  

Lemma 4.1 (Closure checking). Given a frequent pattern p, it is non-closed if it meets 

one of the following conditions: (1) if there exists a nominee that appears in the first τ+1 

positions of each sequence in p’s projected database, or (2) if there exists another 

frequent pattern q so that p is a sub-pattern of q and both have the same support. 

Proof. In the first condition, since a frequent 1-pattern r appears in the first τ+1 

S1 

S2 

S4 

S2 S2 

S3

S2 

S4
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positions of each sequence in p’s projected database, there must exist another pattern 

formed by p and r with a certain gap interval, which has the same support as p. 

Therefore, p is not closed. In the second condition, since pattern p is the sub-pattern of q 

and both have the same support, it is not closed. 

Note that p may appear more than once in a sequence. If we cannot find any r after 

the current appearance of p, we need to perform the same check on the next appearance 

of p in the sequence. 

Assume that δ = 3 and τ = 1. When a new frequent pattern p = a[0, 1]c with support 

equal to 3 is generated, by checking the first two positions of each sequence in p’s 

projected database which contains three sequences {<d e f>, <a d b>, <d c b>}, we find 

that nominee(p) = {d}. Thus, we assure that p is not closed since we can find a frequent 

pattern a[0, 1]c[0, 1]d that is a super-pattern of p and has the same support as p. Let us 

consider another example where the second condition is held. Assume there exists a 

frequent pattern a[0, 1]c with support equal to 3. When a new frequent pattern b[0, 

1]a[0, 1]c with the same support is found, we know that a[0, 1]c is not closed since it is 

a sub-pattern of b[0, 1]a[0, 1]c. 

The main idea for the redundant extension pruning strategy is to avoid the cost of 

extending non-closed patterns in advance. To be precise, for each frequent pattern p, we 

determine whether it should be further extended by checking if there exists an item that 

is within τ+1 positions before p in each sequence containing p. If such an item can be 

found, this pattern is not closed and any patterns extended from p would also be 

non-closed.  

Lemma 4.2 (Redundant extension pruning). A frequent pattern p does not need to be 

extended if there exists an item that appears within τ+1 positions before p in each 

sequence containing p. 

Proof. Since an item q appears within τ+1 positions before p in each sequence 

containing p, there must exist another pattern q’ formed by q and p with a certain gap 



 

40 
 

interval so that q’ has the same support as p. The projected database of q’ is the same as 

that of p. It means that each frequent pattern extended from p is a sub-pattern of a 

frequent pattern extended from q’ and both have the same support. Therefore, p does not 

need to be extended. 

Note that p may appear more than once in a sequence. Thus, we need to check if q 

exists before every appearance of p in the sequence. 

For example, assume that a database contains three sequences: <c b d e f>, <c a b e 

a>, <c b a g e> and there exists a frequent pattern b[0, 2]e with support equal to 3. By 

checking each sequence in the database, we find that c appears 1-2 positions before b[0, 

2]e in each sequence. It means that we have another pattern c[0, 1]b[0, 2]e which has 

the same support as b[0, 2]e. Therefore, b[0, 2]e does not need to be extended and can 

be pruned. 

Lemma 4.3 (Redundant projection pruning). If p[x1, y1]r and p[x2, y2]r are frequent 

and share the same projected database, p[x1, y1]r can be pruned, where p is a frequent 

pattern, r ∈ nominee(p), 0 < x1 < x2 < y2 < y1. 

Proof. Since p[x1, y1]r is a sub-pattern of p[x2, y2]r and both share the same projected 

database, any pattern extended from p[x1, y1]r can also be extended from p[x2, y2]r and 

both patterns extended have the same support. It means that any pattern extended from 

p[x1, y1]r is non-closed. Thus, p[x1, y1]r can be pruned. 

For example, assume that δ = 3, τ = 2, c[0, 1]a is a frequent flexible pattern and its 

projected database contains three sequences: {<c e d f g>, <a a e g a>, <b e a b c>}. We 

find that e ∈ nominee(c[0, 1]a). Thus, patterns c[0, 1]a[0, 2]e and c[0, 1]a[1, 2]e can be 

generated and both share the same projected database {<d f g>, <g a>, <a b c>}. Since 

c[0, 1]a[0, 2]e and c[0, 1]a[1, 2]e share the same projected database and the former is a 

sub-pattern of the latter, any pattern extended from c[0, 1]a[0, 2]e is not closed. 

Therefore, c[0, 1]a[0, 2]e can be pruned. 
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4.5 The CFP algorithm 

The proposed CFP algorithm consists of three phases as shown in Fig. 4.4. First, we 

transform each time-series sequence in the database into the SAX representation as 

described in Section 2.4. Second, we scan the transformed database once to find all 

frequent 1-patterns and build a projected database for each 1-pattern found. Third, we 

recursively call the CFP-Extension procedure to extend each 1-pattern found in the 

second phase to mine closed flexible patterns in a depth-first search manner. 

 

Algorithm: CFP 

Input: a time-series database TDB, a minimum support threshold δ, a maximum gap 

threshold τ 

Output: a complete set of closed flexible patterns, CP 

1 Transform each sequence in TDB into a symbolic sequence by the SAX

 representation; 

2 Scan the transformed database once to find all frequent 1-patterns. Let P1 be a set 

 of frequent 1-patterns found; 

3 Let CP = ∅; 

4 for each 1-pattern p in P1 do 

5  Construct the projected database of p, PDB; 

6  call CFP-Extension (PDB, p, δ, τ, CP); 

7 end for 

8 return CP; 
Fig. 4.4. The CFP algorithm. 

 

The CFP-Extension procedure is shown in Fig. 4.5. In steps 1-4, if p passes the 

redundant extension pruning strategy and closure checking scheme, it is added to the 

closed flexible patterns pool (CP). Then, we find the nominees of p in step 5. For each 

nominee found, we combine it with p to generate the closed flexible super-patterns of p 

in steps 6-21. In steps 7-15, we combine p and each nominee of p with every possible 

gap interval, and use the index table to count the support of the combined pattern, and 
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check if the combined pattern is frequent. If this is the case, the combined pattern is 

added to NP. Next, we use the redundant projection pruning strategy to eliminate 

unnecessary patterns in step 16. In steps 17-20, for each combined pattern in NP, we 

construct the projected database of the pattern and recursively call the CFP-Extension 

procedure to enumerate the closed flexible patterns. 

Let us elaborate the concept of the pattern extension. Once all nominees are found, 

we combine p and each of these nominees with all possible combinations of gap 

intervals. Recall that τ is the maximum gap threshold. The number of possible 

combinations of gap intervals is thus 1+2+…+τ+(τ+1) = (τ+1)(τ+2)/2. We then 

combine p and one of the nominee ri by taking into account all possible combinations of 

gap intervals and represent it in the form of p[xi, yi]ri, where xi and yi are non-negative 

integers, 0 < xi < yi < τ. These newly combined patterns are candidate 2-patterns. Next, 

we need to check if they are frequent before inserting them into the second level of the 

tree. Assume p = a, δ = 2, τ = 1, and the projected database of a contains two sequences, 

{S1:<b e c f e>, S2:<d e a b c>}. We find nominee(p) = {b, e}. Since τ = 1, we have 

three possible combinations of gap intervals, namely, [0, 0], [0, 1], [1, 1]. Hence, we 

combine p with the first nominee b with these gap intervals and obtain 3 candidate 

2-patterns: a[0, 0]b, a[0, 1]b, a[1, 1]b.  

To count the supports for these candidates, we use the index table as described in 

Section 4.3. We first create an index table with two columns (τ+1 = 2). Column 0 stores 

any sequence ID where b appears right after a in the sequence, while column 1 stores 

any sequence ID where b appears two positions after a. In this case, we have {S1, S2} in 

column 0 and ∅ in column 1. Therefore, the support of a[0, 0]b, a[1, 1]b are 2 and 0, 

respectively. To count the support of a[0, 1]b, we simply merge the lists in columns 0 

and 1, and obtain a list containing S1 and S2. Hence, the support of a[0, 1]b is 2. Since 

we find that a[0, 0]b and a[0, 1]b have the same support and share the same projected 

database, a[0, 1]b is pruned by the redundant projection pruning strategy (Lemma 4.3). 
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Similarly, we combine p with the second nominee e and obtain one frequent 2-pattern: 

a[1, 1]e. 

After we obtain all frequent 2-patterns, we apply the same procedure of the third 

phase to these frequent 2-patterns and extend them to frequent 3-patterns. Let us 

continue with the last example. After finding the frequent 2-patterns a[0, 0]b, and a[1, 

1]e, we use these frequent 2-patterns to generate frequent 3-patterns. We first find the 

frequent 1-patterns in the projected database of a[0, 0]b, where nominee(a[0, 0]b) = {c}. 

Thus, we can generate three candidate 3-patterns: a[0, 0]b[0, 0]c, a[0, 0]b[0, 1]c, a[0, 

0]b[1, 1]c. By using an index table to count the supports of these candidate 3-patterns, 

we find that a[0, 0]b[0, 1]c is frequent with support equal to 2. Similarly, we can apply 

the same procedure to a[1, 1]e and extend it to frequent 3-patterns. 

While recursively performing the procedure of the third phase, we integrate the 

proposed pruning strategies and closure checking scheme to speed up the mining 

process. Upon getting a frequent pattern, we first use the redundant extension pruning 

strategy (Lemma 4.2) to check if the pattern can be pruned. If not, we apply the closure 

checking scheme (Lemma 4.1) to check whether the pattern is closed. If the pattern is 

closed, we add it to the pool of closed flexible patterns and extend it. As we have seen, 

the effort of mining frequent patterns is determined by the parameter τ. As τ is set to a 

large value, the number of possible combinations of gap intervals to form candidate 

patterns is large. However, we may use the redundant projection pruning strategy 

(Lemma 4.3) to prune unnecessary combinations.  

In summary, we use a frequent k-pattern p to generate candidate (k+1)-patterns, 

each of which is formed by concatenating p, a gap interval, and one nominee of 

nominee(p). For each candidate (k+1)-pattern generated, we check if it is frequent and 

closed. If it is, we recursively perform the CFP-Extension procedure to mine its frequent 

super-patterns in a DFS manner. Accordingly, we mine all closed flexible patterns. 
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Procedure: CFP-Extension (PDB, p, δ, τ, CP) 

Input: a projected database PDB of p, a frequent flexible pattern p, a minimum support 

threshold δ, a maximum gap threshold τ 

Output: a complete set of closed flexible patterns, CP 

1 if (p passes the redundant extension pruning strategy) then 

2   if (p passes the closure checking scheme) then 

3    Add p to CP; 

4   end if 

5   Find nominee(p) from PDB; 

6   for each r in nominee(p) do 

7    Let Σ be all possible combinations of gap intervals generated from τ,  

    where 0 < xi < yi <τ ; 

8    Let NP = ∅;  

9    for each [xi, yi] in Σ do 

10     Combine p, [xi, yi], and r to form p[xi, yi]r; 

11     Use an index table to count the support of p[xi, yi]r; 

12     if (the support of p[xi, yi]r is not less than δ) then 

13      Add p[xi, yi]r to NP; 

14     end if 

15    end for 

16    Apply the redundant projection pruning strategy to eliminate   

    unnecessary patterns in NP; 

17    for each pattern q in NP do 

18     Construct q’s projected database, PDB’; 

19     call CFP-Extension (PDB’, q, δ, τ, CP); 

20    end for 

21   end for 

22 end if 

23 return CP; 
Fig. 4.5. The CFP-Extension procedure. 
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Lemma 4.4 Every pattern found by the CFP algorithm is frequent and closed. 

Proof. In the second phase, we scan the database once to find all frequent 1-patterns. In 

the third phase, at each level of extension, we use a frequent k-pattern p at the previous 

level and every nominee found in p’s projected database to form frequent (k+1)-patterns, 

k > 1. Whenever a new pattern is found, we check the support of the pattern against the 

minimum support threshold and eliminate it if it is not frequent. Hence, every pattern 

found by the CFP algorithm is frequent. Moreover, at each level of extension, we adopt 

the closure checking scheme to eliminate non-closed patterns. Therefore, every pattern 

found by the CFP algorithm is frequent and closed. 

Lemma 4.5 Every closed flexible pattern can be found by the CFP algorithm. 

Proof. In step 2 of the CFP algorithm, we scan the database once to find all frequent 

1-patterns. Thus, every frequent 1-pattern in the database can be found by the CFP 

algorithm. In steps 6-21 of the CFP-Extension procedure, for each frequent k-pattern p, 

we combine it with every nominee found in p’s projected database and use the index 

table to enumerate all frequent super (k+1)-patterns of p, k > 1. Thus, every frequent 

(k+1)-pattern in the database can be found by the CFP algorithm. Once a frequent 

k-pattern is found, we adopt the closure checking scheme to eliminate non-closed 

patterns in step 2 of the CFP-Extension procedure. Therefore, every closed flexible 

pattern can be found by the CFP algorithm 

Theorem 4.1 The CFP algorithm enumerates all closed flexible patterns in the 

database. 

Proof. By Lemma 4.4, every pattern found by the CFP algorithm is frequent and closed. 

By Lemma 4.5, every closed flexible pattern can be found by the CFP algorithm. 

Therefore, we can conclude that the CFP algorithm enumerates all closed flexible 

patterns in the database. 

Theorem 4.2 The time and space complexities of the CFP algorithm are bounded by 

O(|N|*(r*g + |D|)) and O(lp*|D| + |CP|), respectively, where the size of a time-series 
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database, the number of nodes in a sequence tree, the length of the longest frequent 

flexible pattern, the number of nominees for a frequent flexible pattern, the number of 

possible combinations of gap intervals, and the number of closed patterns are |D|, |N|, lp, 

r, g, and |CP|, respectively. 

Proof. Since the size of the database is |D|, the time complexity of performing the SAX 

operation is bounded by O(|D|). By scanning the transformed database, we obtain all 

frequent 1-patterns and this requires O(|D|) time. Next, consider a pattern p of various 

lengths. If p is a frequent 1-pattern, the number of extensions is bounded by r*g. 

Likewise, if p is a frequent 2-pattern, the number of extensions is bounded by r*g. Thus, 

we know that if p is a frequent k-pattern, the number of extensions is again bounded by 

r*g. Moreover, for each frequent k-pattern p, the time requires to scan p’s projected 

database to find the nominees of p is bounded by O(|D|). Since the number of total 

nodes in the sequence tree is |N|, the time complexity of the CFP algorithm is bounded 

by O(|D| + |D| + |N|*(r*g + |D|)) = O(|N|*(r*g + |D|)). As we design the CFP algorithm 

based on the depth-first search approach, the maximum number of nodes that kept in the 

memory is bounded by lp, where each node also requires O(|D|) space in the worse case 

to maintain its projected database. Moreover, the closed pattern pool requires O(|CP|) 

space. Therefore, the space complexity of the CFP algorithm is bounded by O(|D| + 

lp*|D| + |CP|) = O(lp*|D| + |CP|). 

 

4.6 An example 

Let us demonstrate how the CFP algorithm works. Given a time-series database 

containing four sequences, each sequence is transformed into a symbolic sequence as 

shown in Fig. 4.1. Assume that δ = 3 and τ = 2. After scanning the transformed database 

and computing the support for each 1-pattern, we find four frequent 1-patterns and add 

them to the level 1 of the sequence tree as shown in Fig. 4.2. 

Next, we apply the redundant extension pruning strategy on a and find that it 
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should be extended. We then construct a’s projected database, which is {<b c d b a>, <c 

a>, <b f c c d>}. Moreover, we scan the projected database and find nominee(a) = {c}. 

Since c appears in the first 3 positions of each sequence in a’s projected database, a 

does not pass the closure checking scheme, and hence it is not closed. The node of a is 

changed into a dotted circle as shown in Fig. 4.2. Subsequently, a is extended by 

concatenating it with c and one of the following gap intervals: [0, 0], [0, 1], [0, 2], [1, 1], 

[1, 2], and [2, 2]. Since δ is 3, we only obtain a frequent 2-pattern a[0, 2]c with support 

equal to 3. The projected database of a[0, 2]c is {<d b a>, <a>, <c d>}. Since we cannot 

find any nominee in the projected database, no more frequent pattern can be generated.   

Since pattern b passes the redundant extension pruning strategy, it should be 

extended. Next, we construct b’s projected database, which is {<c d b a>, <e a c a>, <e 

c b d>, <f c c d>}. We then scan the projected database and find nominee(b) = {c}. We 

also perform the closure checking scheme and find that c appears in the first 3 positions 

of each sequence in b’s projected database, and hence b is not closed. The node of b is 

changed into a dotted circle as shown in Fig. 4.2. Then, we discover three frequent 

2-patterns b[0, 1]c, b[0, 2]c, and b[1, 2]c with supports 3, 4, and 3, respectively. We 

recursively perform the pattern extension procedure on these frequent 2-patterns to get 

frequent super-patterns until no more frequent patterns can be generated. As shown in 

Fig. 4.2, the subtree under node b contains three closed patterns b[0, 2]c, b[1, 2]c, and 

b[0, 1]c[0, 1]d. Similarly, we can extend patterns c and d to find their frequent 

super-patterns. Finally, we find all closed flexible patterns in the database, including a[0, 

2]c, b[0, 2]c, b[1, 2]c, b[0, 1]c[0, 1]d, as shown in Fig. 4.2. 
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Chapter 5 Mining Multi-Resolution Closed Numerical 

Patterns in Multi-Sequence Time-Series Databases 

In this chapter, we propose an algorithm, called CNP, to mine multi-resolution 

closed numerical patterns in a time-series database, where each transaction consists of 

multiple sequences. The CNP algorithm involves three phases. First, we normalize all 

the time-series in the database and transform them into a low resolution by the Haar 

wavelet transform. Second, we generate all frequent 1-patterns from the transformed 

database. Third, we recursively extend each 1-pattern found in the second phase to find 

longer patterns. Subsequently, for each pattern found in the low resolution, we restore 

the pattern back to the high resolution. Finally, we determine the representative patterns 

as described in Section 5.1 with respect to the low and high resolutions. 

 

5.1 Preliminaries and problem definitions 

Consider a database D containing n transactions, where each transaction contains s 

sequences, and each sequence is a sequence of numerical values. Note that the database 

may contain transactions with different lengths. However, multiple sequences contained 

in each transaction must be of equal length. 

Definition 5.1 A pattern p is defined as 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

vvv

vvv
vvv

skss

k

k

K

MMM

K

K

21

22221

11211

, where vij is a 

numerical value.  

Definition 5.2 The length of a pattern p is defined as the number of numerical values in 

each sequence of p. A pattern of length k is called a k-pattern. 
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Note that pattern p can be regarded as a sequence of s-dimensional points, 
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, where a s-dimensional point is called a s-point. For example, 
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 is a 3-pattern. 

Definition 5.3 Let z1 = 
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 be two s-points. z1 > z2 if (1) v11 > v12, 

or (2) there exists a positive integer j, such that vi1 = vi2, i = 1, 2, …, j−1, and vj1 > vj2, j 

> 1. Moreover, z1 = z2 if vi1 = vi2, i = 1, 2, …, s. 

Definition 5.4 Let p and q be two patterns. p > q if (1) the first s-point of p is greater 

than that of q, or (2) there exists a positive integer j, such that the first j−1 s-points of p 

are equal to those of q, and the jth s-point of p is greater than that of q, j > 2. 

Definition 5.5 A pattern p = 
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 is a sub-pattern of p’ = 
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, if there exists an integer j such that |uik − vi(k+j)| < ε, 1 < i < s, 1 

< k < m, 0 < j < n−m, and m < n, where ε is a user-specified minimum distance threshold. 

We can also say that p’ is a super-pattern of p, or p’ contains p. Moreover, if p is a 
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sub-pattern of p’ and both patterns have the same length, we can say that p is similar to 

p’.  

For example, p = 
⎭
⎬
⎫

⎩
⎨
⎧

− 3.06.0
1.11.0

 is contained by p’ = 
⎭
⎬
⎫

⎩
⎨
⎧

− 8.0
8.0

3.06.0
2.12.0

, where ε 

= 0.1. 

Definition 5.6 The support of a pattern p is defined as the number of transactions 

containing p in the database.  

Definition 5.7 A pattern is frequent if its support is not less than a user-specified 

minimum support threshold, δ. 

Definition 5.8 A pattern p is closed if it is frequent and there does not exist any 

super-pattern of p with the same support. 

Definition 5.9 T[i, j] is a sub-transaction of T = 
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, where T[i, j] = 
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, 1 < i < j < n.  

Definition 5.10 If T[i, j] is similar to p, T[i, j] is called a projection of a pattern p, where 

i and j are called the starting and ending locations of the projection. 

Definition 5.11 The projected database of a k-pattern p contains all projections in the 

database with respect to p and is denoted as PDB(p) = {<tid, j> | tid is the identifier of 

the transaction T, and T[j−k+1, j] is similar to p}.  

For example, consider a database contains two transactions, T1 = 
⎭
⎬
⎫

⎩
⎨
⎧

5.05.0
3.06.0

 and 

T2 = 
⎭
⎬
⎫

⎩
⎨
⎧

0.17.0
4.08.0

, and ε = 0.2, the projected database of p = 
⎭
⎬
⎫

⎩
⎨
⎧

5.0
6.0

 is {<T1, 1>, <T2, 

1>}. 
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Since there may exist two or more patterns that are similar to each other and have 

the same projected database, we may merge them together and choose one of them as 

the representative pattern. Here, we choose the smallest one as the representative pattern. 

Moreover, for a representative pattern p, we use a list, called merge list, to keep the 

patterns merged by p. For example, if p = 
⎭
⎬
⎫

⎩
⎨
⎧

1.0
3.0

 and q = 
⎭
⎬
⎫

⎩
⎨
⎧

2.0
4.0

 have the same 

projected database, q is merged by p and is kept in p’s merge list. 

 

5.2 Haar wavelet transform 

Given a transaction T = 
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, we can transform it into a low 

resolution, denoted as WT(T), by the Haar wavelet transform, where WT(T) = 
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, uij = (vi(2j−1)+vi(2j))/2, i = 1, 2, …, s, and j = 1, 2,…, 

n/2. For example, both sequences of the first transaction in Fig. 5.1 can be transformed 

into two sequences as shown in Fig. 5.2.  

 

Transaction 
Time stamps 

t1 t2 t3 t4 t5 t6 t7 t8 

T1 
Sequence 1 -0.6 1.0 -0.4 2.8 -2.2 3.8 -2.0 4.8 

Sequence 2 4.4 -3.2 1.4 -2.0 3.6 -2.0 3.8 -4.6 

T2 
Sequence 1 4.0 -0.6 1.2 -0.2 2.8 -2.0 3.8 -2.0 

Sequence 2 -4.2 4.6 -3.2 1.2 -2.2 3.4 -1.8 3.8 
Fig. 5.1. A database containing two multi-sequence transactions. 

 



 

52 
 

-0.6 1.0 -0.4      -2.2      2.8     3.8      -2.0      4.8      

0.2     1.2      0.8      1.4      

Sequence 1

Sequence 2 4.4 -3.2 1.4      3.6      -2.0     -2.0      3.8      -4.6      

0.6     -0.3      0.8      -0.4      

Low resolution

Low resolution

High resolution

High resolution

 

Fig. 5.2. The Haar wavelet transform. 

 

If patterns x and y are similar to each other in the original database, WT(x) and 

WT(y) are similar to each other, where WT(x) and WT(y) are transformed from x and y 

by the Haar wavelet transform, respectively.  

Lemma 5.1 (Similar relationship). Given two k-patterns,  x = 
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, and two transformed 

patterns, WT(x) = 
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and WT(y) = 
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, if |xij − yij| < ε, then | ui(j/2) − vi(j/2)| < ε, where 1 < i 

< m and 1 < j < k. 
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Proof. |uil − vil| = 
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     < ε 

Lemma 5.1 also indicates that if WT(x) is not similar to WT(y), it is guaranteed that 

x is not similar to y. However, it is not guaranteed if WT(x) is similar to WT(y), then x is 

similar to y. For example, assume that ε = 0.1. Consider two patterns, x = 
⎭
⎬
⎫

⎩
⎨
⎧

7.09.0
5.07.0

 

and y = 
⎭
⎬
⎫

⎩
⎨
⎧

8.00.1
5.05.0

. By applying the Haar wavelet transform, we obtain two 

transformed patterns, WT(x) = 
⎭
⎬
⎫

⎩
⎨
⎧

8.0
6.0

 and WT(y) = 
⎭
⎬
⎫

⎩
⎨
⎧

9.0
5.0

. It can be observed that 

WT(x) and WT(y) are similar to each other, whereas x and y are dissimilar. 

To mine multi-resolution closed patterns, we first mine the closed patterns from the 

transformed database (low resolution) and then use the closed patterns mined to restore 

the closed patterns in the original database (high resolution). However, the patterns 

restored locate at the odd positions of the original time-series sequences. To resolve 

such a problem, we also apply the Haar wavelet transform to the original database by 

starting the operation from the second position of each time-series sequence in the 

database as shown in light grey color in Fig. 5.3. Then, those transformed time-series 

sequences will be collected together to form the transformed database.  
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Fig. 5.3. The transformed time-series sequences. 

 

Let S represents a time-series sequence in the transformed database, where S is 

transformed from a time-series sequence T in the original database. The s-points located 

at the odd and even positions in S are generated by the Haar wavelet transform starting 

from the first and second positions of T, respectively. For each s-point si located at the 

odd position in S, it is obtained by computing the average between every two adjacent 

values, ti and ti+1 in T, where i is odd. Thus, the adjacent s-point of si is the value located 

at the next odd position in S. Likewise, if i is even, the adjacent s-point of si is the value 

located at the next even position in S. Therefore, when we grow a frequent k-pattern p in 

the low resolution, p is joined with its corresponding adjacent s-point to form a frequent 

(k+1)-pattern. For example, consider the first transaction T1 in Fig. 5.1. When the Haar 

wavelet transform is applied to T1, we obtain a transformed time-series sequence S1 = 

⎭
⎬
⎫

⎩
⎨
⎧

−−− 4.0
4.1

9.08.0
9.08.0

8.03.0
3.02.1

9.06.0
3.02.0

. To extend a frequent 1-pattern p = 
⎭
⎬
⎫

⎩
⎨
⎧

6.0
2.0

 

located at the first position in S1, we append p’s adjacent s-point 
⎭
⎬
⎫

⎩
⎨
⎧
− 3.0

2.1
 to p to form a 

candidate 2-pattern 
⎭
⎬
⎫

⎩
⎨
⎧

− 3.06.0
2.12.0

. 

 

5.3 Numerical pattern tree 

In order to enumerate all frequent patterns in the low resolution, we adopt a tree 

structure, called numerical pattern tree, where the tree consists of one root labeled as ∅ 
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and each node represents a frequent pattern as illustrated in Fig. 5.4. The patterns in the 

dotted circles are non-closed, whereas the other patterns are closed. Moreover, the 

number following the pattern denotes the support of the pattern and the number at the 

top right corner of the pattern refers to its merge list. Recall that a merge list keeps all 

non-representative patterns merged by the representative pattern. 
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Fig. 5.4. Frequent patterns mined in the low resolution. 

 

5.4 Comparison of projected databases 

To check whether two projected databases are the same, we introduce a max-min 

matching method. When a new k-pattern p is discovered, we simultaneously build its 

projected database. Through the process of building a projected database, we also record 

the maximum and minimum (max-min for short) values of each dimension for each 

s-point in p. Since a s-point has s dimensions and the max-min values of each 

dimension must be recorded, we have a list of s max-min values, denoted as <(max1, 

min1), (max2, min2), …, (maxs, mins)>.  Two lists of max-min values <(max11, min11), 

(max12, min12), …, (max1s, min1s)> and <(max21, min21), (max22, min22), …, (max2s, 

min2s)> are equivalent if max1i = max2i and min1i = min2i, i = 1, 2…, s. Since a k-pattern 
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contains k s-points, we have k lists of max-min values, denotes as { }kMMM ,,, 21 ⋅⋅⋅ , 

which is called the max-min bound of the k-pattern. The max-min bounds of two 

patterns are equivalent if each corresponding list of max-min values is equivalent for 

both patterns. 

Lemma 5.2 (Max-min matching). The projected databases of patterns p and q are 

equivalent if p and q have an identical max-min bound. 

Proof. Let the projected databases of p and q be PS and QS, respectively, and the 

max-min bound of p be { }kMMM ,,, 21 ⋅⋅⋅ , where 1 < i < k. Assume that the projected 

databases of patterns p and q are not equivalent. That is, there exists a projection z that 

is in PS but not in QS. Since z ∈ PS, it is certain that each ith s-point of z is bounded by 

Mi. And, since q has an identical max-min bound as p, any projection whose s-points are 

bounded by the max-min bound must be existed in QS. Thus, z must be existed in QS. 

This contradicts the assumption that z is in PS but not in QS. Therefore, if p and q have 

an identical max-min bound, the projected databases of patterns p and q are equivalent. 

 

5.5 Pruning strategies 

We adopt two pruning strategies to speed up the mining process. The post-pruning 

and pre-pruning strategies are used to prune the unnecessary extension of a pattern. 

Lemma 5.3 (Post-pruning). For a frequent pattern p, if there exists a frequent 

1-pattern q, such that (1) q is the last s-point of p, and (2) both p and q have the same 

projected database, we can stop growing q. 

Proof. Since q is the last s-point of p, p is a super-pattern of q. As p and q have the same 

projected database, every projection found in q’s projected database is the last s-point of 

one and only one projection in p’s projected database. Hence, any pattern extended from 

q can also be extended from p and both patterns extended have the same support. This 

indicates that any pattern extended from q is not closed. Therefore, q can be pruned. 
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 Note that we have to ensure that pruning the patterns by the post-pruning strategy 

in the low resolution would not cause any pattern lost in the high resolution. Thus, we 

double-check whether the candidate 2k-patterns restored from p and q also have the 

same projected database in the high resolution. If so, it is safe to prune pattern q. 

Otherwise, q is preserved.  

 For example, assume that δ = 3, ε = 0.1, and a transformed database contains three 

transactions: S1 = 
⎭
⎬
⎫

⎩
⎨
⎧

9.0
8.0

5.06.0
3.05.0

, S2 = 
⎭
⎬
⎫

⎩
⎨
⎧

0.1
9.0

4.05.0
4.04.0

, and S3 = 
⎭
⎬
⎫

⎩
⎨
⎧

8.0
7.0

4.06.0
2.06.0

. 

By scanning the database, we find three frequent 1-patterns 
⎭
⎬
⎫

⎩
⎨
⎧

6.0
5.0

, 
⎭
⎬
⎫

⎩
⎨
⎧

5.0
3.0

, 
⎭
⎬
⎫

⎩
⎨
⎧

9.0
8.0

, and 

their projected databases are {<S1, 1>, <S2, 1>, <S3, 1>}, {<S1, 2>, <S2, 1>, <S2, 2>, <S3, 

2>}, and {<S1, 3>, <S2, 3>, <S3, 3>}, respectively. When a frequent pattern p = 

⎭
⎬
⎫

⎩
⎨
⎧

9.06.0
8.05.0

 is mined and PDB(p) = {<S1, 3>, <S2, 3>, <S3, 3>}, we check its last 

s-point 
⎭
⎬
⎫

⎩
⎨
⎧

9.0
8.0

, and find that 
⎭
⎬
⎫

⎩
⎨
⎧

9.0
8.0

 is a frequent 1-pattern whose projected database is 

the same as p. It means that every pattern extended from 
⎭
⎬
⎫

⎩
⎨
⎧

9.0
8.0

 is contained by the 

pattern extended from p and is not closed. We further check the candidate 4-pattern 

restored from 
⎭
⎬
⎫

⎩
⎨
⎧

9.06.0
8.05.0

 and candidate 2-pattern restored from 
⎭
⎬
⎫

⎩
⎨
⎧

9.0
8.0

 and find that 

they have the same projected database in the high resolution. Therefore, 
⎭
⎬
⎫

⎩
⎨
⎧

9.0
8.0

 can be 

pruned and removed from the first level of the tree. 

Lemma 5.4 (Pre-pruning). For a frequent pattern p, if there exists another frequent 

pattern q which has already been mined such that (1) q is a super-pattern of p, and (2) 

both p and q have the same projected database, p can be pruned. 

Proof. Since q is a super-pattern of p and both have the same projected database, for 

every projection z in p’s projected database, we can find one and only one projection 

that contains z in q’s projected database. Hence, any pattern extended from p is already 

mined with q. Therefore, p can be pruned. 
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 Note that, similar to the post-pruning strategy, we have to ensure that pruning the 

patterns by the pre-pruning strategy in the low resolution would not cause any pattern 

lost in the high resolution. Thus, we double-check whether the candidate 2k-patterns 

restored from p and q also have the same projected database in the high resolution. If so, 

it is safe to prune pattern p. Otherwise, p is preserved. 

For example, assume that δ = 3, ε = 0.1, q = 
⎭
⎬
⎫

⎩
⎨
⎧

6.0
5.0

9.03.0
7.01.0

 is an already mined 

frequent pattern, and PDB(q) = {<S1, 7>, <S2, 3>, <S3, 9>}. When a new frequent 

pattern p = 
⎭
⎬
⎫

⎩
⎨
⎧

6.09.0
5.07.0

 is mined and PDB(p) = {<S1, 7>, <S2, 3>, <S3, 9>}, p can be 

pruned since it is a sub-pattern of q and both patterns have the same projected database 

and the corresponding restored candidates generated from p and q also have the same 

projected database in the high resolution. 

 

5.6 Frequent 1-pattern generation 

To find frequent 1-patterns from the transformed database, we initially sort all 

1-patterns in the transformed database in ascending order and store them in an array A, 

where each 1-pattern is associated with a transaction identifier containing the 1-pattern. 

To compute the support of a 1-pattern p, we find all 1-patterns similar to p in the array 

and count the number of distinct transaction identifiers of these patterns. We call p the 

pivot in the array. Moreover, we use two integers i and j to record the lower and upper 

bounds of the indices so that the difference between the value of the first dimension of p 

and that of every element between A[i] and A[j−1] is not greater than ε. These elements 

are the candidates that may be similar to p. For each candidate, we check if it is similar 

to p. Thus, we obtain all the elements similar to p. 

Let us elaborate the concept of finding frequent 1-patterns. First, we take A[1] as 

the pivot and both i and j are equal to 1. We keep incrementing j by one until the 

difference between the value of the first dimension of A[j] and that of the pivot (p) is 
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greater than ε. As a result, every element between A[i] and A[j−1] is the candidate that 

may be similar to the pivot. Then, for each candidate, we check if it is similar to the 

pivot. Thus, we obtain the elements similar to p. By counting the number of distinct 

transaction identifiers of these elements, we can determine the support of p. If p is 

frequent, the corresponding projections are stored in p’s projected database. Similarly, 

we take the second element as the new pivot and move indices i and j to the right places 

so that every element between A[i] and A[j−1] is the candidate that may be similar to the 

new pivot. We further check if these candidates are similar to the pivot. Then, we count 

the support of the pivot and check if it is frequent. This process is continued until the 

last element in the array is reached. Note that if two patterns p and q have the same 

projected database and p is less than q, q is merged by p and stored in p’s merge list. 

 

⎭
⎬
⎫

⎩
⎨
⎧

3.0
1.0

⎭
⎬
⎫

⎩
⎨
⎧

2.0
2.0

⎭
⎬
⎫

⎩
⎨
⎧

3.0
2.0

⎭
⎬
⎫

⎩
⎨
⎧

2.0
3.0

⎭
⎬
⎫

⎩
⎨
⎧

7.0
5.0

⎭
⎬
⎫

⎩
⎨
⎧

7.0
0.1

⎭
⎬
⎫

⎩
⎨
⎧

3.0
1.0

⎭
⎬
⎫

⎩
⎨
⎧

2.0
2.0

⎭
⎬
⎫

⎩
⎨
⎧

3.0
2.0

⎭
⎬
⎫

⎩
⎨
⎧

2.0
3.0

⎭
⎬
⎫

⎩
⎨
⎧

7.0
5.0

⎭
⎬
⎫

⎩
⎨
⎧

7.0
0.1

⎭
⎬
⎫

⎩
⎨
⎧

3.0
1.0

⎭
⎬
⎫

⎩
⎨
⎧

2.0
2.0

⎭
⎬
⎫

⎩
⎨
⎧

3.0
2.0

⎭
⎬
⎫

⎩
⎨
⎧

2.0
3.0

⎭
⎬
⎫

⎩
⎨
⎧

7.0
5.0

⎭
⎬
⎫

⎩
⎨
⎧

7.0
0.1

 

Fig. 5.5. Finding frequent 1-patterns. 
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Let us consider the example shown in Fig. 5.5. Assume ε = 0.1. We initially take 

⎭
⎬
⎫

⎩
⎨
⎧

3.0
1.0

 to be the pivot, by checking the array, index i is not moved since the first 

element is similar to itself, whereas index j is moved forward to the fourth position. 

From i to j–1, there are three candidates which may be similar to the pivot, namely, 

⎭
⎬
⎫

⎩
⎨
⎧

3.0
1.0

, 
⎭
⎬
⎫

⎩
⎨
⎧

2.0
2.0

, and 
⎭
⎬
⎫

⎩
⎨
⎧

3.0
2.0

. We further check if these candidates are similar to the pivot 

and find that all of them are similar to the pivot. Thus, the corresponding projections are 

stored in the projected database of 
⎭
⎬
⎫

⎩
⎨
⎧

3.0
1.0

. Next, we change the pivot to 
⎭
⎬
⎫

⎩
⎨
⎧

2.0
2.0

 and 

check if it is a frequent 1-pattern. We find that i is unchanged while j is moved to the 

fifth position. Therefore, the corresponding projections are stored in the projected 

database of 
⎭
⎬
⎫

⎩
⎨
⎧

2.0
2.0

. We further check the next pivot 
⎭
⎬
⎫

⎩
⎨
⎧

3.0
2.0

 and find that it is similar to 

⎭
⎬
⎫

⎩
⎨
⎧

2.0
2.0

 and has the same projected database as 
⎭
⎬
⎫

⎩
⎨
⎧

2.0
2.0

. Hence, 
⎭
⎬
⎫

⎩
⎨
⎧

3.0
2.0

 is merged by 

⎭
⎬
⎫

⎩
⎨
⎧

2.0
2.0

. This process is continued until the last element 
⎭
⎬
⎫

⎩
⎨
⎧

7.0
0.1

 is checked. 

 

5.7 The CNP algorithm 

The proposed algorithm, called CNP, is illustrated in Fig. 5.6. It contains a 

procedure, CNP-Growth, which is shown in Fig. 5.7. 

The CNP algorithm consists of three phases. The first phase involves steps to 

normalize each time-series sequence in the database and then apply the Haar wavelet 

transform to convert each time-series sequence into a low resolution (step 3). The 

second phase involves steps to scan the transformed database once to find all frequent 

1-patterns and construct a projected database for each 1-pattern found as described in 

Section 5.6. If any two frequent 1-patterns have the same projected database, the larger 

one is merged by the smaller one (step 4). The third phase involves steps for the pattern 

extension and pattern restoring (steps 5-13). That is, for each frequent 1-pattern, we call 
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the CNP-Growth procedure to enumerate the closed patterns. Then, we restore the 

patterns in the high resolution from the patterns mined in the low resolution. 

Furthermore, we find all frequent 1-patterns in the high resolution from the original 

database. Finally, for each closed pattern found, we check if it can be merged by the 

other patterns. 

 

Algorithm: CNP 

Input: a time-series database DB, a minimum support threshold δ  

Output: all closed patterns CPL and CPH in the low and high resolutions, respectively 

1 Initialize CPL and CPH to ∅; 

2 Normalize all time-series in DB; 

3 Apply the Haar wavelet transform to each time-series in DB and store the   

  transformed time-series in RDB; 

4 Let P1 be all frequent 1-patterns found in RDB and merge similar 1-patterns into 

one if they have the same projected database; 

5 for each 1-pattern p ∈ P1 do 

6   Let PDB be the projected database of p; 

7   call CNP-Growth (p, PDB, δ, P1, CPL, CPH); 

8   Restore p and each of the patterns merged by p respectively to find the  

   frequent 2-patterns and 3-patterns in the high resolution and add them 

   to CPH if they are closed; 

9 end for 

10 Find frequent closed 1-patterns in the high resolution and add them to CPH; 

11 for each closed pattern p in the low and high resolutions do 

12   Use its max-min bound to decide if it is a representative pattern; 

13 end for 

14 return CPL and CPH; 
Fig. 5.6. The CNP algorithm. 
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Procedure: CNP-Growth (p, PDB, δ, P1, CPL, CPH) 

Input: a k-pattern p, a projected database PDB, a minimum support threshold δ, and a 

   set of frequent 1-patterns P1 

Output: a set of closed patterns CPL in the low resolution and a set of closed patterns 

    CPH in the high resolution 

1 if (p is closed) then 

2   Add p to CPL; 

3 end if 

4 if (p passes the pre-pruning strategy and there exists an adjacent frequent   

  1-pattern q that appears right after p) then 

5   Append q to p to form a candidate (k+1)-pattern p’; 

6   if (p do not pass the post-pruning strategy) then 

7    Remove q from P1; 

8   end if 

9   Build a new projected database PDB’ for p’ and derive the merge list of p’; 

10   if (p’ is frequent) then 

11    call CNP-Growth (p’, PDB’, δ, P1, CPL, CPH); 

12    Restore p’ and each of the patterns merged by p’ respectively to find the 

    frequent 2k-patterns and (2k+1)-patterns in the high resolution and 

    add them to CPH if they are closed; 

13   end if 

14   for each frequent pattern m’ that is extended from p’s merge list but not  

   merged by p’ do 

15    Build a projected database PDBm’ for m’ and derive the merge list of m’;

16    call CNP-Growth (m’, PDBm’, δ, P1, CPL, CPH); 

17    Restore m’ and each of the patterns merged by m’ respectively to find 

    the frequent 2k-patterns and (2k+1)-patterns in the high resolution

    and add them to CPH if they are closed; 

18   end for 

19 end if 

20 return CPL and CPH; 
Fig. 5.7. The CNP-Growth procedure. 
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In the CNP-Growth procedure, upon getting a frequent k-pattern p, we first check it 

with the already mined patterns in CPL to determine if it is closed in steps 1-3. If it is 

closed, we then add it to CPL and extend it. 

Next, p is checked against the pre-pruning strategy and the condition of whether 

there exists an adjacent frequent 1-pattern q appears right after p. If so, we append q to p 

to form a candidate pattern p’ in steps 4-5. Otherwise, we stop growing p. Subsequently, 

we use the post-pruning strategy to prune unnecessary frequent 1-patterns in steps 6-8. 

The projected database of p’ can be derived from the projected database of p in step 

9. That is, we extend each projection in p’s projected database and check if the newly 

extended projection is similar to p’. Accordingly, we obtain a new projected database 

for p’. If the support of p’ is not less than δ, it is a frequent (k+1)-pattern. To further 

extend p’ to find longer patterns, we recursively call the CNP-Growth procedure in step 

11. 

Besides, we use the merge list of p to find out which patterns can be merged by p’. 

For each k-pattern m in p’s merge list, we extend m to find a candidate (k+1)-pattern, m’. 

If m’ is similar to p’ and both of them have the same projected database, m’ is merged by 

p’ and stored in the merge list of p’. In contrast, if m’ has a different projected database 

from p’ and its support is not less than δ, it is a frequent (k+1)-pattern. Thus, we build 

the projected database for m’ and derive its merge list in steps 14-15. And we extend m’ 

to find frequent super-patterns by calling the CNP-Growth procedure in step 16. The 

CNP-Growth procedure is recursively called until no more patterns can be generated. 

To restore each k-pattern p found in the low resolution to the high resolution, we 

first recompose the s-points of p. Recall that we compute the average between two 

adjacent s-points appeared in T[i, i+1] to obtain a transformed s-point located in S[i, i] 

as shown in Fig. 5.3, where 1 < i < l−1 and l is the length of T. By referring back to the 

original database, each s-point in the low resolution can be recomposed into two 

s-points in the high resolution.  
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Since p has k s-points, it can be restored to a candidate pattern that has 2k s-points. 

That is, assume p appears in S[j−2k+2, j], we can obtain a restored pattern q1 of length 

2k which appears in T[j−2k+2, j+1]. Likewise, for a pattern p’ of length k+1 in the low 

resolution, it can be restored to a candidate (2k+2)-pattern in the high resolution. 

However, no candidate of length 2k+1 is restored. Thus, we use p to derive a pattern q2 

of length 2k +1 which appears in T[j−2k+2, j+2]. In other words, we can use p to find 

two candidate patterns in the high resolution. 

To determine the supports of q1 and q2, we first restore each projection in p’s 

projected database and check if it is similar to q1. If yes, it is stored in q1’s projected 

database. As the projected database of q1 is built, we further use it to derive the 

projected database of q2 by extending the projections in q1’s projected database. As a 

result, both their supports are calculated. If their supports are not less than δ, they are 

frequent 2k-pattern and frequent (2k+1)-pattern. We then use the patterns in the closed 

pattern pool to check whether q1 and q2 are closed. For example, assume that δ = 2, ε = 

0.1, and an original database contains two transactions: T1 = 
⎭
⎬
⎫

⎩
⎨
⎧

6.02.0
3.01.0

0.16.0
7.05.0

, T2 

= 
⎭
⎬
⎫

⎩
⎨
⎧

1.03.0
4.02.0

9.05.0
8.04.0

 which is transformed to a new database that contains: S1 = 

⎭
⎬
⎫

⎩
⎨
⎧

4.0
2.0

6.08.0
406.0 .

, S2 = 
⎭
⎬
⎫

⎩
⎨
⎧

2.0
3.0

6.07.0
5.06.0

. From the transformed database, we find that 

p = 
⎭
⎬
⎫

⎩
⎨
⎧

8.0
6.0

 is a frequent 1-pattern in the low resolution. When we restore it to the high 

resolution, we may obtain two candidate patterns, including q1 = 
⎭
⎬
⎫

⎩
⎨
⎧

0.16.0
7.05.0

 and q2 = 

⎭
⎬
⎫

⎩
⎨
⎧

2.0
1.0

0.16.0
7.05.0

, where their projected databases are {<T1, 2>, <T2, 2>} and {<T1, 3>, 

<T2, 3>}, respectively. Since q2 contains q1 and their supports are equal to 2, q1 is not 

closed and only q2 is added to CPH. 

Note that, each k-pattern m merged by p in the low resolution, is also restored to 

generate a candidate 2k-pattern and a candidate (2k+1)-pattern in the high resolution in 
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order to verify whether they can be merged by the restored patterns generated from p. If 

not, we compare them with the already mined closed patterns and output them to the 

closed pattern pool if they are closed. 

It is shown that frequent 1-patterns in the low resolution are restored to find 

frequent 2-patterns and frequent 3-patterns in the high resolution; however, no frequent 

1-patterns in the high resolution are retrieved. Thus, we mine frequent closed 1-patterns 

from the original database and add them to the closed pattern pool in step 10 of the CNP 

algorithm. 

Once we have obtained all closed patterns in both low and high resolutions, we then 

proceed to select representative patterns among all closed patterns in each resolution in 

steps 11-13 of the CNP algorithm. Recall that while we build the projected database of a 

pattern, we also compute its max-min bound. We then use this information to select the 

representative pattern. For a pair of closed k-patterns, if they have identical max-min 

bounds, we choose the smaller pattern to be the representative pattern. As a result, we 

can obtain all representative closed patterns in both low and high resolutions. 

Lemma 5.5 Each pattern found by the CNP algorithm is frequent and closed. 

Proof. In the CNP algorithm, the second phase involves steps to find all frequent 

1-patterns by scanning the transformed database once. The third phase involves the 

CNP-Growth procedure to recursively find longer patterns. That is, we extend a 

frequent k-pattern p by appending an adjacent frequent 1-pattern q which appears right 

after p to form a candidate (k+1)-pattern. Then we check the support of this candidate. If 

its support is greater than δ, it is a frequent (k+1)-pattern. As a result, we have assured 

that every pattern found in the low resolution is frequent. On the other hand, every 

frequent k-pattern p found in the low resolution is restored to two candidate patterns in 

the high resolution. We further check if these two candidate patterns are frequent. In 

addition, we mine frequent 1-patterns from the original database. Therefore, every 

pattern found in the high resolution is frequent. Moreover, upon getting a frequent 
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pattern in the low resolution, we always check it with the already mined patterns in CPL 

to determine if it is closed. If it is closed, it is added to CPL. Similarly, for every restored 

frequent pattern or frequent 1-pattern found in the high resolution, we check it with the 

already mined patterns in CPH and add it to CPH if it is closed. Therefore, every pattern 

found by the CNP algorithm is frequent and closed. 

Lemma 5.6 Every closed pattern can be found by the CNP algorithm. 

Proof. Since we scan the transformed database once to find all frequent 1-patterns, 

every frequent 1-pattern in the low resolution can be found by the CNP algorithm. For 

each frequent k-pattern p in the low resolution, we combine it with an adjacent frequent 

1-pattern q which appears right after p to generate all its frequent super-patterns of p. 

Thus, every frequent k-pattern in the low resolution can be found by the CNP algorithm. 

For each frequent k-pattern found in the low resolution, we restore it to find two 

candidate patterns in the high resolution and eliminate the infrequent ones. Moreover, 

we scan the original database once to find all frequent 1-patterns in the high resolution. 

Therefore, every frequent k-pattern in the high resolution can be found by the CNP 

algorithm. Once a frequent k-pattern is found either in the low resolution or in the high 

resolution, we use the already mined patterns in the pool to eliminate non-closed 

patterns. Therefore, every closed pattern can be found by the CNP algorithm. 

Theorem 5.1 The CNP algorithm enumerates all closed patterns in both low and high 

resolutions in the database. 

Proof. By Lemma 5.5, every pattern found by the CNP algorithm is frequent and closed. 

By Lemma 5.6, every closed pattern can be found by the CNP algorithm. Therefore, we 

can conclude that the CNP algorithm enumerates all closed patterns in the database in 

both low and high resolutions. 

Theorem 5.2 The time and space complexities of the CNP algorithm are O(|D|*log|D| + 

|NL|*|D| + |CPL|2 + |CPH|2) and O(lp*|D| + lv*(|CPL| + |CPH|)), respectively, where the 

size of a time-series database is |D|, the number of nodes in the numerical pattern tree 
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in the low resolution is |NL|, the numbers of closed patterns in the low and high 

resolutions are |CPL| and |CPH|, respectively, the average length of the frequent pattern 

is lv, and the length of the longest frequent pattern is lp.  

Proof. According to [19], the time complexity of transforming a time-series in the high 

resolution into a time-series in the low resolution is bounded by O(l), where l is the 

length of a time-series. Since the size of a time-series database is |D|, the time 

complexity of the Haar wavelet transform is bounded by O(|D|). To obtain all frequent 

1-patterns in the low resolution, we sort all 1-patterns in the transformed database and 

check whether each 1-pattern is frequent. It requires O(|D|*log|D|) time to perform this 

task. Next, let us consider the mining process in the low resolution. To extend a frequent 

k-pattern p, we append an adjacent frequent 1-pattern that appears right after p to form 

its super-pattern and meanwhile derive a new projected database for the super-pattern. 

This process takes O(|D|) time since the maximum size of projected databases is |D| in 

the worse case. Since there are |NL| nodes in the numerical pattern tree in the low 

resolution, the time-complexity of the CNP algorithm in the low resolution is bounded 

by O(|D| + |D|*log|D| + |NL|*|D|) = O(|D|*log|D| + |NL|*|D|). Next, let us consider the 

restoring operation in the CNP algorithm. Since p can be restored into two frequent 

patterns at most in the high resolution, the maximum number of frequent patterns in the 

high resolution is bounded by 2*|NL|. During the restoring process, p’s projected 

database is scanned once to check if the restored patterns are frequent, and hence the 

time complexity of the restoring operation is bounded by O(|NL|*|D|). The time 

complexity of checking if a pattern is closed is bounded by O(|CPL|) and O(|CPH|) with 

respect to the low and high resolutions. Moreover, the time complexity of the merge 

operation in the low resolution is bounded by O(|CPL|2) because each closed pattern is 

checked against the other |CPL| − 1 patterns to determine if it is a representative pattern. 

Similarly, the time complexity of the merge operation in the high resolution is bounded 

by O(|CPH|2). Besides, the time complexity of mining frequent 1-patterns in the high 
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resolution is bounded by O(|D|*log|D|). Therefore, the time complexity of the CNP 

algorithm is bounded by O(|D| + |D|*log|D| + |NL|*|D| + 2*|NL|*|D| + |CPL| + |CPH| + 

|CPL|2 + |CPH|2 + |D|*log|D|) = O(|D|*log|D| + |NL|*|D| + |CPL|2 + |CPH|2). In order to 

select the representative patterns, we record the max-min bounds for the closed patterns 

in both low and high resolutions. The memory space used to preserve this information is 

thus bounded by O(lv*(|CPL| + |CPH|)). Since the CNP algorithm is processed in a DFS 

manner, the maximum number of nodes that kept in the memory is bounded by lp. 

Moreover, each node requires O(|D|) space to maintain its projected database and O(lv) 

space to store its max-min bounds. To store all closed patterns in both low and high 

resolutions, we need O(|CPL| + |CPH|) space. Therefore, the space complexity of the 

CNP algorithm is bounded by O(|D| + |D| + lv*(|CPL| + |CPH|) + lp*(|D| + lv) + |CPL| + 

|CPH|) = O(lp*|D| + lv*(|CPL| + |CPH|)). 

 

5.8 Mining multi-resolution patterns 

The CNP algorithm can be modified to find multi-resolution patterns. Given a 

number of resolutions γ and a time-series database, we convert each time-series in the 

database into the lowest resolution by applying the Haar wavelet transform (γ−1) times. 

Once we have obtained a transformed database in the lowest resolution, we perform the 

tasks in the second and third phases of the CNP algorithm to mine all closed patterns in 

the lowest resolution. However, to restore a frequent k-pattern p in the lowest resolution 

to the highest resolution, we have to perform the restoring operations multiple times 

until the highest resolution is reached. Specifically, p is first restored to find frequent 

2k-pattern e1 and frequent (2k+1)-pattern e2 in the resolution which is one level higher 

than the lowest resolution. Subsequently, e1 and e2 are restored to find frequent 

4k-pattern g1, frequent (4k+1)-pattern g2, frequent (4k+2)-pattern g3, and frequent 

(4k+3)-pattern g4 in the resolution which is two levels higher, respectively. Furthermore, 

we restore g1, g2, g3, and g4 to find frequent patterns in the resolution which is three 
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levels higher, and so on. For each frequent pattern found in the resolution i, we insert it 

to the corresponding closed pattern pool CPi if it is closed. As a result, we obtain all 

closed patterns in different resolutions. Finally, for each closed pattern found, we check 

if it can be merged by the other patterns and find all representative patterns in different 

resolutions. 

 

5.9 An example 

In this section, let us demonstrate how the CNP algorithm works. Consider a 

time-series database containing two multi-sequences as shown in Fig. 5.1, where each 

sequence is transformed into a new sequence in the low resolution by the Haar wavelet 

transform. We obtain a transformed database that contains two transactions: S1 = 

⎭
⎬
⎫

⎩
⎨
⎧

−−− 4.0
4.1

9.08.0
9.08.0

8.03.0
3.02.1

9.06.0
3.02.0

and S2 = 

⎭
⎬
⎫

⎩
⎨
⎧

−− 0.1
9.0

8.06.0
9.04.0

5.00.1
3.15.0

7.02.0
3.07.1

. Assume that δ = 2 and ε = 0.2. We first 

generate frequent 1-patterns from the transformed database and store them at the first 

level of the tree as illustrated in Fig. 5.4. Meanwhile, a projected database is built for 

each frequent 1-pattern found and similar frequent 1-patterns are merged together. 

Next, we extend each frequent 1-pattern by a DFS manner. Consider the first 

frequent 1-pattern p = 
⎭
⎬
⎫

⎩
⎨
⎧

6.0
2.0

 with its merge list containing 
⎭
⎬
⎫

⎩
⎨
⎧

7.0
3.0

, 
⎭
⎬
⎫

⎩
⎨
⎧

8.0
3.0

, and 
⎭
⎬
⎫

⎩
⎨
⎧

6.0
4.0

. 

Since p passes the pre-pruning strategy and there exists an adjacent frequent 1-pattern q 

= 
⎭
⎬
⎫

⎩
⎨
⎧
− 3.0

2.1
 occurred right after p, we extend p by appending q to its tail and thus form a 

candidate 2-pattern p’= 
⎭
⎬
⎫

⎩
⎨
⎧

− 3.0
2.1

6.0
2.0

. Moreover, no pattern at the first level of the tree 

can be pruned by p because p passes the post-pruning strategy. The projected database 

of p’ can be derived from its parent p by extending all projections in the p’s projected 

database and check whether the newly extended projections are similar to p’. As a result, 

p’ is a frequent 2-pattern. Besides, we extend the patterns which are merged by p to find 
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candidate 2-patterns that are potentially to be merged by p’. In this case, we find three 

candidate patterns, m1 = 
⎭
⎬
⎫

⎩
⎨
⎧

− 5.0
3.1

7.0
3.0

, m2 = 
⎭
⎬
⎫

⎩
⎨
⎧

9.0
9.0

8.0
3.0

, and m3 = 
⎭
⎬
⎫

⎩
⎨
⎧

0.1
9.0

6.0
4.0

, and 

all of them are frequent. As m1 and p’ have the same projected database, m1 is merged 

by p’. On the other hand, both patterns m2 and m3 no longer share the same projected 

database with p’. Hence, they independently form new nodes at the second level of the 

tree. As m2 and m3 share the same projected database, m3 is merged by m2.  

To further extend pattern p’ to frequent 3-patterns, we perform the CNP-Growth 

procedure. Consequently, we obtain a frequent 3-pattern 
⎭
⎬
⎫

⎩
⎨
⎧

− 8.0
8.0

3.0
2.1

6.0
2.0

. Likewise, 

we can extend other frequent 1-patterns to find its super-patterns. For each frequent 

k-pattern found, we use the already mined patterns in CPL to check whether the pattern 

is closed, where CPL is a closed pattern pool in the low resolution. Finally, we find two 

closed patterns in the low resolution, including 
⎭
⎬
⎫

⎩
⎨
⎧

− 8.0
8.0

3.0
2.1

6.0
2.0

 and 

⎭
⎬
⎫

⎩
⎨
⎧

− 9.0
9.0

8.0
3.0

9.0
3.0

, and we store them in CPL. 

Upon getting a frequent k-pattern p in the low resolution, we restore it to find 

frequent patterns in the high resolution. Recall that a pattern in the low resolution can be 

restored to find candidate 2k-pattern and (2k+1)-pattern in the high resolution. Consider 

the frequent 3-pattern p = 
⎭
⎬
⎫

⎩
⎨
⎧

− 8.0
8.0

3.0
2.1

6.0
2.0

, when we refer back to the original 

database, we find that the first s-point 
⎭
⎬
⎫

⎩
⎨
⎧

6.0
2.0

 of p is recomposed into 
⎭
⎬
⎫

⎩
⎨
⎧

−
−

2.34.4
0.16.0

, 

the second s-point 
⎭
⎬
⎫

⎩
⎨
⎧

− 3.0
2.1

 of p into 
⎭
⎬
⎫

⎩
⎨
⎧

−
−

0.24.1
8.24.0

, and the third s-point 
⎭
⎬
⎫

⎩
⎨
⎧

8.0
8.0

 of p 

into 
⎭
⎬
⎫

⎩
⎨
⎧

−
−

0.26.3
8.32.2

. Therefore, p is restored to a candidate 6-pattern, c1 =

⎭
⎬
⎫

⎩
⎨
⎧

−
−

−
−

−
−

0.2
8.3

6.3
2.2

0.2
8.2

4.1
4.0

2.3
0.1

4.4
6.0

 and a candidate 7-pattern, c2 = 

⎭
⎬
⎫

⎩
⎨
⎧ −

−
−

−
−

−
−

8.3
0.2

0.2
8.3

6.3
2.2

0.2
8.2

4.1
4.0

2.3
0.1

4.4
6.0

 in the high resolution. To 
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determine the supports of c1 and c2, we restore all projections contained in p’s projected 

database and find that the supports of c1 and c2 are all equal to 2. Thus, both c1 and c2 

are frequent. However, since c1 is contained by c2, c1 is not closed. Likewise, we restore 

each frequent pattern found in the low resolution to find frequent patterns in the high 

resolution. Furthermore, we check whether a restored frequent pattern is closed by 

comparing it with the already mined patterns in CPH, where CPH is a closed pattern pool 

in the high resolution. A complete set of closed patterns mined in the high resolution is 

shown in Fig. 5.8. 
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Fig. 5.8. Frequent patterns mined in the high resolution. 
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Chapter 6 Performance Evaluation 

In this chapter, we conduct experiments on both synthetic and real data to assess the 

efficiency of the proposed CMP, CFP, and CNP algorithms. The experiments are 

performed in the different environments with respect to each algorithm as listed in Table 

6.1. 

 

Table 6.1. Environment settings for the proposed algorithms. 
Algorithm Platform Programming Language 

CMP 

IBM compatible PC with Intel Core 2 
Duo CPU 1.86GHz, 2GB main memory, 
running on MS Windows XP 
Professional. 

Microsoft Visual C++ 6.0 

CFP & CNP 

IBM compatible PC with Intel Core 2 
Quad CPU 2.4GHz, 2GB main memory, 
running on MS Windows XP 
Professional. 

Microsoft Visual C++ 2005 

 

6.1 Synthetic data 

We use a similar approach suggested by Srikant and Agrawal [53] to generate the 

synthetic datasets. First, we generate potential frequent patterns and use them to 

construct transactions in the database. Besides the potential frequent patterns, we insert 

the items (either symbols for the CMP and CFP algorithms or numerical values for the 

CNP algorithm) into the sequence following an exponential distribution with mean 

equal to 1. 

We conduct several experiments under various parameter settings. For each 

experiment, we vary one parameter and set other parameters to their default values. The 

default values for these parameters used in the proposed CMP, CFP, and CNP 

algorithms are listed in Tables 6.2-6.4, respectively. Note that the support of a pattern is 

defined as the fraction of transactions containing the pattern in the database in the 
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experimental section. 

 

Table 6.2. Parameters used in the CMP algorithm. 
Parameter Description Default value

|T| Number of transactions in the database 10,000 
L Length of transactions 10 
P Number of potential frequent patterns in the database 800 
A Average length of potential frequent patterns in the database 6 
S Number of sequences in a transaction 2 

Sym Number of symbols in a sequence 5 
δ Minimum support threshold 2% 
τ Maximum gap between any two symbols 2 

 

Table 6.3. Parameters used in the CFP algorithm. 
Parameter Description Default value

|T| Number of transactions in the database 10,000 
L Length of transactions 8 
P Number of potential frequent patterns in the database 800 
A Average length of potential frequent patterns in the database 6 

Sym Number of symbols in a sequence 5 
δ Minimum support threshold 6% 
τ Maximum gap between any two symbols 3 

 

Table 6.4. Parameters used in the CNP algorithm. 
Parameter Description Default value

|T| Number of transactions in the database 50,000 
L Length of transactions 16 
P Number of potential frequent patterns in the database 1000 
A Average length of potential frequent patterns in the database 10 
S Number of sequences in a transaction 2 
δ Minimum support threshold 0.05% 
ε Distance threshold 0.01 
γ Number of resolutions 2 
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6.2 Performance evaluation of the CMP algorithm 

We compare the CMP algorithm with the modified Apriori and BIDE algorithms. 

The modified Apriori algorithm generates the frequent patterns level by level. At each 

level, it combines two frequent k-patterns to generate a candidate (k+1)-pattern. For 

each candidate (k+1)-pattern, the database is scanned to count its support and check if it 

is frequent. The process is continued until no more frequent patterns can be generated. 

The modified Apriori algorithm uses only the anti-monotone property to prune the 

unnecessary candidates.  

Since the BIDE algorithm is originally designed to analyze datasets that contain 

only a single sequence in each transaction, a multi-sequence time-series database is 

transformed into a single sequence time-series database by composing multiple 

sequences in a transaction into one sequence. That is, for each transaction that contains 

multiple sequences, we append these sequences one by one to form a new transaction. 

For example, a transaction that contains two sequences 
⎭
⎬
⎫

⎩
⎨
⎧

z
d

y
c

xyy
cba

 
is 

transformed into a single sequence { }zyxyydccba . After the 

modified BIDE algorithm mines all the closed patterns in a single-sequence format, the 

mined patterns may be transformed into a multi-sequence format. For example, the 

patterns { }yyba ___  and { }xyca ____  mined by the 

modified BIDE algorithm, may be transformed into 
⎭
⎬
⎫

⎩
⎨
⎧

y
b

y
a

, and 
⎭
⎬
⎫

⎩
⎨
⎧

x
c

y
a

_
_

, 

respectively. To compare the modified Apriori, the modified BIDE and the CMP 

algorithms, we first mine all closed patterns and then generate a complete set of 

frequent patterns from the closed patterns mined. 

 

6.2.1 Evaluations on synthetic data 

Fig. 6.1 shows the runtime versus the minimum support threshold, where the 

minimum support threshold varies from 0.01% to 5%. The CMP algorithm runs about 
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33-350 times faster than the modified Apriori algorithm and runs about 14-43 times 

faster than the modified BIDE algorithm. The CMP algorithm outperforms the modified 

Apriori algorithm because the latter generates a huge number of candidates, especially 

when the minimum support threshold is low. By using the projected database, the CMP 

algorithm requires only one database scan and can localize support counting, candidate 

pruning, and closure checking in the projected database. It also adopts the closure 

checking and pruning strategies to accelerate the mining process and to avoid generating 

many unnecessary candidates. Even though the modified BIDE algorithm avoids 

candidate generation and uses similar pruning strategies as the CMP algorithm, the 

length of a transaction in the modified BIDE algorithm is longer than that in the CMP 

algorithm. Thus, the modified BIDE algorithm spends more execution time than the 

CMP algorithm. Therefore, the CMP algorithm outperforms the modified Apriori and 

BIDE algorithms. 

  

Fig. 6.1. Runtime versus minimum support 
(CMP). 

Fig. 6.2. Runtime versus number of 
transactions (CMP). 

 

Fig. 6.2 shows the runtime versus the number of transactions in the database, where 

the number of transactions varies from 10,000 to 70,000, and the minimum support 

threshold is equal to 2%. The runtime of all three algorithms increases almost linearly as 
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the number of transactions increases; however, the CMP algorithm runs about 63 times 

faster than the modified Apriori algorithm and about 12 times faster than the modified 

BIDE algorithm. 

Fig. 6.3 depicts the runtime versus the length of a transaction where the length of a 

transaction varies from 8 to 20. As the length of a transaction increases, the number of 

closed patterns increases. Therefore, the runtime of all three algorithms increases. 

However, the CMP algorithm is about 54-85 times faster than the modified Apriori 

algorithm and about 6-270 times faster than the modified BIDE algorithm. Moreover, 

we notice that the runtime of the modified BIDE algorithm rises sharply as the 

transaction length increases. This is because the length of each transaction is doubled as 

we append multiple sequences to form a single sequence, and mining such long single 

sequences costs more time. The modified BIDE algorithm runs slower than the 

modified Apriori algorithm when the length of transactions is greater than or equal to 

16. 

 

Fig. 6.3. Runtime versus transaction length 
(CMP). 

Fig. 6.4. Runtime versus maximum gap 
(CMP). 
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candidates or patterns are generated. Thus, the runtime of all three algorithms increases. 

We observe that the runtime of the CMP algorithm increases slowly as the maximum 

number of gaps increases. The CMP algorithm is about 45-140 times faster than the 

modified Apriori algorithm and about 2-27 times faster than the modified BIDE 

algorithm. 

Fig. 6.5 shows the runtime versus the number of sequences in a transaction. As the 

number of sequences in a transaction increases, the runtime of all three algorithms 

increases. When the number of sequences in a transaction increases, it takes much more 

time to check whether the candidate patterns are frequent for the modified Apriori 

algorithm. When the number of sequences in a transaction is more than five, the 

modified Apriori algorithm cannot find the complete set of frequent patterns in a 

reasonable time. As well, the modified BIDE algorithm cannot mine patterns in a 

reasonable time. Since multiple sequences are appended together to form a single 

sequence, the length of the single sequence formed is five times as long as the length of 

the transaction with multiple sequences. The modified BIDE algorithm cannot 

efficiently mine closed patterns in the database with such long sequences. However, the 

CMP algorithm can efficiently perform the mining task in such databases. 

 

Fig. 6.5. Runtime versus number of 
sequences (CMP). 

Fig. 6.6. Runtime versus number of symbols 
(CMP). 
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Fig. 6.6 shows the runtime versus the number of symbols in a sequence where the 

number of symbols varies from 3 to 8. Note that when the number of symbols in a 

sequence increases, more frequent 1-patterns may be mined from the database. Recall 

that the frequent super-pattern is generated by concatenating the k-pattern, gaps, and one 

of the frequent 1-patterns in the projected database. As the number of frequent 

1-patterns increases, the CMP and the modified BIDE algorithms need to check more 

concatenated patterns. The runtime of the modified Apriori algorithm also increases as 

the number of symbols increases. The reason is that more candidates are generated as 

the number of symbols increases, and hence the algorithm spends more effort on pattern 

concatenation and support counting. Therefore, all three methods appear to spend more 

time in the mining process. However, the CMP algorithm still outperforms the other 

algorithms in all cases. 

In summary, since the CMP algorithm employs the projected database, closure 

checking, and pruning strategies to mine closed patterns, it is more efficient and 

scalable than the modified Apriori and BIDE algorithms in all cases, especially when 

the minimum support threshold is low or the number of sequences in a transaction is 

large. The advantage of using the projected database is that the CMP algorithm can 

localize support counting, candidate pruning, and closure checking to speed up the 

mining process. Moreover, the CMP algorithm adopts the closure checking and pruning 

strategies to avoid generating many unnecessary candidates. Therefore, the 

experimental results show that the CMP algorithm outperforms the modified Apriori 

algorithm by one or two orders of magnitude. Compared with the modified BIDE 

algorithm, the CMP algorithm achieves better performance in all cases. Although the 

modified BIDE algorithm and the CMP algorithm both employ projected databases and 

similar pruning strategies to mine closed patterns, the transactions used in the modified 

BIDE algorithm is 2-6 times longer than those in the CMP algorithm. Thus, the CMP 

algorithm is more efficient and scalable than the modified BIDE algorithm. 
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6.2.2 Evaluations on real data 

In this sub-section, we compare the CMP, and the modified Apriori and BIDE 

algorithms using two real datasets: weather and stock. The weather dataset is retrieved 

from the Data Bank for Atmospheric Research (DBAR) and the period of the dataset is 

from January 2003 to December 2007 with a total of 1825 transactions [16]. Each 

transaction in the database includes two sequences: temperature and relative humidity in 

a day. These measurements are taken at the weather station in Taipei. Both sequences 

are recorded hourly. In the experiment, we aim to examine the influence of temperature 

and relative humidity on cloud formation. Hence, we select dates with average 

cloudiness greater than six on a decimal scale where a value of six refers to mostly 

cloudy [7]. As a result, 1348 days are selected. Therefore, the database contains 1348 

transactions, and the length of each transaction is 24. 

Next, we transform each sequence in a transaction into a symbolic sequence in the 

weather dataset. The first sequence in a transaction represents temperature and it 

includes five different symbols L1, ML1, M1, MH1, and H1 from low to high, where the 

symbols L1, ML1, M1, MH1, and H1 represent low, medium low, medium, medium high, 

and high temperature, respectively. The second sequence in a transaction represents 

relative humidity, and also uses five different symbols L2, ML2, M2, MH2, and H2 from 

low to high humidity. 

The stock dataset is collected from the Taiwan Stock Exchange Corporation (TSEC) 

[57] from January 2000 to December 2007. Seven stock indexes are chosen, including 

Nasdaq Composite Index (IXIC), Dow Jones Industrial average (DJI), Tokyo Nikkei 

225 Price Index (NK-225), Korea Composite Stock Price Index (KOSPI), Hong Kong 

Hang Seng Index (HSI), Singapore Straits Times Index (STI), and Taiwan Stock Index 

(TAIEX). Each of these stock market movements is represented by one of the sequences 

in a transaction. Each sequence in a transaction represents the movements of the stock 

market in a month. In this experiment, we aim to examine if Asia stock market is likely 
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to be affected by U.S. stock market. That is, we doubt whether there exists a pattern that 

contains all seven stock indexes (multiple sequences) moving in the same direction. 

Therefore, the database contains 96 transactions (96 months), where each transaction 

includes seven sequences and the length of each transaction is about 20. Then, each 

sequence is transformed into a symbolic sequence. The movements of a stock market 

are classified into three levels: rising, falling, and constant. That is, each sequence is 

formed by three symbols: Ri (rising), Fi (falling), and Ci (constant), where i is the 

sequence ID in a transaction, 1 < i < 7. 

 

(a) (b) 
Fig. 6.7. Runtime versus minimum support: (a) weather and (b) stock. 

 

The performance of the three algorithms using the real datasets is quite similar to 

that found using the synthetic data. Fig. 6.7 illustrates the runtime versus the minimum 

support threshold for the weather and stock datasets. In the modified BIDE algorithm, a 

new transaction is formed by appending the second sequence to the first sequence. The 

length of a transaction is 48 in the weather dataset and about 140 in the stock dataset. 

Since the modified BIDE algorithm cannot efficiently mine frequent closed patterns in 

long transactions, it runs slower than the CMP and the modified Apriori algorithms. The 

CMP algorithm outperforms the modified Apriori algorithm because the latter generates 

1

10

100

1000

10000

100000

4 6 8 10 12 14 16 18 20

Ru
nt

im
e 

(s
)

Minimum support (%)

Apriori CMP BIDE

1

10

100

1000

10000

100000

10 12 14 16 18 20

Ru
nt

im
e 

(s
)

Minimum support (%)

Apriori CMP BIDE



 

81 
 

a large number of candidates, especially when the minimum support threshold is low. In 

addition, the CMP algorithm adopts closure checking and pruning strategies to 

accelerate the mining process and avoid generating many unnecessary candidates. 

Therefore, it outperforms the modified Apriori and BIDE algorithms. 

 

(a) (b) 
Fig. 6.8. Runtime versus maximum gap: (a) weather and (b) stock. 

 

Fig. 6.8 presents the runtime versus the maximum number of gaps for the weather 

and stock datasets. As the maximum number of gaps increases, more candidates or 

patterns are generated and therefore the runtime of all three algorithms increases. Since 

the runtime of the CMP algorithm increases slowly as the maximum number of gaps 

increases, the CMP algorithm outperforms the modified Apriori and BIDE algorithms.  

In Fig. 6.9, we demonstrate how the SAX representation may affect the 

performance on the real datasets. We apply the CMP algorithm to the weather and stock 

datasets with a different number of symbols, where the minimum support threshold is 

10% in the weather dataset and 30% in the stock dataset. In both real datasets, the 

number of closed patterns decreases as the number of symbols increases. When the 

number of symbols increases, the runtime decreases for the weather dataset; however, it 

increases for the stock dataset. 
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(a) (b) 
Fig. 6.9. Runtime and number of closed patterns versus number of symbols: (a) weather and 
(b) stock. 

 

We perceive that the trend of runtime obtained for the weather dataset is different 

from what we have observed from the synthetic data in which the runtime of the CMP 

algorithm increases as the number of symbols increases. In the weather dataset, both 

temperature and relative humidity are recorded hourly and the hourly fluctuations of 

these variables are small for most days. Thus, many values in a sequence are 

transformed into the same symbol in the SAX representation. As more equivalent 

symbols are contained in the dataset, more closed patterns but fewer frequent 1-patterns 

may be mined. In other words, discretizing by three symbols or more symbols does not 

make a big difference on the number of frequent 1-patterns generated. Thus, the runtime 

of the CMP algorithm depends on the number of closed patterns mined from the dataset. 

With smaller number of symbols, more closed patterns can be mined, and hence the 

CMP algorithm requires more time in the mining process.  

In comparison with the weather data, the movements of stock market indexes are 

collected on a daily basis and have larger fluctuations. Hence, fewer closed patterns but 

more frequent 1-patterns are generated in the stock dataset. As more frequent 1-patterns 

are generated, the number of combinations of forming candidate patterns from a 

frequent pattern increases. This leads to more computational effort to check whether 
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these candidate patterns are frequent and closed. Notice that the runtime in the case of 

three symbols is slightly greater than that in the cases of four and five symbols. In the 

case of three symbols, the effort on generating closed patterns dominates the total 

runtime. As the number of symbols increases, fewer closed patterns may be mined and 

the effort that dominates total runtime would shift to forming candidate patterns and 

checking if the candidates formed are frequent and closed. However, in the cases of four 

and five symbols, the effort on forming candidate patterns and checking is not yet 

apparent since the number of symbols only increases a little and the effort on generating 

closed patterns decreases because fewer closed patterns can be found. Hence, the 

runtime in the cases of four and five symbols may be less than in the case of three 

symbols. As the effort on forming candidate patterns becomes apparent in the case of 

six and seven symbols, the performance would be worse in comparison to the case of 

three symbols. Therefore, as the number of symbols increases, the runtime decreases for 

the weather dataset; however, it increases for the stock dataset. 

Mining the weather dataset, some interesting patterns are found, such as 
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. The patterns show that when 

the temperature and the relative humidity are medium high or greater, it is likely to be 

day with high cloudiness. 

In Figs. 6.10 - 6.12, we project the patterns back to the original data. Fig. 6.10 

shows a continuous period of high (or medium high) temperature and high (or medium 

high) relative humidity from the 1st to the 10th hours, and demonstrates that warm and 

moist air produces clouds during this period. However, when the relative humidity starts 

to drop in the 11th hour and remains at a lower level afterward, the cloudiness also drops 

dramatically despite the temperature remaining at the high level. 
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Fig. 6.10. Example I: projecting the pattern back to the raw time-series sequence. 

 

Fig. 6.11. Example II: projecting the pattern back to the raw time-series sequence. 

 

In Fig. 6.11, the temperature remains at the medium high level and the relative 

humidity remains at the high level, and hence high cloudiness can be observed through 

the day. In Fig. 6.12, it is mostly cloudy in the early morning when the temperature and 

relative humidity are high (or medium high) through the first eight hours. However, the 

relative humidity decreases to a lower level from late morning to the afternoon while the 

temperature remains at a high level. Hence, a trend in decreasing cloudiness may be 
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observed during this period. Nevertheless, from the 20th to the 24th hour, the cloudiness 

starts to increase as the relative humidity starts to increase and the temperature remains 

at a medium high level. 

 

Fig. 6.12. Example III: projecting the pattern back to the raw time-series sequence. 

 

In summary, the CMP algorithm is more efficient and scalable than the modified 

Apriori and BIDE algorithms. It requires much less execution time, especially when the 

minimum support threshold is low. This is because the CMP algorithm employs the 

projected database, closure checking and pruning strategies to mine closed patterns to 

avoid generating many unnecessary candidates. Therefore, the experimental results 

show that the CMP algorithm outperforms the modified Apriori and BIDE algorithms. 

 

6.3 Performance evaluation of the CFP algorithm 

To evaluate the performance of the CFP algorithm, we compare it with the 

modified Apriori algorithm. For the comparison reason, we adapt the Apriori algorithm 

[53] to mine closed flexible patterns in a time-series database. That is, we slightly 

modify the join step of the Apriori algorithm. Instead of combining two frequent 

k-patterns as described in [53], we join these patterns with all possible combinations of 
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gap intervals to generate candidate (k+1)-patterns. Then, we scan the database once to 

count the support of each candidate (k+1)-pattern and check if it is frequent. The steps 

described above are repeated until no more frequent patterns can be found. To compare 

with the modified Apriori algorithm, we derive a complete set of frequent patterns from 

the closed flexible patterns found in the CFP algorithm. 

 

6.3.1 Evaluations on synthetic data 

In Fig. 6.13, we investigate the effect of varying minimum support thresholds from 

2% to 12% on the runtime of the CFP and the modified Apriori algorithms. The result 

shows that as the minimum support threshold decreases, the runtime of both algorithms 

increases sharply. This is because more patterns can be mined with a smaller minimum 

support threshold. However, compared with the modified Apriori algorithm, the CFP 

algorithm has a significant performance improvement, especially when the minimum 

support threshold is low. This is due to the benefits of using projected databases so that 

the CFP algorithm can localize the pattern extension in a small number of projected 

databases. Moreover, using two pruning strategies and the closure checking scheme, we 

can eliminate many unnecessary patterns which result in a major reduction in execution 

time. In contrast, the modified Apriori algorithm bears more computational costs 

because it generates a large number of candidates and needs multiple scans of the 

database. Therefore, the CFP algorithm runs about 5-19 times faster than the modified 

Apriori algorithm. 

Generally speaking, increasing the number of transactions may lead to a larger 

number of frequent patterns being generated. As shown in Fig. 6.14, the runtime of both 

algorithms increases linearly as the number of transactions increases.  
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Fig. 6.13. Runtime versus minimum support 
(CFP). 

Fig. 6.14. Runtime versus number of 
transactions (CFP). 

 

Fig. 6.15. Runtime versus transaction length 
(CFP). 

Fig. 6.16. Runtime versus maximum gap 
(CFP). 

 

Fig. 6.15 illustrates the runtime versus the transaction length for both algorithms, 

where the transaction length varies from 6 to 10. As the transaction length increases, the 

runtime of both algorithms increases. The reason is that longer flexible patterns may be 

discovered from longer transactions and thus require more effort on the join steps and 

counting supports. Nevertheless, the CFP algorithm outperforms the modified Apriori 

algorithm in all cases. 

In Fig. 6.16, we evaluate the performance on the CFP and the modified Apriori 
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algorithms with different maximum gap thresholds. We observe that when the maximum 

gap threshold increases, the runtime of both algorithms increases. As the maximum gap 

threshold increases, the number of possible combinations of gap intervals between two 

successive items in a pattern also increases. This results in more frequent patterns at 

each level, and hence more execution time is required. However, the modified Apriori 

algorithm spends a lot of time on generating a large number of candidates and scanning 

the database to count their supports. In contrast, the CFP algorithm employs the concept 

of projected database and saves a lot of time on support counting. Therefore, the CFP 

algorithm is more efficient and scalable than the modified Apriori algorithm. 

 

Fig. 6.17. Runtime versus number of symbols (CFP). 

 

We further examine the effect of the number of distinct symbols on the 

performance of both algorithms. As shown in Fig. 6.17, both curves slope downward as 

the number of distinct symbols increases from 3 to 7. This is because larger number of 

distinct symbols may reduce the chances of forming frequent patterns. Nevertheless, the 

CFP algorithm results in better performance than the modified Apriori algorithm. 

In summary, since the CFP algorithm employs the projected database, two pruning 

strategies, and the closure checking scheme to mine closed flexible patterns in a DFS 

manner, it is more efficient and scalable than the modified Apriori algorithm in all cases, 
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especially when the minimum support threshold is low or the average length of 

transactions is large. The experimental results show that the CFP algorithm outperforms 

the modified Apriori algorithm by an order of magnitude. 

 

6.3.2 Evaluations on real data 

To validate the CFP algorithm on the real dataset, we perform experiments on the 

house price index (HPI) data of the United States. The real dataset is retrieved from 

Standard & Poor’s official website [55] and it covers the time period from July 2005 to 

December 2007. This period could be characterized as a turning point in U.S. economy, 

generally attributed to the strong housing demand in 2005 and the subprime mortgage 

crisis in 2007.  

The real data consists of home price indices of 20 metropolitan regions in the 

United States, including Boston, New York, Washington, Charlotte, Atlanta, Tampa, 

Miami, Detroit, Cleveland, Chicago, Minneapolis, Dallas, Denver, Phoenix, Las Vegas, 

Seattle, Portland, San Francisco, Los Angeles, and San Diego. Moreover, it is recorded 

on a monthly basis. Hence, we have 20 transactions in the database and each of which 

contains 30 elements. That is, there are 30 months over the period from July 2005 to 

December 2007. Each element in the transaction is transformed into one of the distinct 

symbols HP, LP, FT, LN, and HN in the transformation phase where these symbols 

denote high positive, low positive, flat, low negative, and high negative rate of change 

in home-price appreciation, respectively. 

Fig. 6.18 shows the runtime versus the minimum support threshold which varies 

from 20% to 70%. The runtime of the modified Apriori algorithm grows sharply as the 

minimum support threshold decreases since it requires a major effort to generate a huge 

number of candidates and scan databases multiple times. In contrast, the runtime of the 

CFP algorithm increases moderately even when the minimum support threshold is low. 
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Fig. 6.18. Runtime versus minimum support 
for HPI data. 

Fig. 6.19. Runtime versus maximum gap for 
HPI data. 

 

Fig. 6.19 depicts the result of mining real data with respect to different values of 

maximum gaps, where the minimum support threshold is set to 90%. The runtime of 

both algorithms rises slowly with low maximum gap thresholds because there are only a 

limited number of patterns. However, as the value of maximum gaps increases, the 

performance differences between the modified Apriori algorithm and the CFP algorithm 

become noticeable. 

Mining the real dataset, we could find some interesting patterns and project these 

patterns back to the original data in order to show the trend in a certain time period. For 

instance, one of the patterns is { }HNHNHNLNLN  as shown in Fig. 6.20. The 

pattern implies a continuing downward trend in the rate of house price in the wake of 

the subprime mortgage crisis in 2007. We obtain this pattern on West Coast cities like 

Las Vegas, Phoenix, Los Angeles, and San Diego and this denotes that these cities all 

have the same movement in house prices as the subprime mortgage crisis breaks out. 

The movement demonstrates that the home price starts to falter in spring 2007 and 

continue to have a higher negative rating in summer and winter 2007. Moreover, Las 

Vegas has the pattern begins in February 2007 but it is at a lag of three months for 

Phoenix. Los Angeles and San Diego have the pattern appeared at the same time in June 
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2007 that is a month later than Phoenix. In other words, we observe an earlier fall in 

house prices affected by the subprime mortgage crisis in Las Vegas and Phoenix than 

other West Coast cities. 

 

Fig. 6.20. HPI rate of change for West Coast cities. 

 

Another pattern { }LNLNLNLNFTLPLPLPLPFT  is found on South cities 

Atlanta and Dallas as shown in Fig. 6.21. The same trend can be seen in the rate of 

house price movement between both cities. It indicates the small rise in house price 

appreciation during the period from March 2006 to August 2006 before the subprime 

mortgage crisis hits. However, it depicts several consecutive monthly falls in the rate of 

house price starting in September 2006.  

The other pattern [ ] [ ]{ }HNHNHNLNFTFT 1,01,0  is discovered on Midwest 

cities Minneapolis, Chicago, and Cleveland as shown in Fig. 6.22. We plot the pattern 

separately for these three cities in order to provide a clear view on the part of the 

flexible intervals. We observe that all three cities have the same movement {FT FT LN} 

from June to August and then within 0-1 gap interval, the HPI rate of change would 
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drop to high negative. Furthermore, the second gap interval [0, 1] between HN and HN 

indicates that within 0-1 gap interval, there is less fluctuation in house price movement 

and the change remains in a high negative rate. 

 

Fig. 6.21. HPI rate of change for South cities. 

 

Fig. 6.22. HPI rate of change for Midwest cities. 

 

In summary, the performance of the CFP and the modified Apriori algorithms on 

the real dataset is quite similar to that on the synthetic datasets. Since the CFP algorithm 

takes the advantage of two pruning strategies and the closure checking scheme to reduce 

the search space and thus speed up the algorithm, it outperforms the modified Apriori 

algorithm. 
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6.4 Performance evaluation of the CNP algorithm 

The performance of the CNP algorithm is evaluated against the A-Close algorithm 

[43]. For the comparison, the A-Close algorithm is modified appropriately to mine 

frequent closed patterns in time-series databases. Specifically, we scan database once to 

mine all frequent 1-patterns. Next, we join two frequent k-patterns as described in [43] 

to form a candidate (k+1)-pattern. However, we need to check if this candidate pattern is 

indeed a valid pattern existed in the database. This is because the candidate pattern must 

be formed of a set of consecutive time points, whereas the original A-Close algorithm 

does not take time into account when joining the candidate patterns. If the candidate 

pattern is valid and its support is not less than δ, it is a frequent (k+1)-pattern. 

According to the pruning strategy in [43], we remove any frequent (k+1)-pattern if its 

support is the same as that of its sub-patterns. This process is repeated until no more 

patterns can be generated.  

To obtain all closed patterns, we compute the closures of all frequent patterns 

found earlier in the database. That is, we grow each frequent pattern p until its 

super-pattern q has a different support count from p. If such super-pattern q can be 

found, we store q in the closed pattern pool; otherwise, we store p in the closed pattern 

pool. Note that, before inserting a new pattern in the closed pattern pool, we use the 

already mined patterns in the pool to double-check whether the new pattern is indeed 

closed. Finally, we merge similar patterns together and select the representative patterns. 

 

6.4.1 Evaluations on synthetic data 

In Fig. 6.23, we report the runtime performance of the CNP and the modified 

A-Close algorithms, where the minimum support threshold varies from 0.001% to 0.5%. 

As observed, the CNP algorithm achieves better efficiency than the modified A-Close 

algorithm, especially when the minimum support threshold drops to 0.001%; their 

performances differ by a factor of about 100. This is because the modified A-Close 
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algorithm suffers from generating a huge number of candidates and computing the 

closures of the frequent patterns. On the other hand, the CNP algorithm takes the 

advantage of projected databases to localize the pattern extension in small projected 

databases and applies both pre-pruning and post-pruning strategies to stop growing 

unnecessary patterns and thus results in much better performance. 

 

Fig. 6.23. Runtime versus minimum support 
(CNP). 

Fig. 6.24. Runtime versus number of 
transactions (CNP). 

 

Fig. 6.24 illustrates the scalability of the CNP and the modified A-Close algorithms, 

where the number of transactions varies from 20,000 to 100,000. The runtime of both 

algorithms increases linearly as the number of transactions increases. This is because 

more closed patterns can be mined with the increasing number of transactions. The 

modified A-Close algorithm thus generates more candidates and requires more effort on 

the join steps, support counting, and closure computation, whereas the CNP algorithm 

reduces much search space to mine patterns by employing projected databases. 

However, the CNP algorithm performs consistently better than the modified A-Close 

algorithm in all cases. 
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increases, the number of closed patterns increases, and hence the runtime increases. We 

see that the runtime of the modified A-Close algorithm increases faster than that of the 

CNP algorithm, especially when the transaction length increases to 64. It is clear that 

the modified A-Close algorithm is not effective in dealing with long transactions 

because more combinations of candidate super-patterns are considered in the join step 

and it needs to scan the database multiple times to count the supports. It also spends a 

lot of time on the closure computation to find closed patterns. Nevertheless, the CNP 

algorithm outperforms the modified A-Close algorithm significantly since it uses the 

projected databases to determine the supports of the patterns and adopts two pruning 

strategies to accelerate the mining process for longer transactions. 

 

Fig. 6.25. Runtime versus transaction length 
(CNP). 

Fig. 6.26. Runtime versus number of 
sequences (CNP). 

 

In Fig. 6.26, we examine the relationship between the runtime and the number of 

sequences in a transaction for the CNP and the modified A-Close algorithms. The 
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In Fig. 6.27, we evaluate the performance on the CNP and the modified A-Close 

algorithms with different distance thresholds (ε). When the distance threshold increases, 

the runtime of both algorithms also increases. This is because more closed patterns can 

be generated for the larger distance threshold. However, the CNP algorithm runs about 

2-17 times faster than the modified A-Close algorithm. It is due to that our pruning 

strategies avoid generating unnecessary patterns and the projected databases can be used 

to reduce the search space of finding similar patterns, which speed up the mining 

process. 

 

Fig. 6.27. Runtime versus distance threshold 
(CNP). 

Fig. 6.28. Runtime versus number of 
resolutions (CNP). 

 

Fig. 6.28 demonstrates the effect of the number of resolutions (γ) on the runtime of 
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similar. The CNP algorithm thus produces more closed patterns in the low resolution 

and requires more effort on the restoring operations. On the other hand, the cost of the 

detached-CNP algorithm is to mine patterns from different resolution levels. As the 

level of resolution is lower, more closed patterns can be mined and more runtime is 

required, whereas fewer patterns are generated with higher level of resolutions and less 

runtime is required. However, the CNP algorithm outperforms the detached-CNP 

algorithm by 20% on average. Notice that the runtime increases moderately when γ 

varies from 4 to 5. This is because fewer frequent patterns can be found in the low 

resolution as the length of the transformed time-series is short. That is, when γ = 4, the 

length of each transformed time-series becomes 2, whereas the length of each 

transformed time-series becomes 1 when γ = 5. In both cases, the time required to find 

frequent patterns in the low resolution is not that different from each other. Therefore, 

the overall runtime slightly increases when γ varies from 4 to 5. 

In summary, the experimental results show that the CNP algorithm is scalable and 

efficient on all the parameter settings. The CNP algorithm spends much less runtime 

because it uses projected databases to localize the pattern extension and support 

counting, and employs two pruning strategies to prune the unnecessary extensions. In 

contrast, the modified A-Close algorithm requires multiple scans of the database and 

spends much time on computing the closures of the frequent patterns. Therefore, the 

CNP algorithm significantly outperforms the modified A-Close algorithm. 

 

6.4.2 Evaluations on real data 

To further evaluate the performance of the CNP algorithm on real-world datasets, 

we collect a stock dataset from Yahoo Finance [65] which provides daily closing prices 

for S&P (Standard and Poor’s) 500 companies [55]. The data is collected from the 

period of Jan 1st 2009 to July 7th 2009. There are 128 trading days in total. Moreover, 

this period is characterized as the turnover point creeping up from the recession to the 
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recovery period. 

Next, we apply the 50-day short-term moving average (MA50) and 200-day 

long-term moving average (MA200) to the time-series sequences of each company in 

the collected stock dataset. Generally, there are 500 companies in S&P but five of them 

are removed due to incomplete data. As a result, there are 495 transactions in the 

database and each of which contains two sequences of length 128. Since the stock price 

scale is different for each of the S&P 500 companies, we normalize the dataset by the 

min-max normalization [19].  

The performance of the CNP and the modified A-Close algorithms on the real dataset 

is similar to that on the synthetic datasets. Fig. 6.29 shows the runtime versus the 

minimum support threshold. For smaller minimum support thresholds, the runtime for 

mining closed patterns becomes significant for both algorithms. When the minimum 

support threshold is larger than 60%, the runtime of both algorithms remains almost 

constant. This is because no pattern can be discovered after the minimum support 

threshold exceeds 60%. Nevertheless, an exception can be noticed for the case where 

the performance of the CNP algorithm degrades a little when the minimum support 

threshold increases from 95% to 100%. This is caused by how we generate frequent 

1-patterns. Recall that we use the lower and upper bounds of the indices in an array to 

find candidates that are similar to a pivot with respect to the first dimension. For each 

candidate, we further check if it is similar to the pivot with respect to the second 

dimension. When the minimum support threshold is 95%, most pivots are potential to 

be frequent 1-patterns since there are sufficient candidates that are similar to the pivots 

with respect to the first dimension. Thus, additional runtime is required to check 

whether sufficient candidates are similar to those pivots with respect to the second 

dimension. On the other hand, when the minimum support threshold is 100%, most 

pivots cannot find sufficient candidates with respect to the first dimension, and hence it 

is unnecessary to check the second dimension and no additional runtime is required. 
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However, the performance of the CNP algorithm is always better than that of the 

modified A-Close algorithm because the latter consumes much time in generating large 

number of candidates and calculating the supports and closures of the patterns. 

 

 
Fig. 6.29. Runtime versus minimum support for S&P 500 stock. 

 

 
Fig. 6.30. Runtime versus distance threshold for S&P 500 stock. 
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consistently outperforms the modified A-Close algorithm in all cases. 

Mining the stock dataset, we could find some interesting patterns. For example, we 

find a pattern that represents a golden cross in Fig. 6.31a, where a golden cross is a 

signal of bullish markets and occurs when the line of the short-term moving average 

passes through the long-term moving average from the lower side to the upper side 

[12][56]. There are 26 companies in the projected database having the golden cross 

pattern and they are categorized in the following sectors according to S&P official 

website [55]: information technology (7), financial (5), industrials (5), materials (3), 

consumer discretionary (3), healthcare (2), and consumer staples (1). Note that the 

number in the bracket after a sector name denotes the number of companies found in the 

sector.  

 

(a) (b) 

(c) (d) 

Fig. 6.31. The golden crosses of JBL, AXP, HPQ, and MAS. 
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The pattern shows a continuing upward trend in stock price in the recovery period 

and implies that numerous companies gradually revive as the global economy 

progressively recovers from the recession. Moreover, we clearly see that the golden 

cross pattern is taken place in June. We further check the patterns in the projected 

database and find that the golden crosses for those patterns shift slightly. Here we show 

some of those patterns in Figs. 6.31a, 6.31b, 6.31c, and 6.31d which represent the 

companies JBL, AXP, HPQ, and MAS, respectively. These shifts are caused by the 

tolerance of distance threshold. Since the tolerance of distance threshold may cause a 

pair of multi-sequences to be similar but a slightly different, the golden cross may occur 

at a different point. In addition, we shift the patterns of these companies to the same 

time interval to show that they are indeed similar to each other as illustrated in Fig. 6.32. 

Moreover, we verify that each stock of these companies has a positive outlook since its 

golden cross occurs. Interestingly, this phenomenon has confirmed that a golden cross is 

indeed a buy point for traders. Besides, the result demonstrates that the sectors of 

information technology, financial, and industrials are likely to revive faster than other 

sectors. 

 

Fig. 6.32. The golden crosses of JBL, AXP, HPQ, and MAS in the same time interval. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6.33. The death crosses of PBCT, CEPH, SHW, and AMGN. 
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that they are indeed similar to each other as illustrated in Fig. 6.34. 

 

Fig. 6.34. The death crosses of PBCT, CEPH, SHW, and AMGN in the same time interval.

 

In summary, since the CNP algorithm uses the projected databases to grow patterns 

and compute the supports, and applies two pruning strategies to stop growing the 

unnecessary patterns, it achieves much better performance in comparison to the 

modified A-Close algorithm in all cases. 
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Chapter 7 Conclusions and Future Work 

In the dissertation, we have proposed three algorithms. The first algorithm, called 

CMP, is designed to mine closed patterns from a time-series database, where each 

transaction contains multiple time-series sequences. The second algorithm, called CFP, 

integrates the idea of allowing flexible gaps between items in a pattern and is capable of 

discovering closed flexible patterns in a time-series database. The third algorithm, 

called CNP, mines multi-resolution closed patterns directly from raw numerical data 

without any transformation from numerical sequences to symbolic sequences as 

performed in the CMP and CFP algorithms. It aims at providing analyzers different 

views on data by various resolutions. 

The CMP algorithm consists of three phases. First, we transform each time-series 

sequence into a symbolic sequence. Second, we scan the transformed database to find 

all frequent 1-patterns, and build a projected database for each frequent 1-pattern. Third, 

we recursively use a frequent k-pattern and its projected database to generate its 

frequent super-patterns at the next level in the frequent pattern tree, where k > 1. The 

CMP algorithm adopts a DFS manner and uses the projected database to localize 

support counting, candidate pruning, and closure checking. Therefore, it can efficiently 

mine closed patterns. The experimental results show that the CMP algorithm 

outperforms the modified Apriori and BIDE algorithms by one or two orders of 

magnitude.  

The CFP algorithm takes into consideration the flexible gaps between items in a 

pattern to mine closed flexible patterns in a time-series database. The problem of mining 

closed flexible patterns is solved by initially transforming a time-series database into a 

symbolic database, and then identifying frequent 1-patterns within the transformed 

database, and recursively mining closed flexible patterns in a DFS manner. Since the 

CFP algorithm localizes the pattern extension in a small number of projected databases 

and eliminates unnecessary patterns by two pruning strategies and the closure checking 
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scheme, it is more efficient and scalable than the modified Apriori algorithm. The 

experimental results show that the CFP algorithm outperforms the modified Apriori 

algorithm by an order of magnitude. 

Transforming time-series databases into symbolic databases may change the 

context in which the values may be seen and some valuable information may still be 

uncovered. Moreover, a notable disadvantage for the symbolic sequence analysis is that 

the number of symbols and breakpoints must be supplied. Therefore, the CNP algorithm 

is designed to address with these issues. It mines multi-resolution closed numerical 

patterns in a multi-sequence time-series database. Initially, the Haar wavelet transform 

is applied to convert each time-series in the database into a sequence in the low 

resolution, and then all frequent 1-patterns are identified from the transformed database. 

Subsequently, each frequent k-pattern is recursively extended to find frequent 

super-patterns in a DFS manner. For each frequent k-pattern found in the low resolution, 

it is restored back to the high resolution. As a result, all closed numerical patterns can be 

mined in the low and high resolutions. Since the CNP algorithm employs the projected 

database to localize the pattern growth and takes the benefits of pruning strategies to 

speed up the mining process, the CNP algorithm has demonstrated a significant runtime 

improvement in comparison to the modified A-Close algorithm.  

At present, our work on the CMP algorithm has been published on Data and 

Knowledge Engineering Journal [32] and the work on the CFP algorithm has been 

published on Expert Systems with Applications Journal [64]. The significant 

contribution of this dissertation is that we have designed three efficient algorithms 

which are able to solve real-world problems. Specifically, we have presented a novel 

concept of mining closed multi-sequence patterns in a time-series database and designed 

the CMP algorithm to mine closed multi-sequence patterns. Moreover, we have 

removed the limitation of exact sequence alignments and incorporated the idea of 

flexible-range of consecutive gaps to discover patterns. We have proposed the CFP 
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algorithm to mine closed flexible patterns in a time-series database. In addition, we have 

used the Haar wavelet transform to view a time-series database in multiple resolutions 

and designed a novel algorithm, CNP, to mine closed numerical multi-sequence patterns 

in a time-series database. We have devised effective closure checking schemes and 

pruning strategies with respect to each proposed algorithm to avoid generating 

redundant candidates, and hence each results in less execution time. All the proposed 

algorithms are evaluated with both synthetic and real datasets. The experimental results 

show that the CMP algorithm outperforms the modified Apriori and BIDE algorithms 

by one or two orders of magnitude; the CFP algorithm outperforms the modified Apriori 

algorithm by an order of magnitude; and the CNP algorithm outperforms the modified 

A-Close algorithm by one or two orders of magnitude. 

The limitations of the proposed algorithms are addressed as follows. First, since we 

use an existing data discretization method, such as SAX representation, to transform 

time-series sequences into symbolic sequences in the initial phase of the CMP and CFP 

algorithms, we may not know whether the breakpoints are best determined and what is 

the effect of the discretization. Second, the CNP algorithm cannot cope with multiple 

sequences that have different lengths or missing values in a transaction since no gap 

symbol is taken into consideration. Finally, the CNP algorithm is unable to mine closed 

patterns in a database that contains non-aligned time-series because the concept of gap 

symbols is not integrated in the mining process.  

The present dissertation has illustrated that the CMP, CFP, and CNP algorithms can 

efficiently mine closed patterns from both synthetic and real-world datasets; however, in 

the future, subsequent studies can be conducted in the following directions: 

1. We may modify the CMP algorithm to mine closed patterns in one-sequence 

databases. 

2. We may combine the essence of the CMP and CFP algorithms and develop a 

novel algorithm to address the problem of mining closed flexible patterns in 
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multi-sequence time-series databases. 

3. We may allow a user-specified gap interval, instead of a user-specified 

maximum gap threshold, in the CFP algorithm to find specific patterns in 

which a user is interested. 

4. It is worth extending the CNP algorithm further to mine closed patterns with 

some complicated constraints. For instance, a gap constraint may be pushed 

into the mining process. 

5. We may modify the CNP algorithm to mine multi-resolution closed numerical 

patterns in one-sequence databases. 

6. In the CNP algorithm, instead of measuring whether a pair of multi-sequences 

is similar by calculating the distance between each two numerical points in the 

sequences, other mechanisms may be adopted to improve the efficiency of this 

task. 

7. The CNP algorithm uses the already mined patterns to check if a newly found 

pattern is closed. This is a time-consuming task; therefore, it is helpful to 

design effective closure checking schemes in order to speed up the algorithm. 

8. Without generalization, too many patterns may be mined and they may be too 

detailed. By generalizing with a concept hierarchy, we may be able to obtain 

patterns that are more abstract and meaningful. 

9. We have implemented the memory-based algorithms for the CMP, CFP, and 

CNP algorithms. It will be worth further study on implementing the disk-based 

algorithms for a very large database. 

10. We may further apply the proposed methods to analyze other real-world 

applications, such as bioinformatics, medical diagnosis, hurricane forecasts, 

etc. 
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