ooy 4 e sy
Nk

% -

I ali %‘f’gﬂ-’_é‘fl‘%fﬁggg‘};ﬂzw
B LHm

Department of Information Management

College of Management
National Taiwan University

Doctoral Dissertation

PR R 2 FOR R 2 3 P R SR
Mining Closed Patternsin-Time-Series Databases

-

L W

A A

Huel-Wen Wu

o R
Advisor: Anthony J. T. Lee, Ph.D.

P g FO9E 10

January, 2010

I ali ??Iﬁ—’.%‘fl‘%f;‘%?gg‘};nzmr
B LHm

Department of Information Management

College of Management
National Taiwan University

Doctora Dissertation

B A R 2 B R N R

Mining Closed Patterns in-Time-Series Databases

raH

)

Huel-Wen Wu
IR iR EL
Advisor: Anthony J. T. Lee, Ph.D.

P ERRO99E 1

January, 2010

PR 7] R B 20 B 4k 3V HR A
Mining Closed Patterns in Time-Series Databases

By Huei-Wen Wu

A dissertation submitted to
the Graduate Schael of .if_;hformat_i on Management
of National Taiwan University
in partial fulfillment of fhe requirements for the degree of

Doctor of Philosophy

January, 2010

B 3 A £ 413 X
DXL B TELE

B R 51 B AR 2 3 P M AR AR B

Mining Closed Patterns in Time-Series Databases

ABXAEETE (£33 D95725007) £RA X EEKE
EAEELE Rzl 2mn HEE 9 £01 A
07 BATFTHARZEEELE ST RBRIREA > 4FILEH

A

i

ZELORE BETRLH RS EF T RE PO FFRILATG 0

R SR e FRGEE R P FRIR a3 - oL EE

- Ak a~@ﬁﬁﬁﬁﬁ$%@éw’a%@@%@ﬁﬁ@w‘ﬁw
WA BRI Y MG IR R RN A ST L B R AT

T DE S gﬁ’ﬁyﬁimﬁiﬂﬁ’ﬁﬁﬁuMﬂ**%é°%ﬁﬁpi%

BooEd Bl R A HE A R ML { TR Y b B oo 7o
PR R M T WA G RS A 4 R
AN g G OIS AR REY L (5 L N e

&

JEN
I

FET
he v RPR O RYC BLf il*ﬁ‘=%ﬁ%ﬁ‘5kﬁ%ﬁimg

B 2 ko § BRI 52 SRS L R R R L -

FEPERH-ERE i‘bﬁw%4wﬁé g s AR AL A
feih dTE S B s L ARG T l f'!:’m '&H%im}’ar’?ﬂ%%% + &
SR LT __l; '*".:_

By AR A PR BT A B BN S 5 2

FANCES I L TR A R L AN S
ERE e F o RALFAEIFHPR L EHEATADER > AAFTROTR

N
R
—
hat
ks
i

P A B MRE B RN R B e A R B RA G

EANE Sl phe

AN AR E e

k‘\f&

Bofs o RabTE X mﬁ@—?

T AT A

TR CEAETRAEEEF YT
PEARY L E-

% kR

HY AR TR FREL HP RN

k2 RT t 4 &=

g e L

JER FBHPFEEN e 2R ERERY L 2P RE > HAE P
AR NER A R TR B R AR o AR e R R R SR
B R HPEES RN =B T aFEid 0 A4 4 CMP (Closed
Multi-sequence Patterns mining) ~ CFP (Closed Flexible Patterns mining)¥2 CNP
(multi-resolution Closed Numerical Patterns mining) °

CMP #5212 & F&€20 5 B 7|7 N R L f CFP s & & 7 i
BB ST ALY B D TS R SRR %o CMP 27 OFP i § i# % %
@ﬁﬂﬁﬁ$%%ﬁﬂ’%%#ﬁﬂﬁﬁﬂﬁ*°%ﬁﬁﬁmﬁﬁ$?%ﬁﬂ?
BV T G FER AR 0 R aF rfe %ﬁ \E* AR R MRIITAFR

| B |
5\ 'l

LWL PR R S TR R Y'J”l’le"l\‘rﬁﬁ: AL 0 ONP i i 7 s P R
PIFAE S g R G AR RN ONP i e 5 R R TR
(multi-resolution) 7% & r2 45 I 3 B 24858 > FRR R * 4 00 A LB R iR AR
L o

DA Z BRE Y OURER BAFR S N B RARBTRE R F
Boof 1 b R G AL Y B B T 0k 2 R AHP R T E A

A4 AR PIFERN o

B3 AR AT -

X4

AT %R CMP B2 s 238 Apriori 12 2 BIDE i ¥ i B0 #et i3
CFP i 3 i v 2 %3¢ Apriori i 5 2 £ § 225, CNP i B2 4L 1738 & 7" e 33t
A-Close i & i% - °

Mot FRES - HPRES CFRAITER -

Dissertation Abstract

Mining Closed Patterns in Time-Series Databases

By Huei-Wen Wu
JANUARY 2010
ADVISOR: Dr. Anthony J. T. Lee

Closed pattern mining is a critical research issue in the area of knowledge
discovery and data mining with the aim of discovering interesting patterns hidden in a
large amount of data. In this dissertation, we propose three agorithms, caled CMP
(Closed Multi-sequence Patterns mining), CFP (Closed Flexible Patterns mining), and
CNP (multi-resolution Closed Numerical Paﬁerns mining) to solve various issues
extended from the problem of mining ¢losed patterns.

The CMP agorithm is designed t(ffihd closed patterns in a multi-sequence
time-series database. The CFP algorithm i's‘:'devel oped .to solve the problem of mining
closed flexible patterns in a time-sefries-database. Both the CMP and CFP algorithms
involve a transformation of time-series sequences into symbolic sequences in the first
phase. Although analyzing on symbolic sequencesisideal to reduce the effect of noises
and ease the mining process, these approaches may lead to pattern lost and the
sequences supporting the same pattern may look quite different.

To overcome the problem raised in symbolic sequence analysis, the CNP algorithm
is proposed to mine closed patterns without any transformation from time-series
sequences to symbolic sequences. The method also employs the Haar wavel et transform
to discover patterns in the multiple resolutions in order to provide different perspectives
on datasets.

All the proposed agorithms have employed the concept of projected databases to

localize the pattern extension that leads to a significant runtime improvement. Moreover,

effective closure checking schemes and pruning strategies are devised respectively in
each of the proposed algorithms to avoid generating redundant candidates.

The experimental results show that the CMP algorithm significantly outperforms
the modified Apriori and BIDE agorithms. The CFP agorithm achieves better
performance than the modified Apriori algorithm in all cases. And, the CNP agorithm
has demonstrated a significant runtime improvement in comparison to the modified

A-Close agorithm.

Keywords: Data mining, closed pattern, time-series database.

Table of Contents

T AE B i
Dissertation ADSIITACToiiieee s i
TaDIE OF CONLENTS.....c.eeitieieeieeiee ettt b b e b b sse e e v
LISt OF FIQUIES.......eieeitceeeeiee ettt ettt b e bt nne e Vi
LISt OF TADIES ...t IX
Chapter 1 INErOQUCTIONccoiiiiieieeieeieeiee e 1
L1 MOUVELIONS. ...coueieiiite ettt bttt st sbe e eae e e 2
1.2 CONIDULIONScviiiieiiieetieieeee et 10
1.3 DiSSertation l8YOUL..........cceeieeierieresie et 11
Chapter 2 Literature REVIEW ... i e eerimne e abbinseeeeeeeseesseseesne e seeseeseessessesseseesnes 12
21 Time-seriesmining....... ... 0D U 12
2.2 Sequential pattern MINiNG. . b Lk S 12
2.3 Closed pattern mining...... ... u" gl B 14
24 SAX representation......u.o..... Y S 16
2.5 DiSCUSSION......ooerernesiibin. A oo AR 18
Chapter 3 Mining Closed Patterns in Multi-Sequence Time-Series Databases............. 20
3.1 Preliminariesand problem definitions...........c.ccooeeieiincnencneceeeeee, 20
3.2 Frequent Pattern trEo s 24
3.3 Closure checking and pruning Strategies..........cccceeererererenerieenesese e 25
34 The CMPagOrithm ... s 27
35 AN EXAMPIE....eieecee e 31
Chapter 4 Mining Closed Flexible Patternsin Time-Series Databases.............ccccueeee. 34
4.1 Preliminaries and problem definitions............cccooeieiinininenneeeeeee, 34
4.2 SEOUENCE IIEE ... ittt n e reene s 36
4.3 SUPPOIT COUNTING. .. ceueeureretereentesieeseeseesseseesseseessessesseseeeessessessesbesaessesseeneenes 37
4.4 Closure checking and pruning Strat@gies..........ccocevereriererereeieeneesiese e 38

45 The CRPalgOrithm.........ccooiiii s 41
4.6 AN EXAMPIE......iiiieee s 46
Chapter 5 Mining Multi-Resolution Closed Numerical Patterns in Multi-Sequence

TIMe-SerieS Datalases...........coveveiierereee e 48

51 Preliminariesand problem definitions...........c.ccooeeieienc s 48

5.2 Haar wavelet tranSformccoceieiiiirisesesesee e 51

53 NUMErical PatterN trE.ocue e 54

54 Comparison of projected databases...........cooeiirerererieeiesese e 55

55 Pruning SIratQIESc.eoverierierieriieieieiie ettt 56

56 Frequent 1-pattern generation.........ccooirerereneresieieeiee e eeeneas 58

57 The CNP algOrithm............ooimmmssmmunsss e 60

58 Mining multi-resol ution.patterns....'.- .. 68

59 Anexample......io i, P A 69
Chapter 6 Performance EVAIUGLion ... {.ia bt oeeeeesdisgeciibseeeeeseenesees 72
6.1 Synthetic data 7. N 72

6.2 Performance evaluation of the @MP.agorithm............c.ccccevvvveecrerereenene, 74
6.21 Evauationson syntheﬁc 01 = TSP P PP 74

6.2.2 EvauationsSon real datal.........ccooeeeeieerierierinireseeeeee e 79

6.3 Performance evaluation of the CFP algorithmccccoovinininicicnciee, 85
6.3.1 Evauationson synthetic data...........cccceoeriririninireeeeeese e 86

6.3.2 Evauationson real datal..........ccoeoeeieerieniiienireseeeeee e 89

6.4 Performance evaluation of the CNP algorithm..........cccceeevininininencneenns 93
6.4.1 Evauationson synthetic data...........cccceeiiiririninineeeeeee e 93

6.4.2 EvauationsSon real datal.........cccoeveieerenieneniseeeeeeee e 97
Chapter 7 Conclusions and FULUre WOrK............ccooeriiirieieninc e 104
REFEIENCES ...ttt e et r e e b e 108

List of Figures

Fig. 1.1. A database containing three multi-sequence transactions.c.ccoccveeeeeeenene. 4
Fig. 1.2. Multi-sequence time-serieS X, Y, @Nd Z........ccccoveeieeieieeie e 7
Fig. 2.1. A SAX @XAMPIE. ..o e 17
Fig. 3.1. An example of atransformed multi-sequence database.c.coceeeererereenne. 25
Fig. 3.2. The frequent Pattern tre..ocuiiieeieeeesie e 25
Fig. 3.3. The CMP algorithm.ccoiiiiieeeee e s 28
Fig. 3.4. The CMP-Growth proCeAUIE..........ccooieiiiiiriese st 29
Fig. 4.1. An example database containing four SEQUENCES.ccccvreereeriereesiesesenennens 37
Fig. 4.2. The frequent patterns mined from the database in Fig. 4.1........ccceeevenenienee. 37
Fig. 4.3. Anindex table used to count the suppart of p[X, Y1D.....ccccceeerererinininineees 38
Fig. 4.4. The CFPagorithm. ...c.....~. ... 00 W 41
Fig. 4.5. The CFP-EXIeNSION ProCeaure. v be e ittencenesiesesessssessne 44
Fig. 5.1. A database containing two.multi -séaumce tFANSACHIONS.oveeeeeeeece 51
Fig. 5.2. The Haar wavelet transform. Y S 52
Fig. 5.3. The transformed time-SefieS SEQUENCES ... -wxitr. .rverrerrerreereeeseresesessesseesseeseees 54
Fig. 5.4. Frequent patterns mined in the [ow resolution.ccceeveveninceccenescniee, 55
Fig. 5.5. Finding frequent 1-Patterns.ccoceeeriererese s 59
Fig. 5.6. The CNP algorithm.ccooiiiiiiiiieeeee s 61
Fig. 5.7. The CNP-Growth proCedure. ... 62
Fig. 5.8. Frequent patterns mined in the high resolution.............ccoceeevenenencnencneens 71
Fig. 6.1. Runtime versus minimum sUpport (CMP).ccoceiiininineneeeeeese e 75
Fig. 6.2. Runtime versus number of transactions (CMP).ccceceienininencneneeeens 75
Fig. 6.3. Runtime versus transaction 1ength (CMP).ccccviiiiininineeeeeeee 76
Fig. 6.4. Runtime versus maximum gap (CMP)........ccocriririiieneneeseseseeee e 76
Fig. 6.5. Runtime versus number of sequences (CMP). ... 77
Fig. 6.6. Runtime versus number of SymbolS (CMP).ccccoviiiriniiiieerere e 77

Vi

Fig. 6.7. Runtime versus minimum support: (a) weather and (b) stock.ceceeennees 80

Fig. 6.8. Runtime versus maximum gap: () weather and (b) stock..........ccccevevervreenne. 81

Fig. 6.9. Runtime and number of closed patterns versus number of symbols: (a) weather

=0 [(0] S oo S 82

Fig. 6.10.
Fig. 6.11.
Fig. 6.12.
Fig. 6.13.
Fig. 6.14.
Fig. 6.15.
Fig. 6.16.
Fig. 6.17.
Fig. 6.18.
Fig. 6.19.
Fig. 6.20.
Fig. 6.21.
Fig. 6.22.
Fig. 6.23.
Fig. 6.24.
Fig. 6.25.
Fig. 6.26.
Fig. 6.27.
Fig. 6.28.
Fig. 6.29.
Fig. 6.30.

Example |: projecting the pattern back to the raw time-series sequence. 84
Example II: projecting the pattern back to the raw time-series sequence. 84
Example I11: projecting the pattern back to the raw time-series sequence..... 85
Runtime versus minimum support (CFP). ... 87
Runtime versus number of transactions (CFP).ccoceoeiiiininienceee 87
Runtime versus transaction [ength (CFP).cccoviiiiiniinneeeeie 87
Runtime versus maximum gap (CEP). ..o 87
Runtime versus number of symbols (CFP). ... 88
Runtime versus minimum support for HPhdata.coceeeeenenciniiiineens 90
Runtime versus maximum gap fOEHPIHdata, ... i cvveereeeeeeiiee, 90
HPI rate of change for-\\West CoaéE,cities - SRS 91
HPI rate of change for. South Cities.......-. AT 92
HPI rate of change for M idW&st GBS ittt ettt 92
Runtime versus minimum support (CNP). ... 9
Runtime versus number of transactions (CNP).........ccoceveieienenineneceeee 9
Runtime versus transaction [ength (CNP). ..o 95
Runtime versus number of sequences (CNP).......cccooevirinieiereeee 95
Runtime versus distance threshold (CNP).cooeieiinnineeee 96
Runtime versus number of resolutions (CNP).cccceveierininenieeieeiese 96
Runtime versus minimum support for S& P 500 StockK...........cceeeeeeiericriennene 99

Runtime versus distance threshold for S& P 500 StOCK.ueeeeeeeeeeeeeeeeeeenn, 99

Fig. 6.31. The golden crosses of JBL, AXP, HPQ, and MAS.cccocevvieneeinceee 100

Fig. 6.32.

The golden crosses of JBL, AXP, HPQ, and MAS in the same time interval.

vii

Fig. 6.33. The death crosses of PBCT, CEPH, SHW, and AMGN...........cccccvevveeeneenne 102
Fig. 6.34. The death crosses of PBCT, CEPH, SHW, and AMGN in the same time
LTS Y= 103

viii

List of Tables

Table 2.1. The breakpoint table [29]........ccoiireeeee e 16
Table 6.1. Environment settings for the proposed algorithms. ... 72
Table 6.2. Parameters used in the CMP algorithm. ... 73
Table 6.3. Parameters used in the CFP algorithm............cccooiiinniiiiie, 73
Table 6.4. Parameters used in the CNP algorithm. ..., 73

Chapter 1Introduction

Insightful analysis of business trends and accurate forecasts of future patterns are
critical strategic weapons which can be used to build competitive advantages for
individuals or enterprises. These trends or patterns are usually hidden in a large amount
of data and have not yet been articulated. Thus, mining such patterns has become a
critical research areain recent years.

Data mining is a process of extracting or mining meaningful patterns from large
amounts of data [19]. In this discipline, one major line of research aims at developing
efficient algorithms for mining frequent patterns. A pattern is frequent if its support is
not less than a user-specified minimum support threshold, where the support of a pattern
is defined as the number of transactions containing.the pattern in the database. Mining
such frequent patterns helps decision-makeré to: perceive significant relationships
hidden within data and assists in'solvirig problems for, Various domains, such as finance,
medical science, marketing, biology, mete&rf&dgy, etc.

Several main streams of pattern) minihg, such as time-series mining, sequential
pattern mining, have been introduced to:cope with different types of datasets in mining
frequent patterns. Time-series mining methods incorporate concrete notions of time in
the process of finding patterns. Previous studies in this field include searching similar
patterns in time-series databases [1], matching query patterns in time-series databases
[17][25], and mining long periodic patterns [18]. Regardless of notions of time,
sequential pattern mining methods consider only order of events in data. A wide range
of problems derived from classic sequential pattern mining are investigated, such as
mining long sequential patterns [45], mining patterns with quantities [27], and mining
inter-sequence patterns [60].

Although frequent pattern mining has played a pivotal role in the field of data
mining, it suffers from two disadvantages. (1) the number of frequent patterns

discovered may be overwhelming and it is hard for users to comprehend and (2) it

consumes more time and space to mine all frequent patterns. To overcome these
disadvantages, closed pattern mining has been proposed to condense the frequent
patterns while preserving the same information. A closed pattern is defined as a pattern
that is frequent and has no super-pattern with the same support. Generally speaking, the
algorithms of mining closed patterns are more efficient than those of mining frequent
patterns [43][44]. Moreover, mining closed patterns is lossless because a complete set of
frequent patterns and their exact supports can be derived from the closed patterns mined.
Therefore, closed pattern mining is an alternative approach that preserves the same
information as frequent pattern mining but provides a succinct and yet more efficient
solution.

In this dissertation, we focus on_the problem of mining closed patterns in
time-series databases in three aspects. The first aspectiis to mine closed multi-sequence
patterns in multi-sequence time-series databases. A'multi-sequence time-series database
IS a database that contains time-series recoms (or transactions), where each transaction
contains multiple time-series sequences. The second is'to mine closed flexible patterns
in time-series databases. The third is to'mine.multi-resolution closed numerical patterns
in multi-sequence time-series databasé.

In this chapter, the motivations of the dissertation are discussed in Section 1.1, the
contributions are presented in Section 1.2, and the dissertation layout is organized in

Section 1.3.

1.1 Motivations

In the field of medical science, chronic liver disease is one of the mgor health
problemsin Asia. Most patients routinely take blood tests to determine the level of liver
enzymes, such as aanine aminotransferase (ALT) and aspartate aminotransferase (AST)
in order to diagnose their liver cell damage. The measurements of these two liver

enzymes have been widely recognized as the indicators of liver disease [3][34][49].

According to [34], elevated ALT and AST are associated with a significantly increased
standardized mortality ratio. Pockros et a. [48] evaluated the effect of oral IDN-6556,
an antiapoptotic caspase inhibitor, on the patients with elevated ALT and AST, where
the levels of both liver enzymes were recorded in two time-series sequences. The result
indicated that IDN-6556 progressively lowered the ALT and AST levels of the patients
in atreatment period of 14 days.

Many diseases are believed to be associated with different indicators. If we could
identify which indicators are likely to relate to a disease, we could routinely track the
measurements of these indicators to prevent the illness or to predict the possible risks.

We further speculate other real-world applications that need the closed patterns of
multi-sequence time-series transactions...ln_the field of seismology, earthquake
prediction is still the greatest challenge. Song et_al. [51] analyzed the groundwater
anomaly before and after the Chi-Chi"Earthquake tn,Taiwan and found that groundwater
level and groundwater chemistry can be usqi ta forecast earthquakes. We have doubted
whether there is a pattern that corresponds to an unusual; event before earthquakes. Thus,
we may focus on the factors.like changes.in groundwater levels, changes in the
concentration of anions in groundWater, etc. We could visualize a database with
historical earthquake records where each record contains two segquences. the values of
ground water level and the values of anion concentration in ground water and these
values are recorded on a daily basis for a month before an earthquake takes place. We
may apply the CMP algorithm to discover meaningful patterns and expect that these
patterns could help seismologists predict earthquakes.

In microelectronics, wafers are the critical components in the fabrication of
semiconductor devices. To manufacture such components, many factors are taken into
consideration, including temperature and humidity [42]. Manufacturers usually rely on
past experience to determine the adequate temperature and humidity in order to produce

high quality wafers. In order to address the issue of finding the adequate temperature

and humidity, we may apply the CMP algorithm to mine time-series patterns from a
database where each record contains both temperature and humidity readings (multiple
sequences) during the process of producing a wafer in a semiconductor facility.
Accordingly, based on the frequency of these patterns, we can determine the acceptable
range of temperature and humidity to produce the best wafer.

Likewise, weather forecasts are required to predict the possibility of deteriorating
weather conditions, especially approaching tornados or hurricanes. However, making
such accurate predictions is difficult because many factors are involved, such as
temperature, humidity, pressure, etc [2]. If we could recognize what conditions are
likely to cause atornado or a hurricane, we could take actions before the storm arrives,
and save alot of costs or lives.

Therefore, these applications have inspi red us to propose an algorithm, called CMP,
to efficiently mine closed patternsinti me~se_ri$ databases, where each transaction in
the database contains multiple ti meseriés};@gqhenc&s. For example, Fig. 1.1 shows an
example database containing three transa-ﬁions,- where each transaction contains two

time-series sequences.

. Sequencel | -250 0.33 180 -390 -0.21 -0.08
Transaction 1

Sequence?2 | -041 -0.25 -054 -139 023 -0.88

. Sequencel | -7.80 652 017 -368 019 002
Transaction 2

Sequence?2 | -0.06 -289 013 430 042 -047

. Sequencel | -242 537 -1.84 -355 032 -464
Transaction 3

Sequence?2 | -042 312 011 -099 039 -597

Fig. 1.1. A database containing three multi-sequence transactions.

The CMP agorithm consists of three phases. First, we transform every sequence in
the time-series database into the Symbolic Aggregate approXimation (SAX)

representation [37]. Second, we scan the transformed database to find al frequent

1-patterns (the patterns of length one), and build a projected database for each frequent
1-pattern, where the projected database of a pattern comprises al transactions
containing the pattern. Third, for each frequent pattern found, we recursively use its
projected database to generate its frequent super-patterns in a depth-first search manner.
Moreover, we apply some closure checking and pruning strategies to prune frequent but
non-closed patterns during the mining process. By using the projected databases, the
CMP algorithm can localize support counting, candidate pruning, and closure checking
in the projected databases. Therefore, it can efficiently mine the closed patterns from a
time-series database.

Most previous studies [45][61][66] require exact sequence aignments in
discovering patterns from sequence databases. However, they are not capable of dealing
with noisy environments, such as a set of devi ated Seguences in a database. In order to
address this issue, we incorporate the'tdea of allowing-flexible gaps between itemsin a
pattern. For example, a[0, 3]b is a flexibl é_.{g)_a_ttern where the number of gaps between a
and b ranges from 0 to 3. Mining such sequ-'_éntial patterns with flexible gaps can provide
decision-makers a broader view.on data. For.example, given a web log recording URL
that each user visits at each minute, éweb analyzer would like to determine how many
users spend less than 5 minutes browsing web page A before switching to web page B.
That can be denoted as a flexible pattern A[O, 5]B, which means that users who are
browsing web page A are likely to traverse to web page B within 5 minutes. However,
the previously proposed approaches cannot mine such a pattern since they can only
mine the patterns to show that users browse web page A before web page B [35].

The subprime mortgage crisis in the United States has had a major impact on house
prices and stock markets worldwide [5]. How house price index varies over time since
the outbreak of the subprime crisis would become a major concern for consumers. In
this case, we could anayze the house price index data to see if there is a significant

variation in house price for al cities in the United States. Since the timing of house

price declination or acceleration is different among cities, no patterns may be
discovered by traditional pattern mining. Dealing with flexibility, we aim to give
consumers a big picture on the underlying trend in house prices.

Inspecting whether the crime rate increases or drops in the same trend among
different cities in a country provides polices a clue to find the mgjor causes, such as
unemployment, economic recession, drugs prevailing, etc. A flexible pattern found
could be “south cities increase in crime lagged behind the rise in the north cities' crime
rate for several months when unemployment rate drops sharply”’. However, traditional
data mining techniques, such as clustering analysis, association rule mining, and
sequential pattern mining, are not capable of retrieving such information [9].

Effective inventory control is vital to the success of the business in many industries.
For example, predicting the bestselling books at the right time and ensuring sufficient
inventory have a major impact on profitability for‘a book store. An interesting flexible
pattern could be “if a book has been WBde';into a movie, it is likely that the movie will
resurrect the sales of the book; the book-'i?vould becomme the bestseller in one or two
weeks after the movie isin theatrés’ . Sincemhene of the previously developed algorithms
consider flexibility in the mining prbce&, they.are not capable of discovering such a
pattern.

The problems outlined above have sparked our motivations to extend the problem
of closed pattern mining to a second aspect; therefore, the second algorithm, called CFP,
is designed to mine closed flexible patterns in a time-series database.

The CFP algorithm has three phases involved in mining closed flexible patternsin a
time-series database. Given a time-series database, we first transform it into a symbolic
database based on the SAX representation [37]. From the transformed database, we
recursively mine closed flexible patterns in a depth-first search manner. Specifically, we
first obtain all frequent patterns of length one (frequent 1-patterns) and meanwhile, we

build a projected database for each 1-pattern. Then, we grow each frequent k-pattern p

by joining it to each nominee in p’s projected database, where a k-pattern is a pattern of
length k, a nominee is a frequent 1-pattern in the projected database, and the number of
gaps between p and the nominee is bounded by a user-specified maximum gap threshold.
The process is repeated until no more closed flexible patterns can be generated.

Both the CMP and CFP agorithms involve a transformation of time-series
sequences into symbolic sequences in the first phase. Although analyzing on symbolic
sequences is ideal to reduce the noises and ease the mining process, these approaches
may lead to pattern lost and the sequences supporting the same pattern may look quite

different.

Time

(@

Value

04 06 02

04 0.2

1 2 3 1 2 3 1 2
Time Time Time

(d) (€) (f)
Fig. 1.2. Multi-sequence time-series X, Y, and Z.

In the SAX representation, two closed values may fall into different symbols if a
breakpoint is set in between them. For example, the values 0.42 and 0.43 are very close
to each other but they are assigned to different symbols if the breakpoint is set to 0.43.
Let the breakpoints be -0.43 and 0.43 in the SAX representation, that is, we assign
symbol a to each value less than -0.43, symbol b to each value greater than or equal to

-0.43 and less than 0.43, and symbol c to each value greater than or equal to 0.43. As

shown in Figs. 1.2a, 1.2b, and 1.2c, three multi-sequences have the same pattern

c bbb aa . o
. However, multi-sequence Z is quite different from X and Y.
a b abbec

To overcome the issue raised in symbolic sequence analysis, we have intrigued to
mine closed patterns directly from the raw data. That is, we mine the patterns without

any transformation from numerical values to symbols. For the sequences shown in Figs.
05 04 -02 -01 -05 —0.6}

1.2a and 1.2b, we will have the pattern
-06 -03 -05 04 02 08

since both sequences of X and Y are close to each other.

Visualizing data in the multiple resolutions helps decision-makers to make
high-quality decisions. The multi-resolution views provided by Discrete Wavelet
Transformation (DWT), such as the Haar wavelet transform, improve visualization and
make patterns, trends, surprises; and reIaIionéhips easier to identify [50]. Figs. 1.2a,
1.2b, and 1.2c show time-series:X, ¥, and Z in the'high-resolution, respectively, whereas
Figs. 1.2d, 1.2e, and 1.2f show the trahﬁf_,-prr.ned time-series X, Y, and Z in the low
resolution, respectively. As observed, difﬁerent perspectives of data are captured in
different resolutions; the time-series:in-thedew. resol ution show overall trends, whereas
the time-series in the high resolution involve some fluctuations and reveal more detailed
information. This awareness has motivated us to integrate the concept of
multi-resolution visualizations in the mining process.

Therefore, we propose an agorithm, called CNP, for mining multi-resolution
closed numerical patterns in a time-series database, where each time-series consists of
multiple sequences. Given a time-series database, we first apply the Haar wavelet
transform [19] to convert each time-series in the database into a sequence in the low
resolution. Second, we find all frequent patterns of length one (frequent 1-patterns) from
the transformed database (low resolution). Third, we recursively extend each frequent
k-pattern to form frequent (k+1)-patterns. Subsequently, we restore closed patterns back

to the high (original) resolution. Finally, we obtain all closed patterns in the low and

high resolutions. The advantage of applying a wavelet transform on data is that we can
view data from different perspectives by discovering patterns in different resolutions.
Moreover, we have shown that the mining process is speeded up and the final outcomes
would be the same as those without wavelet transform.

To inspire the study of the CNP agorithm, let us consider the following examples.
Initially, a hospital has applied the CNP algorithm to visualize the medical data related
to disease X and find significant patterns in different resolutions about symptoms, such
as a pattern found in the low resolution could be “body temperature movements appear
to be cyclic and meanwhile the blood pressure remains high in the first few weeks”,
whereas a pattern found in the high resolution could be “body temperature remains
above normal for four consecutive days.and drops in the normal range for five
consecutive days and then increases again. Meanwhile, the blood pressure has little
fluctuations throughout the day:but/shows an increasing trend in overall”. To diagnose
whether a patient has disease X, a doctor mayfl rst use the pattern in the low resolution
to rgect the possibility if thepatient’s s-)"iﬂmptoms do.not conformed to the pattern.
Otherwise, the doctor may take a closer.loek. on the pattern in the high resolution to
confirm the diagnosis. .

Let us consider a case of embracing the use of the CNP algorithm in the business
world. Corporation W has over hundred fast food chain stores. In order to improve the
operational efficiency and assist managers in decision making, data analyzers apply the
CNP agorithm to find patterns in a database where each record in the database
represents a branch and each record contains two sequences. the number of customers
and the delay to fulfill the meal order and these values are recorded on a hourly basis for
each day. Since the CNP agorithm is able to generate patterns in the multiple
resolutions, decision-makers can focus on atargeted area of their interests. For instance,
the chief executive officer (CEO) of the corporation may be only interested in a broader

view on data, and hence he/she focuses on the patterns found in the low resolution,

whereas the branch managers may concern more detail information in data and thus
they concentrate on the patterns found in the high resolution. These patterns may help
the corporation to make staffing decisions and improve service delivery efficiency. As
seen from the above examples, the study on mining patterns in the multiple resolutions
can be used for many real-world applications.

The choice of symbolic or numerical methods depends on the visualizations
required by the users or the applications in different areas. For instance, we may apply
the symbolic method to discover patterns in the fields of finance or meteorology
because users simply demand an overview of trends, whereas in the field of medical
science or disaster forecasting (e.g. hurricane), the numerical method is adopted because
doctors or experts need rigorous patterns.that can help them to diagnose diseases or

predict disasters.

1.2 Contributions [=

The work of the CMP algorithm in thigﬁis@ertation- has been published on Data and
Knowledge Engineering Journal® [32] ‘and the ‘work ‘of the CFP algorithm has been
published on Expert Systems witH Applications Journal [64]. We summarize the
contributions of this dissertation as follows.

1. A novel concept of mining closed multi-sequence patterns from a time-series
database is presented.

2. An efficient agorithm, called CMP, is proposed to mine closed multi-sequence
patterns and it requires only one database scan and can localize support
counting, candidate pruning, and closure checking in the projected databases.
Therefore, it can efficiently mine closed patterns.

3. The innovative idea of using flexible-range of consecutive gaps is stated to
overcome the limitations of exact sequence alignments.

4. A novel algorithm, called CFP, is proposed to mine closed flexible patternsin a

10

time-series database and two pruning strategies and a closure checking scheme
are designed to reduce the search space and thus speed up the algorithm.

5. To overcome the issue raised in the symbolic sequence mining, we tackle the
problem of mining numerical patternsin atime-series database.

6. A novel agorithm, called CNP, is proposed to mine multi-resolution closed
numerical multi-sequence patterns in a time-series database. It integrates the
concept of the Haar wavelet transform to mine patterns in different resolutions.
It also adopts two pruning strategies to accel erate the mining process.

7. The performance of the proposed algorithms is evaluated with both synthetic
and real datasets. The experimental results show that the CMP algorithm
outperforms the modified Apriori.and BIDE algorithms by one or two orders of
magnitude; the CFP algarithm outperfbrms the modified Apriori algorithm by
an order of magnitude;, and the CNP agorithm outperforms the modified

A-Close algorithm by one or two '@ge(s of magnitude.

1.3 Dissertation layout

The remainder of this dissertatibn is organized as follows. Chapter 2 provides a
literature review to support the study undertaken in this dissertation. Chapter 3 presents
the CMP agorithm for mining closed multi-sequence patterns. Chapter 4 introduces the
CFP agorithm for mining closed flexible patterns. Chapter 5 explains the CNP
algorithm for mining multi-resolution closed numerical patterns. Chapter 6 illustrates
the performance evaluation of the proposed algorithms. Finally, we conclude our works

and suggest some future research directions in Chapter 7.

11

Chapter 2 Literature Review

In this chapter, a review of existing studies is presented to support the research

undertaken in this dissertation.

2.1 Time-seriesmining

A time-series database consists of sequences of values (or events) changing over
time. The values are typicaly measured at equal time intervals [19]. The anaysis of
time-series is often associated with the discovery of patterns, such as query matching
patterns, periodic patterns, and similar patterns, etc.

To find patterns in a time-series database, Faloutsos et al. [17] proposed a method
to find the subsequences similar to.the query pattern.in the database. Kontaki et al. [28]
used the IDC-index to provide an effieient accés method for query processing. Berndt
and Clifford [6] presented @ dynamic prggrarnming approach to find patterns in a
time-series database. Lee et al. [33] de@bped a method to find fuzzy candlestick
patterns for financial prediction. _,'I_’eoh et al [59] propbsed a hybrid fuzzy time-series
model, which combines cumulative probability:distribution approach and rough set rule
induction to forecast stock markets. Han et a. [18] designed an algorithm to find
periodic patterns. Yang [67] showed an approach to detect intrusions. Takeuchi and
Yamanishi [58] proposed a probabilistic model for detecting outliers and change points
from time-series databases. Wang et a. [63] presented an approach to derive group

patterns of mobile users based on their movement data.

2.2 Sequential pattern mining

Sequentia pattern mining has emerged since Srikant and Agrawal [52] first defined
the problem of mining sequential patterns in 1995. The GSP agorithm [54] adds time
constraints to find all sequential patterns. However, it suffers from poor performance

with respect to long sequences. Han et a. [20] introduced the idea of data projection and

12

devel oped the FreeSpan algorithm to recursively mine sequentia patterns. Pei et al. [45]
proposed the PrefixSpan algorithm for mining long sequential patternsin large sequence
databases. It continuously mines the patterns from projected databases, which speed up
the candidate subsequence generation. Kim et al. [27] considered the importance of
quantitative information associated with each item. They extended naive algorithms,
both Apriori and PrefixSpan, to mine sequential patterns with quantities. Wang and Lee
[60] presented an approach, called EISP-Miner, to mine inter-sequence patterns, where
they considered not only the relationships between items in a sequence but also the
relationships between sequences in inter-sequence patterns. Masseglia et a. [39] pushed
the time constraints into the process of mining sequential patterns. They built sequence
graphs with respect to the constraint of window size and gap constraints, and used them
to count the support of each candidate pattern'.- Chu'et al. [13] proposed an agorithm,
caled EFI-Mine, to mine emergingsfrequent patterns.from data streams. The EFI-Mine
algorithm is to find patterns that ‘are infr'efggent in the previous time window and may
become frequent in the following time thdows. Masseglia et al. [40] presented an
algorithm for incremental mining of ‘sequential patterns when new transactions are
added to the database. Lee and Wang [31] develgped a method for mining calling path
patterns in GSM networks. Chen and Hsu [10] proposed an approach to discover
tree-like patterns in a large dataset. Other researchers adopted different representations
to improve the efficiency of mining long sequential patterns. SPADE [69] is based on a
vertical id-list format and uses a lattice-theoretical approach to decompose the original
search space into smaller spaces. SPAM [4] adopts a vertical bitmap representation. It
has been shown that SPAM is more efficient in mining long sequential patterns than
SPADE and PrefixSpan; however, it consumes more space. Lin et al. [38] presented the
METISP agorithm to mine sequential patterns with various time constraints, including
minimum gaps, maximum gaps, exact gaps, siding windows, and durations. They also

introduced the idea of using time-indexes to minimize the search space of potential

13

patterns.

Recently, several variations and applications on sequential pattern mining are
proposed. Perera et a. [47] analyzed online collaborative learning data and exploited
group interactions in order to improve the teaching activities. They have applied
clustering and sequential pattern mining in seeking interesting patterns. Huang et al. [23]
considered both time and location information and developed a framework to mine
sequential patternsin alarge spatio-temporal database. Peng and Liao [46] believed that
events may occur in multiple domains and thus they introduced a novel mining task,
called the multi-domain sequential pattern mining problem. Chen and Huang [11]
applied a concept hierarchy and fuzzy techniques for mining fuzzy multi-level
sequential patterns. Although the performance of their method is worse than the
traditional models, they could discover more interesting patterns. Huang et al. [22]
proposed a progressive algorithm, called Pisa, to, mine sequential patterns in both

dynamic and static types of databases. | [=

2.3 Closed pattern mining

A closed pattern is defined as é pattern that is frequent and has no super-pattern
with the same support. The concept of mining closed patterns has been proposed to
avoid unnecessary freguent patterns while preserving the same information. Pasquier et
al. [43] proposed an algorithm, called A-Close, which adopts the same join step as the
Apriori agorithm to form candidate generators and then compute closures of these
generators to find al frequent closed itemsets. Although some pruning strategies have
been employed, the cost of candidate generation and closure computation still lead to an
efficiency bottleneck. To reduce the memory and search space for closure checking,
TFP [21] adopts a two-level hash indexed tree structure to store the aready mined
closed itemset candidates. CHARM [70] adopts a vertical data format to mine closed

itemsets and uses four pruning properties to remove non-closed itemsets. The CLOSET

14

[44] and CLOSET+ [62] algorithms both adopt the FP-growth framework to find
frequent closed itemsets, where a FP-tree is built to speed up pattern discovery. Yan et al.
[66] proposed an algorithm, called CloSpan, for mining closed sequential patterns. It
first generates a set of closed candidates stored in a hash indexed tree and then performs
post-pruning on those candidates. Because CloSpan needs to maintain the set of closed
candidates, it consumes a large amount of memory for closure checking. Wang and Han
[61] introduced an agorithm, called BIDE, for mining closed sequential patterns
without maintaining candidates. They used forward and backward directional extension
checking to perform closure checking and to prune the redundant patterns in the mining
process. Lee et al. [30] introduced a method, called ICMiner, that efficiently mines
closed inter-transaction itemsets. ICMiner.involves the concept of an ID-tree and
domain attributes and applies effective pfuning strategies to avoid generating
unnecessary candidates. In order 10 meet the dymamic characteristic of online data
streams, Li et al. [36] proposed an angfj,thm, called, NewMoment, to mine closed
patterns. The NewMoment agerithm use;*;an effective bit-sequence representation to
simplify the support calculation; and hence'results in 1ess memory and execution time.
Ji et a. [24] introduced the idea of bartitioni ng-the origina data sets to accelerate the
task of mining frequent closed patterns on dense data sets. Yuan et al. [68] proposed an
algorithm, called ClSpan, to find closed sequential patterns in an incremental database.
The key ideaisto build an incremental lattice to store current closed patterns and handle
the insertion and the removal of sequences using different strategies, such as merge and
split. Chang et al. [8] presented an effective algorithm to mine closed sequentia patterns
over dliding windows in a data stream environment. They designed a synopsis structure
IST to store closed sequential patterns in memory and adopted some strategies to prune

search space.

15

2.4 SAX representation

The objective of the Symbolic Aggregate approXimation (SAX) representation [37]
is to transform a time-series sequence into a symbolic sequence. The method contains
two steps as follows.

In the first step, a time-series of length n is divided into m equal segments, and the

average of each segment is calculated by:

2T,
-F - j=x(i-1)+1
' X
The numerator represents the sum of al elements within a segment while the
denominator x represents the number of elements falling within a segment (x = n/m).

Thus, we obtain T, as the average of the first segment and T, as the average of the

second segment, and so forth. As asresult, aimew representation of the time-series

sequence is presented as 'T:'Tl,fz','.,

..,‘En_,’_.also known as Piecewise Aggregate

Approximation (PAA) representation. | |

Table 2.1. The breakpoint table [29].

* 3 4 5
Bi
B, -0.43 -0.67 -0.84
B, 0.43 0 -0.25
Bs 0.67 0.25
B, 0.84

In the second step, the PAA representation is transformed into a symbolic sequence
according to the breakpoints in a breakpoint mapping table. According to empirical
experiments [37], the normalized subsequences have highly Gaussian distributions.

Thus, the “breakpoints’ can be determined so that equal-sized areas are produced under

16

a Gaussian curve. The breakpoints are defined as a list of ordered numbers B = By,
By, ..., Ba-1 such that the area under an N(0,1) Gaussian curve from B; to Bi+1 = 1/a.. The
statistical table [29] is used to determine the breakpoint for different values of ¢, as
shownin Table 2.1.

For example, if o= 3, three breakpoint regions are [-, -0.43), [-0.43, 0.43), [0.43,
oo]. All PAA coefficients falling within the first region are mapped to symbol “a” and
the others falling within the second and third regions are mapped to symbols “b” and
“c”, respectively. Fig. 2.1 illustrates how a time-series sequence is transformed into a
symbolic sequence, where n = 30, m = 6, and o= 3. The time-series sequence is

mapped to the symbolic sequence “ccbabc.”

1\C c/
5 :
EO.S*
= C /
é 1 3 5 7 0 I “\17 19 21 23/25 27 29
2 0 b ~b

-l g/

-1.5

Time

Fig. 2.1. A SAX example.

It is important to note that some time-series data may violate the Gaussian
assumption. To deal with such data, several discretization methods can be used to
transform time-series sequences into symbolic sequences. The Equal Fregquency (EQF)
method [19] divides the value range into bins, where each bin has equal frequency of
values and is represented by a symbol. For the Equal Width (EQW) method [19], the
range of data is divided into segments of equal length and each segment is represented
by a symbol. The clustering-based method [15] discretizes time-series by grouping

similar data values in a cluster and assigning a symbol to each cluster. The Persist

17

algorithm [41] determines cut points in an adaptive way. It continuously chooses the

best cut point from a set of candidates until the desired number of binsis obtained.

2.5 Discussion

In this chapter, we have surveyed the literatures of time-series mining, sequential
pattern mining, and closed pattern mining, and the concept of SAX representation. In
time-series mining, the main research interests are finding the most similar time-series
in a database to a query time-series, finding groups of similar time-series, finding
periodic patterns, and detecting anomalies contained in a given time series. In sequential
pattern mining, researchers focus on the problem of discovering frequent patterns in
one-sequence databases, that is, each transaction consists of single sequence in the
database. Moreover, they require exact sequénce alignments in discovering patterns
without the consideration of noisy environments. In closed pattern mining, researchers
recognize the drawback of sequential pattern mining, that is, identifying all frequent
patterns is very time-consuming-due to a Ia-?ge number of patterns generated. Thus, they
incorporate the concept of closed patternsto'evercome this drawback.

Most previously proposed mdhods In_these areas did not consider multiple
sequences in a transaction and the gaps between the events in a pattern, and hence they
are not suitable for mining closed patterns in a multi-sequence time-series database.
Therefore, in this dissertation, we focus on the problem of mining closed patterns in a
database, where each transaction contains multiple time-series sequences. To the best of
our knowledge, there is no method specially designed to relax the constraint of exact
sequence alignments in discovering patterns. Thus, in this dissertation, we introduce the
problem of mining closed flexible patterns in a time-series database, where a flexible
number of gaps between items in a pattern are allowed. Although a significant amount
of research efforts has been devoted to pattern mining, no mining results can provide

multiple perspectives on datasets to decision-makers. In this dissertation, we explore the

18

idea of mining multi-resolution patterns in time-series databases.

Based on the above analysis, in this dissertation, we propose three algorithms,
CMP, CFP, and CNP agorithms, to mine closed multi-sequence patterns, closed flexible
patterns, and multi-resolution closed numerical patterns in time-series databases. These

algorithms are described in detail in chapters 3, 4, and 5.

=y

19

Chapter 3Mining Closed Patternsin Multi-Sequence

Time-Series Databases

In this chapter, we propose an efficient algorithm, caled CMP (Closed
Multi-sequence Patterns mining), to mine closed patterns in a time-series database,
where each transaction in the database contains multiple time-series sequences. The
proposed algorithm consists of three phases. First, we transform each time-series
sequence in a transaction into a symbolic sequence. Second, we scan the transformed
database to find frequent patterns of length one. Third, for each frequent pattern found
in the second phase, we recursively enumerate frequent patterns by a frequent pattern

tree as described in Section 3.2 in a depth-first search manner.

3.1 Preliminaries and problem:definitions

Given a database where each transﬁct’ift_a’_;_j__ consists of multiple time-series sequences,
we first transform each sequence into;a SAX symboli¢ sequence and then mine closed
patterns in the transformed database. Note'that' the database may contain transactions
with different lengths. As well, rﬁulti ple time-series sequences contained in each
transaction can be in different lengths.

Definition 3.1 Let | = {iy, iz,..., in} beaset of distinct items. A sequence Sis an ordered
list of items, denoted as <eje;...e>, where g isan item, g e |, for 1 <i < m. Assume
there exists alexicographical ordering = among theitemsin .

Forexample,a = b = corx = y = z To represent a sequence flexibly, we
introduce a gap symbol “_”, which isawild card symbol and may be substituted by any
item in |. The lexicographical order of the gap symbol is greater than any item in I.
Moreover, multiple time-series sequences of different lengths contained in a transaction

can be padded with gap symbols until they have the equal length. For example, a

ab a a
},where the

transaction is consisted of two time-series sequences {
Xy _ _

20

second sequence is padded with gap symbols to achieve the same length with the first
sequence.

Another important feature to point out is that we alow time non-alignment between
multiple sequences in a transaction and missing values in the sequences. We simply use
gap symbols to adjust the non-alignment and replace al missing values with gaps. In

other words, the non-aligned parts of the sequences may be filled up with gap symbols.

a b
For example, non-aligned sequences in a transaction {x . % y} can be
a b b
replaced by { - —}.
X _zZ XYy

Since a transaction in the database consists of multiple sequences, a pattern in the

database is formed by multiple sequences.
Au A B

Definition 3.2 afl a:22 af" is a pattern of length k, where a; isan itemin |

Aa Qe || s
or agap symbol. A pattern of length k is caHed ak-pattern.

a #r 4D a c| .
For example, both { } and { } are 1-patterns, { } IS a 3-pattern;
X X X Yy X

S
S,

S, after two time units bc occursin §; and xy simultaneously occurs in sequence S, and

a b b c ; .
Is a 10-pattern, where ab occurs in sequence
Xy _ _Vy z

after two time units yz occurs in S,. Note that the gap symbols after bc in S; and before
Xy in S may be omitted.

Definition 3.3 The concatenation between patterns p; and p; is denoted as p; © p».

a b b c b a b b cb
For example, S) = :
y y X Xy y 'y x xy

A1 S v G
Definition 3.4 A pattern p = afl a:22 af” is contained by another pattern p’
da A - A

21

b, b. - b,
_ b b o b,

b. b. - Db

O<j<mn,n<m 1<i<s 1<k<n Wemay also say that p’ isa super-pattern of p,

if there exists an integer j such that aix = bigej) or ax ="_",

or that p is a sub-pattern of p'.
Definition 3.5 The support of a pattern p is defined as the number of transactions
containing p in the database.
Definition 3.6 A pattern is frequent if its support is not less than a user-specified
minimum support threshold, o.
Definition 3.7 A frequent pattern p is closed if there does not exist any frequent
super-pattern of p with the same support:

Note that the gap symbol in a pattern-may. Ee substituted by any item. If one pattern
with the substituted items is a:super-pattern of the other, and both patterns have the

same support, we would delete the |atter‘one: For example, { } IS a super-pattern of
X

X

{a}. If {a} and {a} have the 'same support, /we should delete the pattern {a}

because it is less representative.
Definition 3.8 The projection of a pattern p in atransaction t is defined as the rest of t
behind p, where t contains p.

Note that since a pattern p may appear more than once in a transaction, there exists
a projection for each occurrence of p. That is, a transaction may contain multiple

o o al . . a b a a
projections of p. For example, the projections of { } In atransaction { }
X

Xy Xy
{b a a} {a}

are and)
y XYy y

Definition 3.9 The projected database of a pattern p contains all the projections of p in
the database.

Since a pattern may contain many gaps, discovering all such patterns may require a

22

lot of resources, but a user may only be interested in patterns with a certain number of
gaps. Therefore, to avoid wasting resources by mining unwanted patterns, we introduce
a parameter caled a user-specified maximum gap threshold z When mining closed
patterns, we only mine the patterns so that the number of gaps between any two
adjacent 1-patterns in the patternsis not greater than z.

To mine closed patterns, we build the projected database of a pattern and check if
there exists any frequent 1-pattern in its projected database. Since the number of gaps
between any two adjacent 1-patterns is not greater than 7, to grow a pattern p, we may

find the frequent 1-patterns only from thefirst 7+1 positionsin p’s projected database.

Xy X z

. . a b a c
For example, assume that 6= 2 and 7= 1. Given two transactions

X Z Z X

Cc c
{z}’ { } {;} and {z} Wherethe|rsupportsareall equal to 2. From the projected

N
database of { } we know that {x} appears at/the flrst and third positions of the first

transaction, and at the first position of thesecond transaction. In the projected database

a .
of {x} formed by the first position of the first transaction and the first position of the

second transaction, we cannot find any frequent 1-pattern from the first two positionsin

a
the projected database since 7 = 1. However, in {X}’s projected database formed by

the third position of the first transaction and the first position of the second transaction,
we find three frequent 1-patterns from the first two positions in the projected database,

c c
namely, {z} { },and {;}.Therefore, we obtain three frequent 2-patterns, namely,

a c a ¢ a . _ a c
{ } { } and { —}, where their supports are al equal to 2. Since { }
X Zz X X Zz X _

a a c
and {x ;} are sub-patterns of {x z}’ they are not closed. Since we cannot find

23

a c a c a
any frequent 1-patterns in the projected databases of {x z}' { } and { —},

we stop growing these patterns.

a
To find the closed patterns in { }’s projected database is quite similar to that in

a b
{ }’s projected database. Next, we examine { }’s projected database to see if any
X

frequent 1-patterns exist in the projected database, and find a frequent 1-pattern {;}
: b _ . .

Thus, we obtain a frequent 2-pattern { x}' Since we cannot find any frequent
. |b _ . : _
1-pattern in { }’s projected database, we stop growing the pattern. Similarly, we

_ X

may obtain all frequent patterns by growing.all frequent 1-patterns as described above.
- a c b
Finally, we may obtain two closed patterns, namely, {x z} , and { ;}

el

3.2 Frequent pattern tree _

The CMP algorithm uses a_]‘_requent Séttern tree .to enumerate frequent patterns,
which may be constructed in the folfowing way. The'root of the tree is labeled by &.
Next, we scan the database and find all frequent 1-patterns in the database and add these
1-patterns to level 1 of the frequent pattern tree. Then, we can recursively extend a
frequent pattern p at level | (> 1) to get its frequent super-pattern at the next level by
appending g gaps and a frequent 1-pattern in p’'s projected database, where 0 < g < 7
Note that g = 0 means that no gap is appended.

It has been shown that the algorithm based on the depth-first search (DFS)
approach is more efficient in mining long patterns than that based on the breadth-first
search (BFS) approach [4]. Hence, the CMP agorithm enumerates the frequent patterns
by a frequent pattern tree in a DFS manner. Fig. 3.2 illustrates the frequent pattern tree
for the example database in Fig. 3.1, where 0 = 3, 7= 1, the number after the pattern is

the support of the pattern, and the patterns in the bold circles are closed patterns, and

24

those in the dotted circles are not. Note that the children of a node are sorted

lexicographically and the gap symbol “_" may beincluded in a pattern.

Y

b
y
b b
y X
b
y

_|
it
—

QD
O
X

_|
™,
—
< o
X O
N

{a c a a
Ts:
y 2z y X

Fig. 3.1. An example of atransformed multi-sequence database.

Fig. 3.2. The frequent pattern tree.

3.3 Closure checking and pruning strategies

When we generate a new frequent pattern, we need to do some closure checking to
assure whether the pattern generated is closed. Following a similar concept used in
BIDE [61], we use bi-directional (forward and backward) checking to determine if the
pattern generated is closed.
Lemma 3.1 (Forward checking). A pattern p is not closed if a frequent 1-pattern g
exists such that (1) q appears after p and occurs in every transaction of p’'s projected

database, and (2) the distance between p and q is the same in every transaction of p’'s

25

projected database and not greater than 7+ 1 positions.
Proof. If afrequent 1-pattern q exists such that (1) q appears after p and occursin every
transaction of p’s projected database, and (2) the distance between p and g is not greater
than 7+ 1 positions, it means that we can always find another frequent pattern formed by
p and q whose support is equal to p’s support. Therefore, p must not be closed.

Note that p may appear more than once in a transaction. If we cannot find any q
after the current appearance of p, we need to perform the same check on the next
appearance of p in the transaction.

Next, we illustrate the forward checking strategy as follows. Assume

a b c
{ - } Is a frequent pattern. If we find a 1-pattern {—} a the first
Xy _ Z y
position of every transaction in_itS projected database, then we can assure that
a b c _ , ' a b c L
is not “ctosed because is its
X'y _ z Xy zy

super-pattern and has the same support. | _._
Lemma 3.2 (Backward checking). A pattéi_n p does not need to be grown if a frequent
1-pattern q exists such that (1) g.appears beforep-and occurs in every transaction of p’'s
projected database, and (2) the di.stance between q and p is the same in every
transaction of p’s projected database and not greater than 7+ 1 positions.
Proof. If a frequent 1-pattern q exists such that (1) q appears before p and occurs in
every transaction of p's projected database, and (2) the distance between g and p is the
same in every transaction of p’s projected database and not greater than 7+ 1 positions, it
means that we can always find another frequent pattern formed by g and p and its
support is equal to p's support. Therefore, p is not closed and it does not need to be
grown.

Note that p may appear more than once in a transaction. Thus, we need to check if

g exists before every appearance of p in the transaction.

Next, we illustrate the backward checking strategy as follows. Assume pattern

26

b b
{a - - y y} is a frequent pattern. If we find a pattern (for example, { })

a b
right before { - = y y} in every transaction of the projected database, we
b
can conclude that {a - = y y} does not need to be grown since there must
. b b .
exist another frequent pattern Xy whose support is equa to
a b a b
the support of { - = } Thus, pattern { - = } may be
Xy Xy
b

b
pruned because the pattern { } would be generated later.

Xy
Lemma 3.3 (Same projections). A pattern p can be pruned during the process of
mining closed patterns if (1) p shares the same parent with a pattern g in the frequent
pattern tree, (2) g containsp, and (3) p's projeétions are identical to g's projections.
Proof. Since both patterns p,and gsshare the same prejections and g contains p, every
pattern generated from p is contained| by 'gggaftern generated from g and both patterns
generated have the same support. That Is, é/ery pattern.generated from p is not closed.
Thus, p may be pruned during the process.efumining closed patterns.

For example, as shown in Fig. 32 pattern {a 3} contains pattern {a b} and

both patterns share the same parent in the frequent pattern tree. Moreover, both patterns
have the same projections since both patterns appear at the first and fourth positions of
the first transaction, at the fourth position of the second transaction, and at the fourth

a b
position of the third transaction. Therefore, pattern { } may be pruned.

3.4 The CMPalgorithm
The proposed CMP algorithm is shown in detail in Fig. 3.3. First, we transform
every seguence in the time-series database into the SAX representation [37] as

described in Section 2.4. That is, the time-series database is transformed into a database

27

where each transaction in the database contains multiple symbolic sequences. Second,
we scan the transformed database to find all frequent 1-patterns, and build a projected
database for each frequent 1-pattern. Third, for each frequent pattern found, the
algorithm calls the CMP-Growth procedure to recursively use a frequent k-pattern and
its projected database to generate its frequent super-patterns at the next level in the

frequent pattern tree, wherek > 1.

Algorithm: CMP
Input: an input database DB, a minimum support threshold 6, a maximum gap
threshold 7
Output: al closed patterns CP
1 Transform each sequence in DB.intora Symbolic sequence by using the SAX
representation; :

Let CP be @; _ _

Scan the transformed database'tox,if_.‘i neh all freqUent 1-patterns. Let P1 be all
frequent 1-patterns found.in DBE —

for each 1-pattern pinP1 do B
Let PDB be the proj ected détabase of p;
call CMP-Growth (PDB, p;:d,.7, CP);

end for

return CP;

0o N o o b~

Fig. 3.3. The CMP agorithm.

Fig. 3.4 shows the CMP-Growth procedure. In step 1, for each frequent k-pattern p,
we build its projected database and find candidate frequent 1-patterns that occur within
the first z#+1 positions in the projected database. In steps 3-8, we use the backward
checking strategy to check if p can be pruned. If not, we use the forward checking
strategy to check if pisclosed. If so, it is added to the closed pattern pool (CP). In steps
10-16, for each frequent 1-pattern ¢ found in step 1, we concatenate p, g gaps and ¢

together to generate a frequent (k+g+1)-pattern, where 0 < g < 7. Then, we check if the

28

concatenated pattern is contained by any sibling pattern and both share the same
projected database. If not, the CMP-Growth procedure is called recursively to
enumerate the frequent super-patterns of the newly generated frequent (k+g+1)-pattern.

The process is repeated until no more patterns can be generated.

Algorithm: CMP-Growth (PDB, p, &, 7, CP)

Input: a projected database PDB, a prefix pattern p, a minimum support threshold ¢, a
maximum gap threshold 7

Output: aset of closed patterns CP

1 Let candidate be a set of frequent 1-patterns within the first z+1 positionsin PDB;

2 Let sup be the support of p;

3 if (supisnot lessthan dand p passes the backward checking strategy) then

4 if (p passes the forwardichecking strategy)-then

5 if (pisclosed withrespect to CP)ithen

6 Add pto CP; _ :

7 end if =

8 end if

9 if (candidate is not empty)-then :

10 for each 1-pattern-¢in candidate do

11 for g=0to zdo

12 Let PDB’ be the projected database of p© GO c where G
contains g gaps in each sequence;

13 Check if p© GO cis contained by any sibling pattern and
both share the same projections;

14 if not, call CMP-Growth (PDB’, p© GO, 9, 7, CP);

15 end for

16 end for

17 end if

18 end if

19 return CP;

Fig. 3.4. The CMP-Growth procedure.

29

L emma 3.4 Each pattern found by the CMP algorithmis frequent and closed.

Proof. In step 3 of the CMP algorithm, we generate al frequent 1-patterns by scanning
the database once. In step 1 of the CMP-Growth procedure, we find a set of candidate
frequent 1-patterns, which appear within the first z+1 positionsin the projected database
of afrequent k-pattern p. These candidates are then concatenated with p and with gaps
to form frequent (k+g+1)-patterns, k > 1. Since we have always checked the support of
each newly pattern found against the minimum support threshold, we assure each
pattern found by the CMP algorithm is frequent. Moreover, at each level of extension,
we adopt the forward and backward checking strategies to eliminate non-closed patterns.
Therefore, every pattern found by the CMP algorithm is frequent and closed.

Lemma 3.5 Every closed pattern can be found by the CMP algorithm.

Proof. Since we scan the database once to find all frequent 1-patterns, every frequent
1-pattern in the database can be found by the CMP.algorithm. To extend each frequent
k-pattern p, we combine it with gaps and w;_thall possible eandidate frequent 1-patterns
found in the p’s projected database to gene-fate al itsfrequent super-patterns of p. Thus,
every frequent k-pattern in the database can.be found by the CMP algorithm. Once a
frequent k-pattern is found, we adopf the forward and backward checking strategies to
eliminate non-closed patterns. Therefore, every closed pattern can be found by the CMP
algorithm.

Theorem 3.1 The CMP algorithm enumerates all closed patterns in the database.

Proof. By Lemma 3.4, every pattern found by the CMP algorithm is frequent and closed.
By Lemma 3.5, every closed pattern can be found by the CMP algorithm. Therefore, we
can conclude that the CMP algorithm enumerates all closed patternsin the database.
Theorem 3.2 The time and space complexities of the CMP algorithm are bounded by
O(IN[*|D]) and O(Ip*|D| + |CPY), respectively, where the size of a time-series database,
the number of nodes in a frequent pattern tree, the length of the longest frequent pattern,

and the number of closed patterns are |D|, |N|, Ip, and |CP|, respectively.

30

Proof. To transform atime-series database into a symbolic database, the SAX operation
is applied to each numerical value, and hence the time complexity of transforming all
time-series in the database into symbolic sequences is bounded by O(|DJ). By scanning
the transformed database, we obtain all frequent 1-patterns and this requires O(|D|) time.
Next, let us consider a pattern p of various lengths. If p is a frequent 1-pattern, the
number of extensions is bounded by |C|, where |C| is the average number of local
frequent 1-patterns in a projected database. Likewise, if p is a frequent 2-pattern, the
number of extensions is bounded by |C|. Thus, we know that if p is afrequent k-pattern,
the number of extensions is again bounded by |C|. Moreover, for each frequent k-pattern,
its projected database is scanned once to find candidate frequent 1-patterns that occur
within the first 7#+1 positions in the projected database. Thus, the time complexity of
scanning a projected database isbounded-by O(|D|). Since the number of total nodes in
the frequent pattern tree is |N|, the time complexity of the CM P algorithm is bounded by
O(ID| + |D] + IN*(IC| + [D[)) = O(IN[*|D)=AS we have shown that the CMP agorithm
mines patterns in a DFS manper, the maX| mum ‘number of nodes that kept in the
memory is bounded by Ip, where each nede.also maintains a projected database that
requires O(|D|) space in the worse .case. Moreover, the closed pattern pool requires
O(|CP]) space. Therefore, the space complexity of the CMP agorithm is bounded by
O(ID] + Ip*|D[+ |CP]) = O(Ip*|D] + |CP)).

3.5 An example
L et us take the database shown in Fig. 3.1 as an example. Assumethat =3 and 7=

a a b b
1. First, we scan the database to find all frequent 1-patterns {y} { } {y} { }

{C}, {_} and {—} After that, we check {a} against the backward checking
- X y y

strategy and find that it cannot be pruned. We further use the forward checking strategy

to check if it is closed. Consequently, it is a closed pattern and is inserted to the closed

31

a
pattern pool. Since there is no frequent 1-pattern in {y} 's projected database, we can

stop growing the pattern.

a
Next, we grow the frequent 1-pattern { } to find its frequent super-patterns by

using the frequent 1-patternsin its projected database. There are four frequent 1-patterns
a b b
within the first two positionsin { }’s projected database, namely, {y} : { } {;} ,

a b
and {—} We first grow the frequent 1-pattern { } by appending {y} to it and
X

a b a b
obtain the frequent 2-pattern { y}' Since { y} does not pass the forward

a b
checking strategy, it is not closed. We then continue to grow { y} by appending a
: a b
frequent 1-pattern in its projected database and-obtain a frequent 3-pattern { y ;} ,

which passes the forward and backward checki ng stratégies. Thus, it is a closed pattern.

—_ a b
Since we could not find any frequent 1-patterns in { y ;} 's projected database,

we can stop growing the pattern.. *

: . ' a _ b .
Furthermore, we grow the frequent. 1-pattern { } by appending { } to it and

b a b
find that {a } has the same projected database as { y}' Thus, pattern

a b a
{ } may be pruned by using Lemma 3.3. Similarly, pattern { ;} may be
a
pruned as well. After that, we continue to grow the frequent 1-pattern { } by
appending one gap and {;} . Consequently, we obtain a frequent 3-pattern
a . . . a b _
{ - —}. However, it is not closed since it is a sub-pattern of pattern { y x}

X

and both patterns have the same support. By growing other frequent patternsin asimilar

manner as described above, we can get all closed patterns. Finally, we obtain five closed

32

o 5 9[8[~

the frequent pattern tree shownin Fig. 3.2.

33

Chapter 4 Mining Closed Flexible Patternsin Time-Series

Databases

In this chapter, we propose an efficient algorithm, called CFP, for mining closed
flexible patterns in a time-series database, where flexible gaps are allowed in a pattern.
The proposed algorithm involves three phases: transforming a time-series database into
a symbolic database, generating all frequent patterns of length one from the transformed

database, and mining closed flexible patterns in a depth-first search manner.

4.1 Preliminariesand problem definitions

Given a time-series database, we first. transform each time-series sequence in the
database into the SAX representation {37], where ‘each transaction in the database
contains only one time-series; sequence. Thatis;-.each time-series sequence is
transformed into a symbolic sequence, Th@'g, we mine the closed flexible patterns from
those transformed symbolic sequences. No-fé that the database may contain transactions
with different lengths. And, each'transaction.may .contain gap symbols “_”, which can
be used to replace any missing val ué.
Definition 4.1 Let | ={iy, iy, ..., in} beaset of items (or events), and S= <eje,...e> be
asequence, whereijisanitem,andece I, 1<j<n,1<k<m.
Definition 4.2 A flexible pattern, denoted as e[X1, Yi]€[X2, V2] ... [Xm-1, Ym-1]€m, CONtaiNs
asequence of items and gap intervals, where g € |, x; and y; are non-negative integers, 1
<i<m 1<j<m-1,0<x<y; <7 and 7isauser-specified maximum gap threshold.
Definition 4.3 A gap interval [x;, yi] between e and e, denotes that the number of gaps
between both items ranges from x; to y;.

Note that (1) if x;=y;= 0, the gap interval [x, yi] can be omitted; (2) if m= 1, there
is no gap interval in the pattern, that is, the pattern is denoted as e;. For example, a[0,

3]b illustrates that the number of gaps between a and b rangesfrom Oto 3. That is,

a[0, 3]b contains the following patterns: ab, a b,a b, anda__ _b. ab means that b
appears right after (or one position after) a while a_b means that there is a gap between
aand b, or b appears two positions after a.

Definition 4.4 The length of a pattern p is defined as the number of itemsin p. A pattern
of length k is called a k-pattern.

For example, a[0, 3]b is a 2-pattern.

Definition 4.5 A pattern ei[xi, yal€[X2, Y2]...[Xm-1, Ym-1]€m iS contained by a sequence if
every item in the pattern appears in order in the sequence and the number of gaps
between g and e, in the sequence is between x; and y;.

For example, a[0, 1]biscontained by <acbd c>.

Definition 4.6 A gap interval [xy, y1] contains another gap interval [xo, yo] if X1 <X <Yy»
<y , '

Definition 4.7 A pattern p = pifXpu Ypil p?[xpz, Yool - PXom-1), Yom-1)]Pm is a sub-pattern
of a pattern q = gi[Xq1, Yol O2[Xg2, Yool [xq(,,,_l) Yan-n]an.if there exists an integer j such
that pi = 0+j, and [Xpi, Ypi] contains [Xq(-+j), y;*'gﬂ)], wherem<n, 0<j<n-mi=12, ...,
m. We can also say that q is a Supér-patternof.p.

Definition 4.8 The support of a battern iS. defined as the number of sequences
containing the pattern in the database.

Definition 4.9 A pattern is said to be frequent if its support is not less than a
user-specified minimum support threshold, o.

Definition 4.10 A pattern is closed if it is frequent and there exists no super-pattern with
the same support.

For example, if a[0, 3]b and a[0, 3]b[0, 2]c are frequent and both have the same
support, a[0, 3]b is not closed. Let us consider another example where a[0, 3]b and a[0,
1]b are frequent and both have the same support. Since a[0, 3]b and &[0, 1]b have the
same support, a[0, 3]bisless representative. Hence, a[0, 3]b is not closed.

Definition 4.11 Given a sequence S and a pattern p, a subsequence s of Sis called a

35

projection of Swith respect to p if p appearsin Sand s contains all items in Sthat occur
after the last item of p.
Definition 4.12 The projected database of a pattern p contains the projection of each
sequence in a database with respect to p.

For example, the projected database of a[0, 1]c in adatabase{<abcde>, <acde
ba>} is{<de>, <deba>}.
Definition 4.13 Given a pattern p, nominee(p) contains all frequent 1-patterns that occur
in p’s projected database.

To find nominee(p), we only need to scan the first #+1 items for each sequence in
p’'s projected database since the number of gaps between two successive items in a
pattern should not be greater than 7. Consider the last example. If 6 = 2 and 7= 2,
nominee(al0, 1]c) ={d, €}. |

4.2 Sequencetree g

In order to enumerate all-frequent Eatterns, we . adopt a tree structure, called
sequence tree, to store all freguent patterns, where ‘each node represents a frequent
pattern and the root node repr&eenfs an_empty pattern. All frequent k-patterns are
recorded at level k of the tree, where k > 1. That is, all frequent 1-patterns are recorded
a level 1 of the tree and all frequent 2-patterns are recorded at level 2, and so on.
Moreover, if a pattern at level k is derived from the pattern of its parent node at level
k-1, we use an edge to connect both nodes. Specifically, we extend frequent patterns
from the root node level down to the leaf node level.

The CFP agorithm aso enumerates the frequent patterns by a sequence tree in a
DFS manner. For instance, an example database is illustrated in Fig. 4.1 and the
corresponding sequence tree is shown in Fig. 4.2, where the number after a pattern

denotes the support of the pattern, the pattern in a dotted circle is non-closed, the other

patterns are closed, =3, and 7= 2.

36

Sequence ID Sequence
S <abcdba>
S <ebeaca>
S <ebecbd>
S <abfccd>

Fig. 4.1. An example database containing four sequences.

Level O

Level 1

Level 2

Level 3

Fig. 4.2. The frequent patterns.mihed-from the database in Fig. 4.1.

4.3 Support counting

In order to calculate the support of a pattern p[x, y]r, we investigate p’'s projected
database and create an index table to facilitate the computation, where r € nomineg(p).
The column i of the index table records a list of sequences in p’s projected database so
that the number of gaps between p and r is equal to i in these sequences, i > 0. Since the
maximum gap threshold is 7, we have 7+1 columns in the table. For example, assume
that 7= 3,r = b, and there are four sequences{S;;<dbfcc>, S:<bbbbf> S<ecbd
c>, S:<d b f b e>} inp’s projected database. Since thereisone b in § and the number
of gaps between p and b is 1, we add S, to the column 1 of the index table. There are
four b’'sin S. Thus, we add S;to the columns O, 1, 2, and 3. Similarly, we can add S

37

and & to the index table. Finally, we obtain the index table asillustrated in Fig. 4.3.

Column O Column 1 Column 2 Column 3
\ Y, \ N

Fig. 4.3. Anindex table used to count the support of p[x, y]b.

From Fig. 4.3, we know that the supports of p[0, O]b, p[1, 1]b, p[2, 2]b, and p[3,
3lbarel, 3, 2, and 2, respectively. To determine the supports of other patterns, such as
P[0, 1]b, p[O, 2]b, etc, we simply merge the lists of the corresponding columns based on
the gap interval. For example,to eountsthe subport of p[1, 2]b, we merge the lists of
columns 1 and 2 and obtain alist containing_Sl, $,.S;, and S;. Since there are four

sequencesin the list, the support of p[1, 2]'6‘#5 4,

4.4 Closure checking and prunifn.g ﬁrategies

To efficiently mine closed flexible patferns, we adopt a closure checking scheme
and two pruning strategies. redundant extension pruning and redundant projection
pruning. Lemma 4.1 is a closure checking scheme that helps to exclude non-closed
patterns during the mining process. It uses the concept of projected databases as
described in BIDE [61] to localize the checking. Upon generating a new frequent
pattern, we check whether it is closed by applying thislemma.
Lemma 4.1 (Closure checking). Given a frequent pattern p, it is non-closed if it meets
one of the following conditions: (1) if there exists a nominee that appearsin thefirst z7+1
positions of each sequence in p’'s projected database, or (2) if there exists another
frequent pattern g so that p is a sub-pattern of g and both have the same support.

Proof. In the first condition, since a frequent 1-pattern r appears in the first z+1

38

positions of each sequence in p’s projected database, there must exist another pattern
formed by p and r with a certain gap interval, which has the same support as p.
Therefore, p isnot closed. In the second condition, since pattern p is the sub-pattern of g
and both have the same support, it is not closed.

Note that p may appear more than once in a sequence. If we cannot find any r after
the current appearance of p, we need to perform the same check on the next appearance
of p in the sequence.

Assumethat 6= 3 and 7= 1. When a new frequent pattern p = a[0, 1]c with support
equal to 3 is generated, by checking the first two positions of each sequence in p's
projected database which contains three sequences { <d e f>, <a d b>, <d ¢ b>}, we find
that nominee(p) = {d}. Thus, we assure that p.is not closed since we can find a frequent
pattern a[0, 1]c[0, 1]d that is a super-pattern of p and has the same support as p. Let us
consider another example where the"second condition. is held. Assume there exists a
frequent pattern a0, 1]c with support equal 10/ 3. When a new frequent pattern b0,
1]a[0, 1]c with the same support-is found, we know that a0, 1]c isnot closed sinceit is
a sub-pattern of b[0, 1]a[0, 1]c.

The main idea for the redundant.extensi on. pruning strategy is to avoid the cost of
extending non-closed patterns in advance. To be precise, for each frequent pattern p, we
determine whether it should be further extended by checking if there exists an item that
is within 7+1 positions before p in each sequence containing p. If such an item can be
found, this pattern is not closed and any patterns extended from p would aso be
non-closed.

Lemma 4.2 (Redundant extension pruning). A frequent pattern p does not need to be
extended if there exists an item that appears within z+1 positions before p in each
sequence containing p.

Proof. Since an item q appears within 7+1 positions before p in each sequence

containing p, there must exist another pattern g formed by q and p with a certain gap

39

interval so that g’ has the same support as p. The projected database of ' is the same as
that of p. It means that each frequent pattern extended from p is a sub-pattern of a
frequent pattern extended from ' and both have the same support. Therefore, p does not
need to be extended.

Note that p may appear more than once in a sequence. Thus, we need to check if g
exists before every appearance of p in the sequence.

For example, assume that a database contains three sequences. <cb def>, <cabe

a>, <c b a g e> and there exists a frequent pattern b[0, 2]e with support equal to 3. By
checking each sequence in the database, we find that ¢ appears 1-2 positions before b[0,
2]e in each sequence. It means that we have another pattern c[0, 1]b[0, 2]e which has
the same support as b[0, 2]e. Therefore, b[0,.2]e does not need to be extended and can
be pruned. . |
Lemma 4.3 (Redundant projection pruning). 1Fp[xs. ya]r and p[xz, yo]r are frequent
and share the same projected database, p@g,_yl]r can be pruned, where p is a frequent
pattern, r € nominee(p), 0 < X< Xo< ygg-fiﬁl.
Proof. Since p[x., yir is a sub-pattern'of pfxa, y5]r. and both share the same projected
database, any pattern extended from .p[xl, y1]r canaso be extended from p[x,, y-]r and
both patterns extended have the same support. It means that any pattern extended from
p[X1, ya]r isnon-closed. Thus, p[xi, yi]r can be pruned.

For example, assume that 0= 3, 7= 2, [0, 1]a is afrequent flexible pattern and its
projected database contains three sequences. {<cedfg>, <aaega>,<beabc>}. We
find that e e nominee(c[O, 1]a). Thus, patterns c[0, 1]a[0, 2]e and c[0, 1]a[1, 2]e can be
generated and both share the same projected database {<d f g>, <g a>, <a b c>}. Since
c[O, 1]a[0, 2]e and [0, 1]a[1, 2]e share the same projected database and the former is a
sub-pattern of the latter, any pattern extended from c[O, 1]a[0, 2]e is not closed.
Therefore, [0, 1]a[0, 2]e can be pruned.

4.5 The CFPalgorithm

The proposed CFP agorithm consists of three phases as shown in Fig. 4.4. First, we
transform each time-series sequence in the database into the SAX representation as
described in Section 2.4. Second, we scan the transformed database once to find all
frequent 1-patterns and build a projected database for each 1-pattern found. Third, we
recursively call the CFP-Extension procedure to extend each 1-pattern found in the

second phase to mine closed flexible patterns in a depth-first search manner.

Algorithm: CFP
Input: a time-series database TDB, a minimum support threshold &, a maximum gap
threshold 7
Output: acomplete set of closed flexible patterns, CP
1 Transform each sequence in. TDB-into a<symbolic sequence by the SAX
representation; : P :

2 Scan the transformed database onc‘e@;fi__hd all frequent 1-patterns. Let P1 be a set
of frequent 1-patterns found;, : N

Let CP =

for each 1-pattern pin P1do“" :
Construct the projected database 6f p, PDB;
call CFP-Extension (PDB, p, &, 7, CP);

end for

return CP;

0o N o o~ W

Fig. 4.4. The CFP algorithm.

The CFP-Extension procedure is shown in Fig. 4.5. In steps 1-4, if p passes the
redundant extension pruning strategy and closure checking scheme, it is added to the
closed flexible patterns pool (CP). Then, we find the nominees of p in step 5. For each
nominee found, we combine it with p to generate the closed flexible super-patterns of p
in steps 6-21. In steps 7-15, we combine p and each nominee of p with every possible

gap interval, and use the index table to count the support of the combined pattern, and

a1

check if the combined pattern is frequent. If this is the case, the combined pattern is
added to NP. Next, we use the redundant projection pruning strategy to eliminate
unnecessary patterns in step 16. In steps 17-20, for each combined pattern in NP, we
construct the projected database of the pattern and recursively call the CFP-Extension
procedure to enumerate the closed flexible patterns.

Let us elaborate the concept of the pattern extension. Once all nominees are found,
we combine p and each of these nominees with all possible combinations of gap
intervals. Recall that 7 is the maximum gap threshold. The number of possible
combinations of gap intervals is thus 1+2+...+7+(7+1) = (z+1)(7+2)/2. We then
combine p and one of the nominee r; by taking into account al possible combinations of
gap intervals and represent it in the form of .p[x;, yi]ri, where x; and y; are non-negative
integers, 0 < x <yi < 7. These newly combi ned patterns are candidate 2-patterns. Next,
we need to check if they are frequent before inserting-them into the second level of the
tree. Assumep=a, =2, 7= 1, and the prq,ected database of a contains two sequences,
{Si<becfe, S:<deabc>}. We find-'_’hominee(p)-: {b, €}. Since 7= 1, we have
three possible combinations of gap intervals, namely; [0, 0], [0, 1], [1, 1]. Hence, we
combine p with the first nominee b with these gap intervals and obtain 3 candidate
2-patterns: a[0, O]b, a[0, 1]b, a[1, 1]b.

To count the supports for these candidates, we use the index table as described in
Section 4.3. We first create an index table with two columns (7+1 = 2). Column O stores
any sequence ID where b appears right after a in the sequence, while column 1 stores
any sequence ID where b appears two positions after a. In this case, we have {S;, $} in
column 0 and & in column 1. Therefore, the support of a[0, O]b, a[1, 1]b are 2 and O,
respectively. To count the support of a[0, 1]b, we simply merge the lists in columns O
and 1, and obtain alist containing S and S,. Hence, the support of a[0, 1]b is 2. Since
we find that a0, O]b and a0, 1]b have the same support and share the same projected

database, a0, 1]b is pruned by the redundant projection pruning strategy (Lemma 4.3).

42

Similarly, we combine p with the second nominee e and obtain one frequent 2-pattern:
a1, 1je.

After we obtain all frequent 2-patterns, we apply the same procedure of the third
phase to these frequent 2-patterns and extend them to frequent 3-patterns. Let us
continue with the last example. After finding the frequent 2-patterns a0, O]b, and a[1,
1]e, we use these frequent 2-patterns to generate frequent 3-patterns. We first find the
frequent 1-patternsin the projected database of a[0, O]b, where nominee(a[0, O]b) = {c}.
Thus, we can generate three candidate 3-patterns: a0, 0]b[O, O]c, a[0, 0]b[O, 1]c, a[O0,
0]b[1, 1]c. By using an index table to count the supports of these candidate 3-patterns,
we find that a[0, 0]b[0, 1]c is frequent with support equal to 2. Similarly, we can apply
the same procedure to a[1, 1]e and extend it to frequent 3-patterns.

While recursively performing. the procedﬁre of the third phase, we integrate the
proposed pruning strategies; and elosure checking scheme to speed up the mining
process. Upon getting a frequent |pattern, 'y;e_first use the redundant extension pruning
strategy (Lemma 4.2) to check-if the patter-ﬁ_can be pruned. If not, we apply the closure
checking scheme (Lemma 4.1) to check whether the pattern is closed. If the pattern is
closed, we add it to the pool of cl osed flexible patterns and extend it. As we have seen,
the effort of mining frequent patterns is determined by the parameter 7. As risset to a
large value, the number of possible combinations of gap intervals to form candidate
patterns is large. However, we may use the redundant projection pruning strategy
(Lemma 4.3) to prune unnecessary combinations.

In summary, we use a frequent k-pattern p to generate candidate (k+1)-patterns,
each of which is formed by concatenating p, a gap interval, and one nominee of
nominee(p). For each candidate (k+1)-pattern generated, we check if it is frequent and
closed. If it is, we recursively perform the CFP-Extension procedure to mine its frequent

super-patternsin a DFS manner. Accordingly, we mine all closed flexible patterns.

Procedure: CFP-Extension (PDB, p, &, 7, CP)
Input: a projected database PDB of p, a frequent flexible pattern p, a minimum support
threshold 6, a maximum gap threshold =

Output: acomplete set of closed flexible patterns, CP

1 if (p passes the redundant extension pruning strategy) then

2 if (p passes the closure checking scheme) then

3 Add p to CP;

4 end if

5 Find nominee(p) from PDB;

6 for each r in nominee(p) do

7 Let X be all possible combinations of gap intervals generated from r,
where 0 < x <y <z;

Let NP = O;

for each [x, yi] in ido

10 Combine p, [x;, yi]',',ar'}_q_ r 1o form p[x, Vilr;

11 Use an index table to'éﬁ‘ﬂht the support of p[x;, yilr;

12 if (the support of p[x;,; yr isnot!essthan o) then

13 Add P, T todPi..

14 end if ' » 3

15 end for

16 Apply the redundant projection pruning strategy to eliminate
unnecessary patternsin NP;

17 for each pattern gin NP do

18 Construct g's projected database, PDB’;

19 call CFP-Extension (PDB’, q, J, 7, CP);

20 end for

21 end for

22 end if

23 return CP,

Fig. 4.5. The CFP-Extension procedure.

Lemma 4.4 Every pattern found by the CFP algorithmis frequent and closed.

Proof. In the second phase, we scan the database once to find al frequent 1-patterns. In
the third phase, at each level of extension, we use a frequent k-pattern p at the previous
level and every nominee found in p’s projected database to form frequent (k+1)-patterns,
k > 1. Whenever a new pattern is found, we check the support of the pattern against the
minimum support threshold and eliminate it if it is not frequent. Hence, every pattern
found by the CFP algorithm is frequent. Moreover, at each level of extension, we adopt
the closure checking scheme to eliminate non-closed patterns. Therefore, every pattern
found by the CFP algorithm is frequent and closed.

Lemma 4.5 Every closed flexible pattern can be found by the CFP algorithm.

Proof. In step 2 of the CFP algorithm, we scan the database once to find all frequent
1-patterns. Thus, every frequent 1-pattern in the database can be found by the CFP
algorithm. In steps 6-21 of the CFRP-Extension procedure, for each frequent k-pattern p,
we combine it with every nominee foUnd_,}_'_!_ﬂ_ p's projected database and use the index
table to enumerate al frequent super (k+137patterns of.p, k > 1. Thus, every frequent
(k+1)-pattern in the database can’ be found. by the CFP algorithm. Once a frequent
k-pattern is found, we adopt the ciosure checking scheme to eliminate non-closed
patterns in step 2 of the CFP-Extension procedure. Therefore, every closed flexible
pattern can be found by the CFP algorithm

Theorem 4.1 The CFP algorithm enumerates all closed flexible patterns in the
database.

Proof. By Lemma 4.4, every pattern found by the CFP algorithm is frequent and closed.
By Lemma 4.5, every closed flexible pattern can be found by the CFP algorithm.
Therefore, we can conclude that the CFP algorithm enumerates all closed flexible
patterns in the database.

Theorem 4.2 The time and space complexities of the CFP algorithm are bounded by
O(IN[*(r*g + |D])) and O(Ip*|D| + |CP]), respectively, where the size of a time-series

database, the number of nodes in a sequence tree, the length of the longest frequent
flexible pattern, the number of nominees for a frequent flexible pattern, the number of
possi ble combinations of gap intervals, and the number of closed patterns are [D|, |N|, Ip,
r, g, and |CP|, respectively.

Proof. Since the size of the database is |D|, the time complexity of performing the SAX
operation is bounded by O(|D|). By scanning the transformed database, we obtain all
frequent 1-patterns and this requires O(|D]) time. Next, consider a pattern p of various
lengths. If p is a frequent 1-pattern, the number of extensions is bounded by r*g.
Likewise, if pisafrequent 2-pattern, the number of extensionsis bounded by r*g. Thus,
we know that if p is a frequent k-pattern, the number of extensions is again bounded by
r*g. Moreover, for each frequent k-pattern.p,. the time requires to scan p's projected
database to find the nominees of p is bounded by O(|D]). Since the number of total
nodes in the sequence tree is |NJ; the'time complexity-of the CFP algorithm is bounded
by O(|D] + |D] + [N[*(r*g + |D])) = O(|N|*(_f_;_‘f_g.+ [D])): Aswe design the CFP agorithm
based on the depth-first search approach, the maxi mum:number of nodes that kept in the
memory is bounded by Ip, where ‘each node'also requires O(|D|) space in the worse case
to maintain its projected database. Moreover, the closed pattern pool requires O(|CPJ)
space. Therefore, the space complexity of the CFP algorithm is bounded by O(|D| +
Ip*|D| + [CP]) = O(lp* D] + |CP).

4.6 An example

Let us demonstrate how the CFP agorithm works. Given a time-series database
containing four sequences, each sequence is transformed into a symbolic sequence as
shown in Fig. 4.1. Assumethat = 3 and 7= 2. After scanning the transformed database
and computing the support for each 1-pattern, we find four frequent 1-patterns and add
them to the level 1 of the sequence tree as shown in Fig. 4.2.

Next, we apply the redundant extension pruning strategy on a and find that it

46

should be extended. We then construct a’s projected database, whichis{<bcdb a>, <c
a>, <b f c c d>}. Moreover, we scan the projected database and find nominee(a) = {c}.
Since ¢ appears in the first 3 positions of each sequence in a's projected database, a
does not pass the closure checking scheme, and hence it is not closed. The node of a is
changed into a dotted circle as shown in Fig. 4.2. Subsequently, a is extended by
concatenating it with ¢ and one of the following gap intervals: [0, 0], [0, 1], [0, 2], [1, 1],
[1, 2], and [2, 2]. Since Jis 3, we only obtain a frequent 2-pattern a[0, 2]c with support
equal to 3. The projected database of a[0, 2]cis{<d b a>, <a>, <c d>}. Since we cannot
find any nominee in the projected database, no more frequent pattern can be generated.

Since pattern b passes the redundant extension pruning strategy, it should be
extended. Next, we construct b’s projected database, whichis{<cd b a>, <eac a>, <e
¢ b d>, <f c c d>}. We then scan the projected database and find nomi nee(b) ={c}. We
also perform the closure checking seheme and find'that ¢ appears in the first 3 positions
of each sequence in b’'s projected databasg;_,g__and hence b,isnot closed. The node of b is
changed into a dotted circle as-shown in-'_’Fig. 4.2. Then, we discover three frequent
2-patterns b[0, 1]c, b[0, 2]c, and b[1, 2]cWwith' Supports 3, 4, and 3, respectively. We
recursively perform the pattern extehsi on_procedure on these frequent 2-patterns to get
frequent super-patterns until no more frequent patterns can be generated. As shown in
Fig. 4.2, the subtree under node b contains three closed patterns b[0, 2]c, b[1, 2]c, and
b[0, 1]c[O, 1]d. Similarly, we can extend patterns ¢ and d to find their frequent
super-patterns. Finally, we find all closed flexible patterns in the database, including a[0,
2]c, b[0, 2]c, b[1, 2]c, b[O, 1]c[0, 1]d, as shown in Fig. 4.2.

47

Chapter 5Mining M ulti-Resolution Closed Numerical

Patternsin Multi-Sequence Time-Series Databases

In this chapter, we propose an agorithm, called CNP, to mine multi-resolution
closed numerical patterns in a time-series database, where each transaction consists of
multiple sequences. The CNP agorithm involves three phases. First, we normalize al
the time-series in the database and transform them into a low resolution by the Haar
wavelet transform. Second, we generate all frequent 1-patterns from the transformed
database. Third, we recursively extend each 1-pattern found in the second phase to find
longer patterns. Subsequently, for each pattern found in the low resolution, we restore
the pattern back to the high resolution. Finally, we determine the representative patterns

as described in Section 5.1 with respect to'the low and high resolutions.

5.1 Preliminariesand problem definit'i(')fl_n'gs___.

Consider a database D containing n transactions, where each transaction contains s
sequences, and each sequence is a sequence'ef numerical values. Note that the database
may contain transactions with differént lengths. However, multiple sequences contained

in each transaction must be of equal length.

Vll VlZ T Vlk
Definition 5.1 A pattern p is defined as V:Zl sz V:Zk , where v is a
Va Ve - V«

numerical value.
Definition 5.2 The length of a pattern p is defined as the number of numerical valuesin

each sequence of p. A pattern of length k is called a k-pattern.

V.
Note that pattern p can be regarded as a sequence of s-dimensiona points, o

V12 Vlk

Vo \Z% . . N .

“ty o 2 T, where a sdimensional point is caled a s-point. For example,
VSZ Vsk

10 -06 -04| .
is a 3-pattern.
06 06 14

v,
Definition 5.3 Letz = { '} and .= be two s-points. z; > 2 if (1) vi1 > Vi,

Vsl | Vsz

or (2) there exists a positive integer |, sucF.Ehét Vil =Vip,1=1,2, ..., J-1,and vj1 > Vjp, |
> 1. Moreover, z; = 2 if Vi; = Vip, 1’54, 2, ,_s

Definition 5.4 Let p and q be two patterns. p > gif(2) the first s-point of p is greater
than that of g, or (2) there exists a positive i-nteger.j, such that the first j—1 s-points of p

are equal to those of g, and the jth s-point of p is greater than that of q,] > 2.

Ull U12 u1m
N _ JUx Uz - Uew| . _ -
Definition 55 A pattern p = : : : is a sub-pattern of p =
usl usz usm
Vll V12 Vln
V:Zl V:ZZ Vf” , if there exists an integer j such that |ux — Vi)l < & 1<i<s 1
Vsl VSZ Vsn

<k<m,0<j<n-m and m<n, where gis auser-specified minimum distance threshold.

We can also say that p’ is a super-pattern of p, or p’ contains p. Moreover, if pisa

49

sub-pattern of p’ and both patterns have the same length, we can say that p is similar to

p.
02 12 0.8

}, where

For example, p = { 06 -03 08

01 11) . .
iscontained by p’ =
06 -03

=0.1.

Definition 5.6 The support of a pattern p is defined as the number of transactions
containing p in the database.

Definition 5.7 A pattern is frequent if its support is not less than a user-specified
minimum support threshold, 6.

Definition 5.8 A pattern p is closed if it is frequent and there does not exist any

super-pattern of p with the same support.

; Vll V12 tee V1n
Definition 5.9 T[i, |] is a sub-tfansaction of T ¥z Va2 = Vaul \here (i,] =
:.: Vsl VsZ Vm
Vi Via VG
\/:2i V€i+1 VZJ ,1<|SJ Zn
Vs Vsu -V

Definition 5.10 If T[i, j] issimilar to p, TJi, j] iscalled a projection of a pattern p, where
I and j are called the starting and ending locations of the projection.

Definition 5.11 The projected database of a k-pattern p contains al projections in the
database with respect to p and is denoted as PDB(p) = {<tid, j> | tid is the identifier of
the transaction T, and T[j—k+1, j] issimilar to p}.

05 05

06 0.3
For example, consider a database contains two transactions, T; = { }

08 04 0.6
T,= , and € = 0.2, the projected database of p = is {<Ty, 1>, <Ty,
0.7 1.0 05

15},

50

Since there may exist two or more patterns that are similar to each other and have

the same projected database, we may merge them together and choose one of them as

the representative pattern. Here, we choose the smallest one as the representative pattern.

Moreover, for a representative pattern p, we use a list, called merge list, to keep the

0.3 0.4
patterns merged by p. For example, if p = {0 1} and q = {0 2} have the same

projected database, g is merged by p and iskept in p’'s merge list.

5.2 Haar wavelet transform

Vll VlZ et Vln
Given a transaction T = Vfl sz Vf” . We can transform it into a low

Vsl VsZ o Vsn

resolution, denoted as WT(T); by the Haar, wavelet transform, where WT(T) =

U
lJ.Z:L

Ux

N
-

UL e U/ 2) =

:22 2(:n/2) . Uij = (\'/5(2,-_1)4'-\4(21))/2', Y= 12 ...,5 andJ =1, 2,...,

usZ Tt us(n/2)

n/2. For example, both sequences of the first transaction in Fig. 5.1 can be transformed

into two sequences as shown in Fig. 5.2.

. Time stamps
Transaction
ottt ts te t f
. | Seaewcei| 06 10 04 28 22 38 20 48
" | sequence2 | 44 32 14 20 36 20 38 -46
. | Seawece1| 40 06 12 02 28 20 38 20
2

Sequence2 | 42 46 -3.2 1.2 22 34 -18 38

Fig. 5.1. A database containing two multi-sequence transactions.

51

Sequence 1 -0.6 1.0 -0.4 2.8 -2.2 38 -2.0 4.8 High resolution
0.2 12 0.8 14 Low resolution
Sequence 2 4.4 -3.2 14 -2.0 36 -2.0 3.8 -4.6 High resolution
0.6 -0.3 0.8 -04 Low resolution

Fig. 5.2. The Haar wavelet transform.

If patterns x and y are similar to each other in the original database, WT(x) and
WT(y) are similar to each other, where WT(x) and WT(y) are transformed from x and y

by the Haar wavel et transform, respectively.

Lenma 5.1 (Similar relationship). “Given. two k-patterns, X =
Xo %o o Xu V. VIV
X:Zl)(:22 ka and,y. = yﬂf;,yzz yfk , and two transformed
Xa X o Xl W7 S|y S0 BTy,
Y. NEWED AT
patterns, WT(X) = U:21 U:22 u2<:k/2) and WTQ) =
Us Un o Unirn)
Vi Ve Vs
V:21 V:22 VZ(;W) i X — Vil < & then | Uigiy — Vigp)| < & where 1 <Ii
Vo Vo SRV

52

vl = |Xi(2|—)+)§(2|) yi(2|—)+yi(2I)|
al = —

Proof. |ui—
2 2 |

— |(Xi(2I—1)_yi(2I—1))+()<i(2I)_yi(2|))|
| 2 2

1
= E‘(Xi(ZI—l) — Vi) T Ky — Yi(2|))‘

IN

1
< %(8 +&)

<e¢
Lemma 5.1 also indicates that if WT(X) isnot similar to WT(y), it is guaranteed that
X isnot similar toy. However, it is not guaranteed.if WT(x) issimilar to WT(y), then x is

_ 0.7 05
similar to y. For example, assume that &=0:1., Consider two patterns, x = { 09 0 7}

05 05 a7 '
and y = {10 08}' By applying the;.Haar wavelet transform, we obtain two

gl Mm || +4+0.5
transformed patterns, WT(x) = {O 8} and"WT(y) = {O 9}. It can be observed that

WT(x) and WT(y) are similar to each other, whereésx and y are dissimilar.

To mine multi-resolution closed patterns, we first mine the closed patterns from the
transformed database (Ilow resolution) and then use the closed patterns mined to restore
the closed patterns in the origina database (high resolution). However, the patterns
restored locate at the odd positions of the original time-series sequences. To resolve
such a problem, we also apply the Haar wavelet transform to the original database by
starting the operation from the second position of each time-series sequence in the
database as shown in light grey color in Fig. 5.3. Then, those transformed time-series

sequences will be collected together to form the transformed database.

53

Sequence 1 -0.6 1.0 -0.4 2.8 -2.2 3.8 -2.0 4.8 High resolution

0.2 1.2 0.8 1.4 Low resolution
Sequence 2 4.4 -3.2 1.4 -2.0 3.6 -2.0 3.8 -4.6 High resolution
0.6 -0.3 0.8 -0.4 Low resolution

Fig. 5.3. The transformed time-series sequences.

Let S represents a time-series sequence in the transformed database, where S is
transformed from a time-series sequence T in the original database. The s-points located
at the odd and even positions in S are generated by the Haar wavelet transform starting
from the first and second positions of T, respectively. For each s-point s located at the
odd position in S, it is obtained.by gomputing t_he average between every two adjacent
values, tj and ti+1 in T, wherel is odd. Thué;zthé'adj acent s-point of s isthe value located
at the next odd position in S. Likewise, If i.h}’”§ éven, the adjacent s-point of s isthe value
located at the next even position.in'S Therefore, when-we grow a frequent k-pattern p in
the low resolution, p isjoined with its corresponding ‘adjacent s-point to form a frequent
(k+1)-pattern. For example, consider the first transaction T, in Fig. 5.1. When the Haar

wavelet transform is applied to T;, we obtain a transformed time-series sequence S =

02 03 12 03 08 09 14 0.2
. To extend a frequent 1-pattern p =
06 -09 -03 08 08 09 -04 0.6

1.2
located at the first position in S, we append p’'s adjacent s-point { 0 3} toptoforma

. 02 12
candidate 2-pattern .
06 -03

5.3 Numerical pattern tree
In order to enumerate al frequent patterns in the low resolution, we adopt a tree

structure, called numerical pattern tree, where the tree consists of one root labeled as &

and each node represents a frequent pattern as illustrated in Fig. 5.4. The patternsin the
dotted circles are non-closed, whereas the other patterns are closed. Moreover, the
number following the pattern denotes the support of the pattern and the number at the
top right corner of the pattern refers to its merge list. Recall that a merge list keeps all

non-representative patterns merged by the representative pattern.

Level 0
Level 1
/(02 1.2 2® 0.3 0.9 2 ""i’.’é"'éfé""_;@ Level 2
‘. los-03[""/" loso0.9 |-0308/ 7 eve
02 12 08 @ 0.3 0309 @
12 oA Level 3
0.6 -0.3 0.8 “09:0809[
Merge lists
0.3 04 09 J03 13 13 09
®Ho.7}* ‘ ®‘ 1u ®‘o7 os‘ ®‘ 0508‘
mn...]
0.5 13 Tl 0.4 0.9 03 13 09
® ® {_0_5}., {,o.:;i Q {06 o @
| == 05 04 05 04 09
®

Fig. 5.4. Frequent patterns mined in the low resolution.

5.4 Comparison of projected databases

To check whether two projected databases are the same, we introduce a max-min
matching method. When a new k-pattern p is discovered, we simultaneoudly build its
projected database. Through the process of building a projected database, we also record
the maximum and minimum (max-min for short) values of each dimension for each
s-point in p. Since a s-point has s dimensions and the max-min values of each
dimension must be recorded, we have a list of s max-min values, denoted as <(max;,
ming), (maxz, Miny), ..., (mMaxs, ming>. Two lists of max-min values <(max;1, Miny),
(maxiz, Ming), ..., (MaXis, Ming)> and <(maxzi, MiNz), (MaXze, MiNg), ..., (MaXys,

minyg)> are equivalent if maxy = maxy and ming = ming, i =1, 2..., s. Since a k-pattern

55

contains k s-points, we have k lists of max-min values, denotes as { M;,M,, -, M, },

which is called the max-min bound of the k-pattern. The max-min bounds of two
patterns are equivalent if each corresponding list of max-min values is equivalent for
both patterns.

Lemma 5.2 (Max-min matching). The projected databases of patterns p and q are
equivalent if p and g have an identical max-min bound.

Proof. Let the projected databases of p and g be PS and QS respectively, and the

max-min bound of p be { M;,M,,--, M, }, where 1 <i < k. Assume that the projected

databases of patterns p and g are not equivalent. That is, there exists a projection z that
isin PShut not in QS. Sinceze PS it iscertain that each ith s-point of zis bounded by
Mi. And, since g has an identical max-min bound as p, any projection whose s-points are
bounded by the max-min bound;must be existed T\QS: Thus, z must be existed in QS
This contradicts the assumption that zis mJ?S but not in QS. Therefore, if p and g have

an identical max-min bound, the-projected databases of patterns p and q are equivalent.

5.5 Pruning strategies

We adopt two pruning strategies to speed up the mining process. The post-pruning
and pre-pruning strategies are used to prune the unnecessary extension of a pattern.
Lemma 5.3 (Post-pruning). For a frequent pattern p, if there exists a frequent
1-pattern g, such that (1) q is the last s-point of p, and (2) both p and g have the same
projected database, we can stop growing g.
Proof. Since q isthelast s-point of p, p is a super-pattern of g. As p and g have the same
projected database, every projection found in g's projected database is the last s-point of
one and only one projection in p’s projected database. Hence, any pattern extended from
g can also be extended from p and both patterns extended have the same support. This

indicates that any pattern extended from q is not closed. Therefore, g can be pruned.

56

Note that we have to ensure that pruning the patterns by the post-pruning strategy
in the low resolution would not cause any pattern lost in the high resolution. Thus, we
double-check whether the candidate 2k-patterns restored from p and g also have the
same projected database in the high resolution. If so, it is safe to prune pattern q.
Otherwise, qis preserved.

For example, assume that 6= 3, £= 0.1, and a transformed database contains three

i 05 03 08 04 04 09 06 02 07
transactions; § = , S = ,and & = .
06 05 09 05 04 10 06 04 08

0.8
, and
tos)

thelr prOJ&ted daIaba%S are{<s.|.! 1>1 <SZ1 1>! <S31 1>}1 {<Sl1 2>1 <SZ1 1>1 <821 2>! <S\31

0.5 0.3
By scanning the database, we find three frequent 1-patterns {O 6} ; { 0 5} :

2>}, and {<§, 3>, <5, 3>, <S5, 3>}, respectively. When a frequent pattern p =

05 08 :
{06 09} is mined and PDB(p)_= {<S., 3>, <$,:3>, <S;, 3>}, we check its last

0.8 0.8 .
s-point {O 9} , and find that {O 9} is afr_equent 1-pattern whose projected database is

-

x- 0.8
the same as p. It means that every pattern:extended from {O 9} is contained by the

pattern extended from p and is hot ‘closed. We further check the candidate 4-pattern

0.8

0.5 0.8
restored from and candidate 2-pattern restored from and find that
06 0.9 0.9

0.8
they have the same projected database in the high resolution. Therefore, {O 9} can be

pruned and removed from the first level of the tree.

Lemma 5.4 (Pre-pruning). For a frequent pattern p, if there exists another frequent
pattern q which has already been mined such that (1) q is a super-pattern of p, and (2)
both p and g have the same projected database, p can be pruned.

Proof. Since q is a super-pattern of p and both have the same projected database, for
every projection z in p’s projected database, we can find one and only one projection
that contains z in q's projected database. Hence, any pattern extended from p is aready

mined with g. Therefore, p can be pruned.

57

Note that, similar to the post-pruning strategy, we have to ensure that pruning the
patterns by the pre-pruning strategy in the low resolution would not cause any pattern
lost in the high resolution. Thus, we double-check whether the candidate 2k-patterns
restored from p and g aso have the same projected database in the high resolution. If so,
it is safe to prune pattern p. Otherwise, p is preserved.

01 0.7 05

} Is an aready mined

For example, assumethat 6=3, £¢=0.1,q=
03 09 06

frequent pattern, and PDB(qQ) = {<S,, 7>, <S, 3>, <S5, 9>}. When a new frequent

0.5
pattern p = {O 9 0 6} is mined and PDB(p) = {<S,, 7>, <, 3>, <%, 9>}, p can be

pruned since it is a sub-pattern of g and both patterns have the same projected database
and the corresponding restored candidates generated from p and q also have the same

projected database in the high resolution.

5.6 Freqguent 1-pattern generation || _._

To find frequent 1-patterns from théfitransformed database, we initially sort all
1-patterns in the transformed database in aseending order and store them in an array A,
where each 1-pattern is associated with a transaction identifier containing the 1-pattern.
To compute the support of a 1-pattern p, we find all 1-patterns similar to p in the array
and count the number of distinct transaction identifiers of these patterns. We call p the
pivot in the array. Moreover, we use two integersi and j to record the lower and upper
bounds of the indices so that the difference between the value of the first dimension of p
and that of every element between A[i] and A[j—1] is not greater than &. These elements
are the candidates that may be similar to p. For each candidate, we check if it is similar
to p. Thus, we obtain al the elements similar to p.

Let us elaborate the concept of finding frequent 1-patterns. First, we take A[1] as
the pivot and both i and j are equal to 1. We keep incrementing j by one until the

difference between the value of the first dimension of A[j] and that of the pivot (p) is

58

greater than . As aresult, every element between A[i] and A[j—1] is the candidate that
may be similar to the pivot. Then, for each candidate, we check if it is similar to the
pivot. Thus, we obtain the elements similar to p. By counting the number of distinct
transaction identifiers of these elements, we can determine the support of p. If p is
frequent, the corresponding projections are stored in p’s projected database. Similarly,
we take the second element as the new pivot and move indicesi and j to the right places
so that every element between A[i] and A[j—1] is the candidate that may be similar to the
new pivot. We further check if these candidates are similar to the pivot. Then, we count
the support of the pivot and check if it is frequent. This process is continued until the
last element in the array is reached. Note that if two patterns p and g have the same

projected database and p isless than g, g.ismerged by p and stored in p’'s merge list.

pivot

v |

1 2 3 ; 4 5 6
0.1]|/0:2] [[0.2]] 0.3 [(o0.5)](1.0
0.3ff1o2[]0.3[{te.2(lo.7[||0:7
T EN N T

i j

pivot *
v
1 2 3 4 5 6

o

&

L

EEEE
t 1

i J

i

Fig. 5.5. Finding frequent 1-patterns.

59

Let us consider the example shown in Fig. 5.5. Assume ¢ = 0.1. We initidly take

0.1
{O 3} to be the pivot, by checking the array, index i is not moved since the first

element is similar to itself, whereas index | is moved forward to the fourth position.
From i to j—1, there are three candidates which may be similar to the pivot, namely,

0.1 0.2 0.2
{O 3} , { } , and {0 3} . We further check if these candidates are similar to the pivot

0.2
and find that all of them are similar to the pivot. Thus, the corresponding projections are

0.1 0.2
stored in the projected database of {O 3}. Next, we change the pivot to {O 2} and

check if it is a frequent 1-pattern. We find that i is unchanged while j is moved to the

fifth position. Therefore, the corresponding projections are stored in the projected
0.2 0.2

database of {0 2}.Wefurther check the next pivot {0 3} and find that it is similar to

0.2 &) 0.2 0.2 .
and has the same projected database as . Hence, IS merged by
0.2 \ \ [O2 0.3

0.2 [= 0
{O 2} . This process is continued until the Iast element {O 7} is checked.

5.7 The CNPalgorithm

The proposed algorithm, called CNP, is illustrated in Fig. 5.6. It contains a
procedure, CNP-Growth, which isshownin Fig. 5.7.

The CNP agorithm consists of three phases. The first phase involves steps to
normalize each time-series sequence in the database and then apply the Haar wavelet
transform to convert each time-series sequence into a low resolution (step 3). The
second phase involves steps to scan the transformed database once to find all frequent
1-patterns and construct a projected database for each 1-pattern found as described in
Section 5.6. If any two frequent 1-patterns have the same projected database, the larger
one is merged by the smaller one (step 4). The third phase involves steps for the pattern

extension and pattern restoring (steps 5-13). That is, for each frequent 1-pattern, we call

60

the CNP-Growth procedure to enumerate the closed patterns. Then, we restore the
patterns in the high resolution from the patterns mined in the low resolution.
Furthermore, we find all frequent 1-patterns in the high resolution from the original
database. Finaly, for each closed pattern found, we check if it can be merged by the

other patterns.

Algorithm: CNP

I nput: atime-series database DB, a minimum support threshold &

Output: all closed patterns CP. and CPy in the low and high resolutions, respectively

1 |Initialize CP_and CPy to &;

2 Normalize all time-seriesin DB;

3 Apply the Haar wavel et transform to.each time-series in DB and store the

transformed time-seriesin RDB;

4 Let P1 be al frequent 1-patterhs found in'RDB and merge similar 1-patterns into
oneif they have the same projécted database;

for each 1-patternp e P1 do _;: .

Let PDB be the projected dafabéée ofl p;

call CNP-Growth (p, PDB; 8R4, CP;, CP});

Restore p and each of the batterns merged by p respectively to find the

0o N oo O

frequent 2-patterns and 3-patterns in the high resolution and add them
to CPy if they are closed;

9 endfor

10 Find frequent closed 1-patternsin the high resolution and add them to CPy;

11 for each closed pattern p in the low and high resolutions do

12 Use its max-min bound to decide if it is a representative pattern;

13 end for

14 return CP_ and CPy;

Fig. 5.6. The CNP agorithm.

61

Procedure: CNP-Growth (p, PDB, ¢, P1, CP., CPy)
Input: a k-pattern p, a projected database PDB, a minimum support threshold ¢, and a

set of frequent 1-patterns P1

Output: a set of closed patterns CP, in the low resolution and a set of closed patterns

CPy in the high resolution

1 if (pisclosed) then

2 Addpto CP;

3 endif

4 if (p passes the pre-pruning strategy and there exists an adjacent frequent

1-pattern q that appears right after p) then

5 Append g to p to form a candidate (k+1)-pattern p’;

6 if (p do not pass the post-pruning strategy) then

7 Remove g from P1,

8 end if :

9 Build a new projected database PDBforp’ and derive the merge list of p';

10 if (p’isfrequent) then \ '

11 call CNP-Growth\(p', PDBE-8 P1, CPL-CPy):

12 Restore p’ and each ofi the Sﬂterns merged by p’ respectively to find the
frequent 2k-patterns and (2k+1)-patterns in the high resolution and
add them to CPy if-they are closed;

13 end if

14 for each frequent pattern m’ that is extended from p’s merge list but not

merged by p’ do

15 Build a projected database PDBy; for m' and derive the merge list of m’;

16 call CNP-Growth (m’, PDBy, J, P1, CP., CPy);

17 Restore m' and each of the patterns merged by m' respectively to find
the frequent 2k-patterns and (2k+1)-patterns in the high resolution
and add them to CPy if they are closed;

18 end for

19 end if

20 return CP. and CPy;

Fig. 5.7. The CNP-Growth procedure.

62

In the CNP-Growth procedure, upon getting a frequent k-pattern p, we first check it
with the already mined patterns in CP,_ to determine if it is closed in steps 1-3. If it is
closed, we then add it to CP, and extend it.

Next, p is checked against the pre-pruning strategy and the condition of whether
there exists an adjacent frequent 1-pattern q appears right after p. If so, we append g to p
to form a candidate pattern p’ in steps 4-5. Otherwise, we stop growing p. Subsequently,
we use the post-pruning strategy to prune unnecessary frequent 1-patternsin steps 6-8.

The projected database of p’ can be derived from the projected database of p in step
9. That is, we extend each projection in p’s projected database and check if the newly
extended projection is similar to p’. Accordingly, we obtain a new projected database
for p'. If the support of p’ is not less than. g, it is a frequent (k+1)-pattern. To further
extend p’ to find longer patterns; we recursively call the CNP-Growth procedure in step
11.

Besides, we use the merge list of p'tc')'}fj_nq out which patterns can be merged by p’.
For each k-pattern min p’s merge list, we é;étend m to find a candidate (k+1)-pattern, m'.
If m'" issimilar to p’ and both of them have the same projected database, m' is merged by
p’ and stored in the merge list of p’. in contrast,if m' has a different projected database
from p’ and its support is not less than ¢, it is a frequent (k+1)-pattern. Thus, we build
the projected database for m' and derive its merge list in steps 14-15. And we extend m’
to find frequent super-patterns by calling the CNP-Growth procedure in step 16. The
CNP-Growth procedure is recursively called until no more patterns can be generated.

To restore each k-pattern p found in the low resolution to the high resolution, we
first recompose the s-points of p. Recall that we compute the average between two
adjacent s-points appeared in T[i, i+1] to obtain a transformed s-point located in i, i]
asshown in Fig. 5.3, where1 <i <|-1 and | isthe length of T. By referring back to the
original database, each s-point in the low resolution can be recomposed into two

s-pointsin the high resolution.

63

Since p has k s-points, it can be restored to a candidate pattern that has 2k s-points.
That is, assume p appears in §j—2k+2, j], we can obtain a restored pattern q; of length
2k which appears in T[j—2k+2, j+1]. Likewise, for a pattern p’ of length k+1 in the low
resolution, it can be restored to a candidate (2k+2)-pattern in the high resolution.
However, no candidate of length 2k+1 is restored. Thus, we use p to derive a pattern g
of length 2k +1 which appears in T[j—2k+2, j+2]. In other words, we can use p to find
two candidate patterns in the high resolution.

To determine the supports of g, and g, we first restore each projection in p's
projected database and check if it is similar to g;. If yes, it is stored in qi’s projected
database. As the projected database of q; is built, we further use it to derive the
projected database of g, by extending the projections in g;'s projected database. As a
result, both their supports are calculated. If their supports are not less than ¢, they are
frequent 2k-pattern and frequent (2k+1)-pattern. We then use the patterns in the closed

pattern pool to check whether g; and gz areg:lo&d For example, assumethat 6= 2, =
05 07 01 O 3}
2

0.1, and an original database contains two fransactions: T1 =
06 1.0 0.2 0.6
04 08 02 04) . = . - .
= which-is transformed. to a new database that contains. S, =
05 09 03 01 :

06 04 02 06 05 03 _
= . From the transformed database, we find that
08 06 04 0.7 06 0.2
p= {0.8} Is afrequent 1-pattern in the low resolution. When we restore it to the high

05 0.7
resolution, we may obtain two candidate patterns, including g; = {0 6 1 O} and g =

05 07 01
{O 6 10 0 2} , Where their projected databases are { <Ty, 2>, <T,, 2>} and {<T3, 3>,

<T,, 3>}, respectively. Since g, contains ¢ and their supports are equal to 2, q; is not
closed and only @ is added to CPy.
Note that, each k-pattern m merged by p in the low resolution, is also restored to

generate a candidate 2k-pattern and a candidate (2k+1)-pattern in the high resolution in

order to verify whether they can be merged by the restored patterns generated from p. If
not, we compare them with the already mined closed patterns and output them to the
closed pattern pool if they are closed.

It is shown that frequent 1-patterns in the low resolution are restored to find
frequent 2-patterns and frequent 3-patterns in the high resolution; however, no frequent
1-patterns in the high resolution are retrieved. Thus, we mine frequent closed 1-patterns
from the original database and add them to the closed pattern pool in step 10 of the CNP
algorithm.

Once we have obtained all closed patterns in both low and high resolutions, we then
proceed to select representative patterns among all closed patterns in each resolution in
steps 11-13 of the CNP algorithm. Recall that while we build the projected database of a
pattern, we also compute its max-min bound. We then-use this information to select the
representative pattern. For a pair, of closed k-patterns; it they have identical max-min
bounds, we choose the smaller pattern to be the representative pattern. As a result, we
can obtain all representative ¢losed pattern;i_n both low:and high resolutions.

L emma 5.5 Each pattern found by the CNPalgorithmis frequent and closed.

Proof. In the CNP algorithm, the éecond phase involves steps to find all frequent
1-patterns by scanning the transformed database once. The third phase involves the
CNP-Growth procedure to recursively find longer patterns. That is, we extend a
frequent k-pattern p by appending an adjacent frequent 1-pattern q which appears right
after p to form a candidate (k+1)-pattern. Then we check the support of this candidate. If
its support is greater than ¢, it is a frequent (k+1)-pattern. As a result, we have assured
that every pattern found in the low resolution is frequent. On the other hand, every
frequent k-pattern p found in the low resolution is restored to two candidate patterns in
the high resolution. We further check if these two candidate patterns are frequent. In
addition, we mine frequent 1-patterns from the original database. Therefore, every

pattern found in the high resolution is frequent. Moreover, upon getting a frequent

65

pattern in the low resolution, we always check it with the already mined patternsin CP_
to determineif itisclosed. If it isclosed, it is added to CP.. Similarly, for every restored
frequent pattern or frequent 1-pattern found in the high resolution, we check it with the
already mined patternsin CPy and add it to CPy if it is closed. Therefore, every pattern
found by the CNP algorithm is frequent and closed.

Lemma 5.6 Every closed pattern can be found by the CNP algorithm.

Proof. Since we scan the transformed database once to find all frequent 1-patterns,
every frequent 1-pattern in the low resolution can be found by the CNP agorithm. For
each frequent k-pattern p in the low resolution, we combine it with an adjacent frequent
1-pattern g which appears right after p to generate al its frequent super-patterns of p.
Thus, every frequent k-pattern in the low resolution can be found by the CNP agorithm.
For each frequent k-pattern found.in the low resolution, we restore it to find two
candidate patterns in the high resolution and elfminate the infrequent ones. Moreover,
we scan the original database once to fi hd}_a[_l_frequent 1-patterns in the high resolution.
Therefore, every frequent k-pattern in théﬂ'{high resolution can be found by the CNP
algorithm. Once a frequent k-pattern isfound.either. in the low resolution or in the high
resolution, we use the aready mi néd patterns;in the pool to eliminate non-closed
patterns. Therefore, every closed pattern can be found by the CNP algorithm.

Theorem 5.1 The CNP algorithm enumerates all closed patterns in both low and high
resolutionsin the database.

Proof. By Lemma5.5, every pattern found by the CNP algorithm is frequent and closed.
By Lemma 5.6, every closed pattern can be found by the CNP algorithm. Therefore, we
can conclude that the CNP algorithm enumerates all closed patterns in the database in
both low and high resolutions.

Theorem 5.2 The time and space complexities of the CNP algorithm are O(|D[*log|D| +
INL[*|D| + |CP.? + |CPu[Y) and O(Ip*|D| + Iv*(|CP| + |CP4[)), respectively, where the

size of a time-series database is |D|, the number of nodes in the numerical pattern tree

66

in the low resolution is |N.|, the numbers of closed patterns in the low and high
resolutions are |[CP.| and |CPy|, respectively, the average length of the frequent pattern
islv, and the length of the longest frequent patternislp.

Proof. According to [19], the time complexity of transforming a time-series in the high
resolution into a time-series in the low resolution is bounded by O(l), where | is the
length of a time-series. Since the size of a time-series database is |D|, the time
complexity of the Haar wavelet transform is bounded by O(|D|). To obtain al frequent
1-patterns in the low resolution, we sort all 1-patterns in the transformed database and
check whether each 1-pattern is frequent. It requires O(|D[*log|D|) time to perform this
task. Next, let us consider the mining process in the low resolution. To extend a frequent
k-pattern p, we append an adjacent frequent. 1-pattern that appears right after p to form
its super-pattern and meanwhile derive a-new 'proj ected database for the super-pattern.
This process takes O(|D|) time since the maximumisize of projected databases is |D| in
the worse case. Since there are ||N| nodes in the numerical pattern tree in the low
resolution, the time-complexity-of the CNﬁ_al gorithm in the low resolution is bounded
by O(ID| + |D[*log|D| + [N_[*|D]) =-O(DJsleg|D| +. [N.*|D|). Next, let us consider the
restoring operation in the CNP al gdrithm. Since p can be restored into two frequent
patterns at most in the high resolution, the maximum number of frequent patternsin the
high resolution is bounded by 2*|N_|. During the restoring process, p's projected
database is scanned once to check if the restored patterns are frequent, and hence the
time complexity of the restoring operation is bounded by O(|N_[*|D]). The time
complexity of checking if a pattern is closed is bounded by O(|CP,.|) and O(|CP4|) with
respect to the low and high resolutions. Moreover, the time complexity of the merge
operation in the low resolution is bounded by O(|CP.[?) because each closed pattern is
checked against the other |CP_| — 1 patterns to determine if it is a representative pattern.
Similarly, the time complexity of the merge operation in the high resolution is bounded

by O(|CPx[?). Besides, the time complexity of mining frequent 1-patterns in the high

67

resolution is bounded by O(|D[*log|D|). Therefore, the time complexity of the CNP
agorithm is bounded by O(|D| + |D[*log|D| + [NL[*|D| + 2*|NL|[*|D| + |CP| + |CPu| +
ICPLP + |CPu* + |D[*log|D]) = O(|D[*log|D| + NL[*|D| + |CPL + |[CPH[Y). In order to
select the representative patterns, we record the max-min bounds for the closed patterns
in both low and high resolutions. The memory space used to preserve thisinformation is
thus bounded by O(lv* (JCP_| + |CPy|)). Since the CNP algorithm is processed in a DFS
manner, the maximum number of nodes that kept in the memory is bounded by Ip.
Moreover, each node requires O(|D]) space to maintain its projected database and O(Iv)
Space to store its max-min bounds. To store al closed patterns in both low and high
resolutions, we need O(|CP.| + |CPy|) space. Therefore, the space complexity of the
CNP agorithm is bounded by O(|D| + |D].# v* (|ICP.| + |[CPy]) + Ip*(|D| + Iv) + |CP,| +
[CPul) = O(Ip* D] + IV*(ICP| + |@Py]). -

5.8 Mining multi-resolution patter ns| _._

The CNP algorithm can be modifieo-[ﬂi_to find multi-resolution patterns. Given a
number of resolutions y and a time-series.database; we convert each time-series in the
database into the lowest resolution by applying the Haar wavelet transform (7~1) times.
Once we have obtained a transformed database in the lowest resolution, we perform the
tasks in the second and third phases of the CNP algorithm to mine all closed patternsin
the lowest resolution. However, to restore a frequent k-pattern p in the lowest resolution
to the highest resolution, we have to perform the restoring operations multiple times
until the highest resolution is reached. Specifically, p is first restored to find frequent
2k-pattern e, and frequent (2k+1)-pattern &, in the resolution which is one level higher
than the lowest resolution. Subsequently, e; and e, are restored to find frequent
4k-pattern g;, frequent (4k+1)-pattern gp, frequent (4k+2)-pattern gs, and frequent
(4k+3)-pattern g4 in the resolution which is two levels higher, respectively. Furthermore,

we restore g1, gz, 03, and ga to find frequent patterns in the resolution which is three

68

levels higher, and so on. For each frequent pattern found in the resolution i, we insert it
to the corresponding closed pattern pool CP; if it is closed. As a result, we obtain all
closed patterns in different resolutions. Finally, for each closed pattern found, we check
if it can be merged by the other patterns and find all representative patterns in different

resol utions.

5.9 An example

In this section, let us demonstrate how the CNP algorithm works. Consider a
time-series database containing two multi-sequences as shown in Fig. 5.1, where each
sequence is transformed into a new sequence in the low resolution by the Haar wavelet

transform. We obtain a transformed database that contains two transactions; S =
02 03 12 03 08 09! 14
and S =

06 -09 -03 08 0809 —04
{1.7 03 05 13 04 .09 0.9}

v Assume that d = 2 and £ = 0.2. We first
02 07 -10 -05 06 08 10|

generate frequent 1-patterns fromithe transformed ‘database and store them at the first
level of the tree as illustrated in Fig. 5.4..Meanwhile, a projected database is built for
each frequent 1-pattern found and similar. frequent 1-patterns are merged together.

Next, we extend each frequent 1-pattern by a DFS manner. Consider the first
0.2 . : - 0.3 0.3 04

frequent 1-pattern p = with its merge list containing) , and .
0.6 0.7 0.8 0.6

Since p passes the pre-pruning strategy and there exists an adjacent frequent 1-pattern g
1.2
= { 0 3} occurred right after p, we extend p by appending g to itstail and thus form a

02 1
candidate 2-pattern p’'= {O 6 -0 3}. Moreover, no pattern at the first level of the tree

can be pruned by p because p passes the post-pruning strategy. The projected database
of p’ can be derived from its parent p by extending all projections in the p’'s projected
database and check whether the newly extended projections are similar to p’. As aresult,

p’ isafrequent 2-pattern. Besides, we extend the patterns which are merged by p to find

69

candidate 2-patterns that are potentially to be merged by p'. In this case, we find three

erdidete oetterns. m = |03 13 _[o3 09 _ _[04 09
P M™M= 07 o5 Jos 09 ™7 Jos 10[’

all of them are frequent. As m; and p’ have the same projected database, my is merged
by p’. On the other hand, both patterns m, and mz no longer share the same projected
database with p’. Hence, they independently form new nodes at the second level of the
tree. As m, and mg share the same projected database, mg is merged by n,.

To further extend pattern p’ to frequent 3-patterns, we perform the CNP-Growth

02 12 08) .
}.leewlse,

rocedure. Conseguently, we obtain a frequent 3-pattern
P . y ™ P {0.6 -03 08

we can extend other frequent 1-patterns to find its super-patterns. For each frequent
k-pattern found, we use the aready mined. patterns in CP. to check whether the pattern

is closed, where CP is a closed pattern pool in the low resolution. Fi naly, we find two
02 12 0.8}

closed patterns in the low sresolution, ™ including
\ 06 -03 08

} , and we store them in CP”

03 03 09
-09 0.8 09

Upon getting a frequent k-pattern’ p.ih.the low resolution, we restore it to find
frequent patterns in the high resolution: Recall that @ pattern in the low resolution can be

restored to find candidate 2k-pattern and (2k+1)-pattern in the high resolution. Consider

02 12 08 .
}, when we refer back to the origina

the freguent 3-pattern p =
™ P P {0.6 -0.3 0.8

. . _ 0.2 _ . -06 10
database, we find that the first s-point of p isrecomposed into ,
0.6 44 -32

: 1.2 . -04 28 . . 0.8
the second s-point { 03} of pinto { },and the third s-point {O 8} of p

14 -20

36 -20
-06 10 -04 28 -22 38
44 -32 14 -20 36 -20

-06 10 -04 28 -22 38 -20] . . :
in the high resolution. To
44 -32 14 -20 36 -20 38

-22 38
into { } Therefore, p is restored to a candidate 6-pattern, c;

} and a candidate 7-pattern, c;

70

determine the supports of ¢; and c,, we restore all projections contained in p’s projected
database and find that the supports of ¢; and ¢, are all equal to 2. Thus, both ¢; and c;
are frequent. However, since c; is contained by c,, ¢; is not closed. Likewise, we restore
each freguent pattern found in the low resolution to find frequent patterns in the high
resolution. Furthermore, we check whether a restored frequent pattern is closed by
comparing it with the already mined patternsin CPy, where CPy is a closed pattern pool
in the high resolution. A complete set of closed patterns mined in the high resolution is
shownin Fig. 5.8.

Level 0
Level 1
06 10] - /{28 -20] > /710 —04 ® 22 38 @ 38 -20| % /]-04 28 @
{44 73.2} 2,,»’ ‘x\{fz_z 3.4}'2} | { 32 14}'2 ! {36 20} 2 { 20 38} {14 -20/%) Level2
] -] =T e Y r =) -
® @ @--- Nl ®f & | ©
/[-06 10 -04) N /(28 -20 38 J1o -04 28 X 2‘-38 20 04 28 -22) N
‘={44 -32 14} 2 {22 34 13}2 324 %0}12 820 38}2 {14 -20 3.6}'2" Level 3
" i B eSS et
¥, \‘\ 2l Voo - L ®
/-06 10 04 28]] 28 20 38 =20 ,2 lp foa 28 522 | { 04 28 -22 38}. 2 Level 4
\ |44 -32 14 20"/ |-22 34 -18 38 (=30t sl S 14 -20 36 -20" 7/
Hé 10 -04 28 22 /’fi’é’:iii 28 -22.38] &ng Wz"zﬁgéwiam
2 { 2 i Level 5
1442214 20 36 7 Va2 14 —20 36 20" 114 —20 36 -20 a8
/fas 157Wii;zé'Wzﬁzﬁgéwx*\; Eﬁmﬁiﬁi; i’éma'éwzramz Level 6
|44 32 14 20 36 20" |32 14 -20 36 20 38 eve
-06 10 04 28 —22 38 20 Level 7
44 -32 14 —20 36 -20 38/ eve

Merge lists

® {fﬂ © {7[;2} O, H-l;z 71022} ‘ @ ‘ {2280 3262 3280} ‘ @ szso 3262 3280 SZSOH 1022 2282 3240 3].88 3280

@ {ffo} 0] @ H 24O 3188 ‘ @ ‘ {1.322 1022 2282 ‘ @ ‘ {1322 1(.J22 72;2 3?40} @ ‘ 4056 L3,22 7322 ,2;2 73240 fg}
@ @ {_3-280} @ {3188 3280} ‘ {3240 3183 3230 ‘ ‘ { 1022 2282 732‘;0 SfSH ‘ 1322 10; 2282 732;10 3i88 73280
® ® ‘ {74056 ,l:_zH @ ‘ J1022 2282 ‘ @ ‘ {1022 2282 324Ol @ HAOGB 1322 1022 z282 3240} ‘ 4066 1322 1022 Z282 3240 3;_88 3280
oEeBaeEedeirdoEeaey

Fig. 5.8. Frequent patterns mined in the high resolution.

71

Chapter 6 Performance Evaluation

In this chapter, we conduct experiments on both synthetic and real data to assess the
efficiency of the proposed CMP, CFP, and CNP agorithms. The experiments are
performed in the different environments with respect to each algorithm aslisted in Table

6.1.

Table 6.1. Environment settings for the proposed algorithms.

Algorithm Platform Programming L anguage

IBM compatible PC with Intel Core 2
Duo CPU 1.86GHz, 2GB main memory, _)
CMP _ _ Microsoft Visual C++ 6.0
running on MS Windows XP

Professional .

IBM compatible ' PC with-Intel Core 2
Quad CPU 2.4GHz,2GB main memory,
running on MS [Windows XP
Professional. o

CFP & CNP Microsoft Visual C++ 2005

=

6.1 Synthetic data :

We use a similar approach suggested by Srikant and Agrawal [53] to generate the
synthetic datasets. First, we generate potential frequent patterns and use them to
construct transactions in the database. Besides the potential frequent patterns, we insert
the items (either symbols for the CMP and CFP algorithms or numerical values for the
CNP agorithm) into the sequence following an exponentia distribution with mean
equal to 1.

We conduct several experiments under various parameter settings. For each
experiment, we vary one parameter and set other parameters to their default values. The
default values for these parameters used in the proposed CMP, CFP, and CNP
algorithms are listed in Tables 6.2-6.4, respectively. Note that the support of a pattern is

defined as the fraction of transactions containing the pattern in the database in the

72

experimental section.

Table 6.2. Parameters used in the CMP algorithm.

Parameter Description Default value
T| Number of transactionsin the database 10,000
L Length of transactions 10
P Number of potential frequent patterns in the database 800
A Average length of potential frequent patterns in the database 6
S Number of sequencesin atransaction 2
Sym Number of symbolsin a sequence 5
0 Minimum support threshold 2%
T Maximum gap between any two symbols 2
Table 6.3. Parameters used |n the CEP algorithm.
Parameter Description Default value
|| Number of transactionsin 't'he":gatéb"ase 10,000
L Length of transactions, | e 8
P Number of potential frequent plia'ttern's in the database 800
A Average length of potentiél frequenﬁ patternsin the database 6
Sym Number of symbolsinasequence™ - 5
o Minimum support threshold 6%
T M aximum gap between any two symbols 3
Table 6.4. Parameters used in the CNP algorithm.
Parameter Description Default value
IT| Number of transactionsin the database 50,000
L Length of transactions 16
P Number of potential frequent patterns in the database 1000
A Average length of potential frequent patterns in the database 10
S Number of sequencesin atransaction 2
0 Minimum support threshold 0.05%
£ Distance threshold 0.01
y Number of resolutions 2

73

6.2 Performance evaluation of the CMP algorithm

We compare the CMP agorithm with the modified Apriori and BIDE algorithms.
The modified Apriori agorithm generates the frequent patterns level by level. At each
level, it combines two frequent k-patterns to generate a candidate (k+1)-pattern. For
each candidate (k+1)-pattern, the database is scanned to count its support and check if it
is frequent. The process is continued until no more frequent patterns can be generated.
The modified Apriori algorithm uses only the anti-monotone property to prune the
unnecessary candidates.

Since the BIDE algorithm is originally designed to analyze datasets that contain
only a single sequence in each transaction, a multi-sequence time-series database is
transformed into a single sequence time-series database by composing multiple
sequences in a transaction into one sequence: That IS, for each transaction that contains
multiple sequences, we append these sequences one by, one to form a new transaction.

.) ab c c d| .
For example, a transaction that contaifis:two sequences { } is
=l y 'y Xy z

transformed into a single sequence| {a b ele.dy y xy z}. After the
modified BIDE a gorithm mines all the closed; patterns in a single-sequence format, the
mined patterns may be transformed into a multi-sequence format. For example, the

patens {a b _ _ _ y ylad fa _ ¢ y _ X} mined by the

a b a c
modified BIDE algorithm, may be transformed into {y y}’ and {y B x}’

respectively. To compare the modified Apriori, the modified BIDE and the CMP
algorithms, we first mine all closed patterns and then generate a complete set of

frequent patterns from the closed patterns mined.
6.2.1 Evaluations on synthetic data
Fig. 6.1 shows the runtime versus the minimum support threshold, where the

minimum support threshold varies from 0.01% to 5%. The CMP algorithm runs about

74

33-350 times faster than the modified Apriori algorithm and runs about 14-43 times
faster than the modified BIDE agorithm. The CMP agorithm outperforms the modified
Apriori algorithm because the latter generates a huge number of candidates, especially
when the minimum support threshold is low. By using the projected database, the CMP
algorithm requires only one database scan and can localize support counting, candidate
pruning, and closure checking in the projected database. It also adopts the closure
checking and pruning strategies to accelerate the mining process and to avoid generating
many unnecessary candidates. Even though the modified BIDE algorithm avoids
candidate generation and uses similar pruning strategies as the CMP algorithm, the
length of a transaction in the modified BIDE algorithm is longer than that in the CMP
algorithm. Thus, the modified BIDE agorithm spends more execution time than the
CMP agorithm. Therefore, the CMP dgorithm oﬁtperf_orms the modified Apriori and
BIDE algorithms. 5

o

| -\. ."r 1
| =)
. | Tes |
| ——Apriori —#—-CMP BIDE ——Apriori —=CMP BIDE
100000 100000
10000 10000 —r "
1000 p 1000
= =
o 100 o 100
£ E
€ 10 | € 10
> >
& &
1 L L L L L L : 1 T T T T T T
0.010.05 0.1 05 1 2 3 4 5 10 20 30 40 50 60 70
Minimum support (%) Number of transactions (K)

Fig. 6.1. Runtime versus minimum support
(CMP).

Fig. 6.2. Runtime versus number of
transactions (CMP).

Fig. 6.2 shows the runtime versus the number of transactions in the database, where
the number of transactions varies from 10,000 to 70,000, and the minimum support

threshold is equal to 2%. The runtime of all three algorithms increases aimost linearly as

75

the number of transactions increases; however, the CMP agorithm runs about 63 times
faster than the modified Apriori algorithm and about 12 times faster than the modified
BIDE algorithm.

Fig. 6.3 depicts the runtime versus the length of a transaction where the length of a
transaction varies from 8 to 20. As the length of a transaction increases, the number of
closed patterns increases. Therefore, the runtime of al three algorithms increases.
However, the CMP algorithm is about 54-85 times faster than the modified Apriori
algorithm and about 6-270 times faster than the modified BIDE algorithm. Moreover,
we notice that the runtime of the modified BIDE algorithm rises sharply as the
transaction length increases. This is because the length of each transaction is doubled as
we append multiple sequences to form a single sequence, and mining such long single
sequences costs more time. The_\modﬁied"'-BlD'E algorithm runs slower than the

modified Apriori algorithm when the Lgngth 9{ transactions is greater than or equal to
. { -\ '\._ L

16. 82—l
& - = | |I
|| L | i _
== Apriori =i=CMP BIDE === Apriori =i=CMP BIDE
100000 10000 - —
10000 / 1000 4/
_ 1000 4 -
= <100 |
£ 100 2 P R —
£ €
10
g 1f 2
1 1 1 1 1 1 1 1 1 1 1 1

8 10 12 14 16 18 20 0 1 2 3 4 5
Transaction length Max gap

Fig. 6.3. Runtime versus transaction length ~ Fig. 6.4. Runtime versus maximum gap
(CMP). (CMP).

Next, we show the impact of the maximum number of gaps on the performance of

al three algorithms in Fig. 6.4. As the maximum number of gaps increases, more

76

candidates or patterns are generated. Thus, the runtime of all three algorithms increases.
We observe that the runtime of the CMP agorithm increases slowly as the maximum
number of gaps increases. The CMP agorithm is about 45-140 times faster than the
modified Apriori agorithm and about 2-27 times faster than the modified BIDE
algorithm.

Fig. 6.5 shows the runtime versus the number of sequences in a transaction. As the
number of sequences in a transaction increases, the runtime of all three algorithms
increases. When the number of sequences in a transaction increases, it takes much more
time to check whether the candidate patterns are frequent for the modified Apriori
algorithm. When the number of sequences in a transaction is more than five, the
modified Apriori algorithm cannot find. the complete set of frequent patterns in a
reasonable time. As well, the mogjified"-BIDE aigorithm cannot mine patterns in a
reasonable time. Since multiple, sequences ae appended together to form a single
sequence, the length of the smgle sequTcgptmed Isfivetimes as long as the length of
the transaction with multiple- sequ}ehcé The modrfled BIDE algorithm cannot
efficiently mine closed patterns m the databaee Wth such long sequences. However, the

CMP agorithm can efficiently perform the mini ng task in such databases.

== Apriori =i=CMP BIDE == Apriori =i=CMP BIDE
/ 10000
10000 |- > ¢ ¢ ¢ -
1000 |
4/
= =
£ 100 | =
S c
2 3 10 +
1 , \ . 1 1 1 1 1
) 3 4 5 6 3 4 5 6 7 8
Number of sequences Number of symbols
Fig. 6.5. Runtime versus number of Fig. 6.6. Runtime versus number of symbols
sequences (CMP). (CMP).

Fig. 6.6 shows the runtime versus the number of symbols in a sequence where the
number of symbols varies from 3 to 8. Note that when the number of symbols in a
sequence increases, more frequent 1-patterns may be mined from the database. Recall
that the frequent super-pattern is generated by concatenating the k-pattern, gaps, and one
of the frequent 1-patterns in the projected database. As the number of frequent
1-patterns increases, the CMP and the modified BIDE agorithms need to check more
concatenated patterns. The runtime of the modified Apriori algorithm also increases as
the number of symbols increases. The reason is that more candidates are generated as
the number of symbols increases, and hence the algorithm spends more effort on pattern
concatenation and support counting. Therefore, all three methods appear to spend more
time in the mining process. However, the. CMP algorithm still outperforms the other
algorithmsin al cases. : '

In summary, since the CMP algorithm employs-the projected database, closure
checking, and pruning strategies to mi'rj_apﬁ_',_c_:!owd patterns, it is more efficient and
scalable than the modified Apriori and BI-E)_E algorithms in all cases, especialy when
the minimum support threshold.is'|ow' or.the number of sequences in a transaction is
large. The advantage of using the brojected database is that the CMP algorithm can
localize support counting, candidate pruning, and closure checking to speed up the
mining process. Moreover, the CMP algorithm adopts the closure checking and pruning
strategies to avoid generating many unnecessary candidates. Therefore, the
experimental results show that the CMP algorithm outperforms the modified Apriori
algorithm by one or two orders of magnitude. Compared with the modified BIDE
algorithm, the CMP algorithm achieves better performance in al cases. Although the
modified BIDE algorithm and the CMP agorithm both employ projected databases and
Similar pruning strategies to mine closed patterns, the transactions used in the modified
BIDE agorithm is 2-6 times longer than those in the CMP algorithm. Thus, the CMP
algorithm is more efficient and scalable than the modified BIDE algorithm.

78

6.2.2 Evaluationson real data

In this sub-section, we compare the CMP, and the modified Apriori and BIDE
algorithms using two rea datasets: weather and stock. The weather dataset is retrieved
from the Data Bank for Atmospheric Research (DBAR) and the period of the dataset is
from January 2003 to December 2007 with a total of 1825 transactions [16]. Each
transaction in the database includes two sequences: temperature and relative humidity in
a day. These measurements are taken at the weather station in Taipel. Both sequences
are recorded hourly. In the experiment, we aim to examine the influence of temperature
and relative humidity on cloud formation. Hence, we select dates with average
cloudiness greater than six on a decimal scale where a value of six refers to mostly
cloudy [7]. As aresult, 1348 days are selected. Therefore, the database contains 1348
transactions, and the length of each transaetion is24.

Next, we transform each sequence in a transaction into a symbolic sequence in the
weather dataset. The first sequence ih"?;g___t_ransaction represents temperature and it
includes five different symbols-Li, MLj, M1 MHi, @and Hz from low to high, where the
symbols L3, MLy, M3, MH31, and-H; represent.low, medium low, medium, medium high,
and high temperature, respectively. .The second, sequence in a transaction represents
relative humidity, and also uses five different symbols L,, ML, My, MH,, and H, from
low to high humidity.

The stock dataset is collected from the Taiwan Stock Exchange Corporation (TSEC)
[57] from January 2000 to December 2007. Seven stock indexes are chosen, including
Nasdag Composite Index (1XIC), Dow Jones Industrial average (DJI), Tokyo Nikkei
225 Price Index (NK-225), Korea Composite Stock Price Index (KOSPI), Hong Kong
Hang Seng Index (HSI), Singapore Straits Times Index (ST1), and Taiwan Stock Index
(TAIEX). Each of these stock market movements is represented by one of the sequences
in a transaction. Each sequence in a transaction represents the movements of the stock

market in a month. In this experiment, we aim to examine if Asia stock market islikely

79

to be affected by U.S. stock market. That is, we doubt whether there exists a pattern that
contains all seven stock indexes (multiple sequences) moving in the same direction.
Therefore, the database contains 96 transactions (96 months), where each transaction
includes seven sequences and the length of each transaction is about 20. Then, each
sequence is transformed into a symbolic sequence. The movements of a stock market
are classified into three levels: rising, falling, and constant. That is, each sequence is
formed by three symbols: R (rising), F; (faling), and C; (constant), where i is the

sequence ID in atransaction, 1<i <7.

== Apriori =li=CMP BIDE == Apriori =i=CMP BIDE
100000 100000
10000 F 10000
) ;
= 1000 F = 1000
<))
€ 100 | | & 100
b= =
< e <
g 10 f = g 10
1 1 1 1 1 1 1 1
4 6 8 10 12 14 16 18 20 10 12 14 16 18 20
Minimum support (%) Minimum support (%)
(@ : (b)

Fig. 6.7. Runtime versus minimum support: (a) weather and (b) stock.

The performance of the three algorithms using the real datasets is quite similar to
that found using the synthetic data. Fig. 6.7 illustrates the runtime versus the minimum
support threshold for the weather and stock datasets. In the modified BIDE algorithm, a
new transaction is formed by appending the second sequence to the first sequence. The
length of a transaction is 48 in the weather dataset and about 140 in the stock dataset.
Since the modified BIDE algorithm cannot efficiently mine frequent closed patterns in
long transactions, it runs slower than the CMP and the modified Apriori algorithms. The

CMP agorithm outperforms the modified Apriori algorithm because the latter generates

80

alarge number of candidates, especially when the minimum support threshold islow. In

addition, the CMP agorithm adopts closure checking and pruning strategies to

accelerate the mining process and avoid generating many unnecessary candidates.

Therefore, it outperforms the modified Apriori and BIDE algorithms.

\ |l.-'-\
Fig. 6.8. Runtime versus maxil |
g e rxgﬂ)

2

éap: (& weather and (b) stock.

== Apriori =i=CMP BIDE == Apriori =li=CMP BIDE
10000 | 1000
1000 F
100
) = .
g 100 ¢ _ o ® o o > ® v
£ —" £
S 10 S
(5 [~
1 O] —i | 1 1 1 1 1
0 1 2 3 4 5 1 2 3 4
Max gap Max gap
@ A0 (b)

Fig. 6.8 presents the runti mé've{_s,Js the mau‘l mum number of gaps for the weather

and stock datasets. As the maximum r’ium‘ber of ‘gaps increases, more candidates or

patterns are generated and therefore the runtime of all three algorithms increases. Since

the runtime of the CMP algorithm increases slowly as the maximum number of gaps

increases, the CM P agorithm outperforms the modified Apriori and BIDE agorithms.

In Fig. 6.9, we demonstrate how the SAX representation may affect the

performance on the real datasets. We apply the CMP algorithm to the weather and stock

datasets with a different number of symbols, where the minimum support threshold is

10% in the weather dataset and 30% in the stock dataset. In both real datasets, the

number of closed patterns decreases as the number of symbols increases. When the

number of symbols increases, the runtime decreases for the weather dataset; however, it

increases for the stock dataset.

8l

=¢=Runtime (s) =@=Number of patterns | | =¢=Runtime (s) =#=Number of patterns

60 25000 7 2500
p »
50 20000 £ 6 - 2000 £
(] 5 3
- 15000 8 | | £, ¢ 1500 g
g L] L
E 30 © £ 5 ©
= 10000 = [| &3 | 1000 %
S 20 e S, | e
* so00 5| % 500 5
10 2 1+ z

0 0 0 0
3 4 5 6 7 3 4 5 6 7
Number of symbols Number of symbols
@ (b)

Fig. 6.9. Runtime and number of closed patterns versus number of symbols: (a) weather and

(b) stock.

We perceive that the trend of runtime obtai ned_ for the weather dataset is different
from what we have observed from \the Synthei qc'd.é'\ta‘in. which the runtime of the CMP
algorithm increases as the nurﬁbér of fsy-@d[émcreases In the weather dataset, both
temperature and relative humidity artlé |re§;r.getlll !Ihourly__- and the hourly fluctuations of
these variables are small for -rho_stl days lem"ug3 fnany values in a sequence are
transformed into the same symboi Ein the: SAX ~representation. As more equivaent
symbols are contained in the dataset, more closed patterns but fewer frequent 1-patterns
may be mined. In other words, discretizing by three symbols or more symbols does not
make a big difference on the number of frequent 1-patterns generated. Thus, the runtime
of the CMP agorithm depends on the number of closed patterns mined from the dataset.
With smaller number of symbols, more closed patterns can be mined, and hence the
CMP algorithm requires more time in the mining process.

In comparison with the weather data, the movements of stock market indexes are
collected on a daily basis and have larger fluctuations. Hence, fewer closed patterns but
more frequent 1-patterns are generated in the stock dataset. As more frequent 1-patterns

are generated, the number of combinations of forming candidate patterns from a

frequent pattern increases. This leads to more computational effort to check whether

82

these candidate patterns are frequent and closed. Notice that the runtime in the case of
three symbols is dlightly greater than that in the cases of four and five symbols. In the
case of three symbols, the effort on generating closed patterns dominates the total
runtime. As the number of symbols increases, fewer closed patterns may be mined and
the effort that dominates total runtime would shift to forming candidate patterns and
checking if the candidates formed are frequent and closed. However, in the cases of four
and five symbols, the effort on forming candidate patterns and checking is not yet
apparent since the number of symbols only increases a little and the effort on generating
closed patterns decreases because fewer closed patterns can be found. Hence, the
runtime in the cases of four and five symbols may be less than in the case of three
symbols. As the effort on forming candidate patterns becomes apparent in the case of
six and seven symbols, the perfermance would be worse in comparison to the case of
three symbols. Therefore, as the:number of symbolsiinereases, the runtime decreases for
the weather dataset; however, it increase's'ffgi_,_(_t_he stock dataset.

Mining the weather dataset, Some-'_ﬂiinteresti ng . patterns are found, such as

MH, MH, MH, MH, MH].
H2 H2 H2 H2 H2 .

and

{MHl MH, MH, MH, MH, _ H, H,

. The patterns show that when
H, H, H, H, H, H, MH, MH,

the temperature and the relative humidity are medium high or greater, it is likely to be
day with high cloudiness.

In Figs. 6.10 - 6.12, we project the patterns back to the original data. Fig. 6.10
shows a continuous period of high (or medium high) temperature and high (or medium
high) relative humidity from the 1¥ to the 10" hours, and demonstrates that warm and
moist air produces clouds during this period. However, when the relative humidity starts
to drop in the 11" hour and remains at alower level afterward, the cloudiness also drops

dramatically despite the temperature remaining at the high level.

83

———-Temperature =~ ------oo- Cloudiness Relative humidity

36 90

34 B T S~ 85
H, i _

L +MH, |-

® 32 " 10 \\\‘ 4 31\1_ _H:[_ _ 80 6
B30 88ty e G 75 E
E) = 1 o N =
S8 | Set+ LM) ML 170 2
2 O <
26 | 4 T L 65 2

24 2 T) 60

22 - 55

20 1 1 | | | 1 | | 1 | | 50

1 3 5 7 9 11 13 15 17 19 21 23 25
Hours

Fig. 6.10. Example |: projecting the pattern back to the raw time-series sequence.

———-Temperature =~ -------e- Cloudiness Relative humidity

36 95

34 B T PN H2 | 90

32 + 10 + 2
g %) | =2
23 8s4 =
5 £
S22 367t _ MH, 80 2
) IS L T e e e e e — —— — — <
Sl a4t T S

i 75 o

24 2 T

» | 1 1 70

20 1 I 1 I 1 I 1 1 I 1 1 65

1 3 5 7 9 11 13 15 17 19 21 23 25
Hours

Fig. 6.11. Example I1: projecting the pattern back to the raw time-series sequence.

In Fig. 6.11, the temperature remains at the medium high level and the relative
humidity remains at the high level, and hence high cloudiness can be observed through
the day. In Fig. 6.12, it is mostly cloudy in the early morning when the temperature and
relative humidity are high (or medium high) through the first eight hours. However, the
relative humidity decreasesto alower level from late morning to the afternoon while the

temperature remains at a high level. Hence, a trend in decreasing cloudiness may be

observed during this period. Nevertheless, from the 20" to the 24™ hour, the cloudiness
starts to increase as the relative humidity starts to increase and the temperature remains

at amedium high level.

— — — Temperature - Cloudiness Relative humidity

36 95

40 H, 1 9

32 r 10 T o =
(5] =]
33 F g8 — 85 £
= £ >~ =
228 36 ; N 18 2
5 ° \ MH, £
= 26 | 4 M, | | 5 2

24 2

2 | 1 70

20 : 65

1 3 5 7 9 11 13 15 17 19 21 23 25
Hours

Fig. 6.12. Example I11: proj ecti ng th’efpatter’lj‘back to the raw time-series sequence.
[: :(| 1

4 | m |
In summary, the CMP algorithm lIL more etffipient and scalable than the modified

¥

Apriori and BIDE algorithms. It requires much less execution time, especialy when the
minimum support threshold is low. This is because the CMP agorithm employs the
projected database, closure checking and pruning strategies to mine closed patterns to
avoid generating many unnecessary candidates. Therefore, the experimental results

show that the CM P algorithm outperforms the modified Apriori and BIDE agorithms.

6.3 Performance evaluation of the CFP algorithm

To evaluate the performance of the CFP algorithm, we compare it with the
modified Apriori agorithm. For the comparison reason, we adapt the Apriori algorithm
[53] to mine closed flexible patterns in a time-series database. That is, we dlightly
modify the join step of the Apriori algorithm. Instead of combining two frequent

k-patterns as described in [53], we join these patterns with all possible combinations of

85

gap intervals to generate candidate (k+1)-patterns. Then, we scan the database once to
count the support of each candidate (k+1)-pattern and check if it is frequent. The steps
described above are repeated until no more frequent patterns can be found. To compare
with the modified Apriori agorithm, we derive a complete set of frequent patterns from

the closed flexible patterns found in the CFP algorithm.

6.3.1 Evaluations on synthetic data

In Fig. 6.13, we investigate the effect of varying minimum support thresholds from
2% to 12% on the runtime of the CFP and the modified Apriori algorithms. The result
shows that as the minimum support threshold decreases, the runtime of both algorithms
increases sharply. This is because more patterns can be mined with a smaller minimum
support threshold. However, compared with the modified Apriori algorithm, the CFP
algorithm has a significant performance improvement; especially when the minimum
support threshold is low. Thisis due to 'th@penefits of using projected databases so that
the CFP agorithm can localize-the patterﬁ,extension in a small number of projected
databases. Moreover, using two pruning.strategies and the closure checking scheme, we
can eliminate many unnecessary pattérns which result in a major reduction in execution
time. In contrast, the modified Apriori algorithm bears more computational costs
because it generates a large number of candidates and needs multiple scans of the
database. Therefore, the CFP algorithm runs about 5-19 times faster than the modified
Apriori agorithm.

Generally speaking, increasing the number of transactions may lead to a larger
number of frequent patterns being generated. As shown in Fig. 6.14, the runtime of both

algorithms increases linearly as the number of transactions increases.

86

== Apriori ~i—CFP

14000
12000
10000
8000
6000
4000
2000

Runtime (s)

2 4 6 8 10 12

Minimum support (%)

—&—CFP

== Apriori

Runtime (s)

10 20 30 40 50 60 70 80 90 100
Number of transactions (K)

Fig. 6.13. Runtime versus minimum support

Fig. 6.14. Runtime versus number of
transactions (CFP).

== Apriori =-CFP

10

6 7 8 9
Transaction length

== Apriori =i—CFP

1400
e 1200
1000
800
600
400
200

Runtime (s)

0 1 2 3 4 5
Max gap

Fig. 6.15. Runtime versus transaction length
(CFP).

Fig. 6.16. Runtime versus maximum gap
(CFP).

Fig. 6.15 illustrates the runtime versus the transaction length for both algorithms,

where the transaction length varies from 6 to 10. As the transaction length increases, the

runtime of both algorithms increases. The reason is that longer flexible patterns may be

discovered from longer transactions and thus require more effort on the join steps and

counting supports. Nevertheless, the CFP agorithm outperforms the modified Apriori

algorithmin all cases.

In Fig. 6.16, we evaluate the performance on the CFP and the modified Apriori

87

algorithms with different maximum gap thresholds. We observe that when the maximum
gap threshold increases, the runtime of both agorithms increases. As the maximum gap
threshold increases, the number of possible combinations of gap intervals between two
successive items in a pattern also increases. This results in more frequent patterns at
each level, and hence more execution time is required. However, the modified Apriori
algorithm spends a lot of time on generating a large number of candidates and scanning
the database to count their supports. In contrast, the CFP algorithm employs the concept
of projected database and saves a lot of time on support counting. Therefore, the CFP

algorithm is more efficient and scalable than the modified Apriori algorithm.

== Apriori ~i—CFP
1200

1000
800
600

Runtime (s)

400

200

3 4 5 6 7
Number of symbols

Fig. 6.17. Runtime versus number of symbols (CFP).

We further examine the effect of the number of distinct symbols on the
performance of both algorithms. As shown in Fig. 6.17, both curves slope downward as
the number of distinct symbols increases from 3 to 7. This is because larger number of
distinct symbols may reduce the chances of forming frequent patterns. Nevertheless, the
CFP agorithm results in better performance than the modified Apriori agorithm.

In summary, since the CFP agorithm employs the projected database, two pruning
strategies, and the closure checking scheme to mine closed flexible patterns in a DFS

manner, it is more efficient and scalable than the modified Apriori algorithm in all cases,

88

especialy when the minimum support threshold is low or the average length of
transactions is large. The experimental results show that the CFP algorithm outperforms

the modified Apriori algorithm by an order of magnitude.

6.3.2 Evaluationson real data

To validate the CFP agorithm on the real dataset, we perform experiments on the
house price index (HPI) data of the United States. The real dataset is retrieved from
Standard & Poor’s official website [55] and it covers the time period from July 2005 to
December 2007. This period could be characterized as a turning point in U.S. economy,
generally attributed to the strong housing demand in 2005 and the subprime mortgage
crisisin 2007.

The real data consists of home price indices of 20 metropolitan regions in the
United States, including Boston, New York, Washington, Charlotte, Atlanta, Tampa,
Miami, Detroit, Cleveland, Chicago, Mirirfa_@pplis, Dallas, Denver, Phoenix, Las Vegas,
Seattle, Portland, San Francisco; Los Angéf?as, and San Diego. Moreover, it is recorded
on a monthly basis. Hence, we have 20 transactions in the database and each of which
contains 30 elements. That is, there Iare 30 months over the period from July 2005 to
December 2007. Each element in the transaction is transformed into one of the distinct
symbols HP, LP, FT, LN, and HN in the transformation phase where these symbols
denote high positive, low positive, flat, low negative, and high negative rate of change
in home-price appreciation, respectively.

Fig. 6.18 shows the runtime versus the minimum support threshold which varies
from 20% to 70%. The runtime of the modified Apriori algorithm grows sharply as the
minimum support threshold decreases since it requires a magjor effort to generate a huge
number of candidates and scan databases multiple times. In contrast, the runtime of the

CFP agorithm increases moderately even when the minimum support threshold is low.

89

== Apriori == CFP == Apriori ~ii—CFP
10000
1000 100
D 0D
100 - o 10
[}
E £
=]
c 10 € 1
= 2
1 0.1
0.1 0.01
20 30 40 50 60 70 0 1 2 3 4
Minimum support (%) Max gap

Fig. 6.18. Runtime versus minimum support Fig. 6.19. Runtime versus maximum gap for
for HPI data. HPI data.

Fig. 6.19 depicts the result of mining real da'ga with respect to different values of
maximum gaps, where the minimum si;lpl).'port.".fh_re_;shold is set to 90%. The runtime of
both algorithms rises slowly withilew mazgmqmgap thresholds because there are only a
limited number of patterns. Howeve, |as;hg yalue of - maximum gaps increases, the
performance differences between the delﬁed Aprlor_l algorithm and the CFP algorithm
become noticeable. : l' 1-':; |

Mining the real dataset, we could findxsome Interesting patterns and project these
patterns back to the original datain order to show the trend in a certain time period. For
instance, one of the patterns is {LN LN HN HN HN} as shown in Fig. 6.20. The
pattern implies a continuing downward trend in the rate of house price in the wake of
the subprime mortgage crisis in 2007. We obtain this pattern on West Coast cities like
Las Vegas, Phoenix, Los Angeles, and San Diego and this denotes that these cities all
have the same movement in house prices as the subprime mortgage crisis breaks out.
The movement demonstrates that the home price starts to falter in spring 2007 and
continue to have a higher negative rating in summer and winter 2007. Moreover, Las

Vegas has the pattern begins in February 2007 but it is at a lag of three months for

Phoenix. Los Angeles and San Diego have the pattern appeared at the same time in June

90

2007 that is a month later than Phoenix. In other words, we observe an earlier fall in
house prices affected by the subprime mortgage crisis in Las Vegas and Phoenix than

other West Coast cities.

West

—+— LasVegas —=8— Phoenix —— Los Angeles —— San Diego

0.00

LN

-050
HN

-1.00

-150

HPI rate of change

-200

-250

-3.00
Feb. 2007 Mar Apr May Jun Jul Aug Sep Oct. 2007

Month

Fig. 6.20. HP! rate of change for West Coast cities.

Another pattern {FT LP LP LPLP FTLNLN LN LN} isfound on South cities

Atlanta and Dallas as shown in Fig. 6.21. The same trend can be seen in the rate of
house price movement between both cities. It indicates the small rise in house price
appreciation during the period from March 2006 to August 2006 before the subprime
mortgage crisis hits. However, it depicts several consecutive monthly falls in the rate of
house price starting in September 2006.

The other pattern {FT FT LN [0,1] HN [0,1] HN HN} is discovered on Midwest
cities Minneapolis, Chicago, and Cleveland as shown in Fig. 6.22. We plot the pattern
separately for these three cities in order to provide a clear view on the part of the
flexible intervals. We observe that all three cities have the same movement { FT FT LN}

from June to August and then within 0-1 gap interval, the HPI rate of change would

91

drop to high negative. Furthermore, the second gap interval [0, 1] between HN and HN

indicates that within 0-1 gap interval, there is less fluctuation in house price movement

and the change remainsin a high negative rate.

South
| —— Atlanta —=— Dallas
w
[@)]
8
ey
[&)
G
[0]
®
o
I
Mar. 2006 Apr May Jun Jul Aug Sep Oct Nov Dec. 2006
Month
Fig. 6.21. HPI rate of changefor South cities.
l.-'""-.k _l,'-“ = ;
s\l]
Midwest
—e— Minneapolis —a— Chicago —a— Cleveland
1.00 FT 100 g1 Fr 1.00 gr FT
0.00 . 0.00 SUHN HN 0.00 LN b
-100 FaHN -100 -1.00 g
-2.00 N -2.00 -2.00
'3.(1) ’L T T T T T '\\ '3.(1) ’L T T T T T '\\ '3.(D '\\ T T T T T ’L
s oL > s oL > S o B =

S728382% S7283828% S°28382%8

oy oy c

5 z 5 z 5 g

Fig. 6.22. HPI rate of change for Midwest cities.

In summary, the performance of the CFP and the modified Apriori agorithms on

the real dataset is quite similar to that on the synthetic datasets. Since the CFP algorithm

takes the advantage of two pruning strategies and the closure checking scheme to reduce

the search space and thus speed up the algorithm, it outperforms the modified Apriori

algorithm.

92

6.4 Performance evaluation of the CNP algorithm

The performance of the CNP agorithm is evaluated against the A-Close algorithm
[43]. For the comparison, the A-Close algorithm is modified appropriately to mine
frequent closed patterns in time-series databases. Specifically, we scan database once to
mine all frequent 1-patterns. Next, we join two frequent k-patterns as described in [43]
to form a candidate (k+1)-pattern. However, we need to check if this candidate pattern is
indeed avalid pattern existed in the database. This is because the candidate pattern must
be formed of a set of consecutive time points, whereas the original A-Close algorithm
does not take time into account when joining the candidate patterns. If the candidate
pattern is valid and its support is not less than ¢, it is a frequent (k+1)-pattern.
According to the pruning strategy in [43], we remove any frequent (k+1)-pattern if its
support is the same as that of its sgb—patternS- This process is repeated until no more
patterns can be generated.

To obtain all closed patterns, we c'(fa_mpute the closures of all frequent patterns
found earlier in the database.-That |is, we grow. each frequent pattern p until its
super-pattern q has a different support.ceunt from p..If such super-pattern g can be
found, we store q in the closed patterh pool; otherwise, we store p in the closed pattern
pool. Note that, before inserting a new pattern in the closed pattern pool, we use the
already mined patterns in the pool to double-check whether the new pattern is indeed

closed. Finally, we merge similar patterns together and select the representative patterns.

6.4.1 Evaluations on synthetic data

In Fig. 6.23, we report the runtime performance of the CNP and the modified
A-Close agorithms, where the minimum support threshold varies from 0.001% to 0.5%.
As observed, the CNP algorithm achieves better efficiency than the modified A-Close
algorithm, especially when the minimum support threshold drops to 0.001%; their

performances differ by a factor of about 100. This is because the modified A-Close

93

algorithm suffers from generating a huge number of candidates and computing the
closures of the frequent patterns. On the other hand, the CNP agorithm takes the
advantage of projected databases to localize the pattern extension in small projected
databases and applies both pre-pruning and post-pruning strategies to stop growing

unnecessary patterns and thus results in much better performance.

| —+—AcClose —@—CNP | ——A-Close —@—CNP

10000000 180000

1000000 160000

100000 140000

_ __ 120000

= 10000 - ——= < 100000
@ (V]

€ 1000 - £ 80000
- -

E 100 E 60000

& & 40000

10 - ; 20000

1 T T T T O T T T
0.001 0.005 0.01 0.05 0.1 0.5 20 40 60 80 100
Minimum support (%) [, Number of transactions (K)

Fig. 6.23. Runtime versus minimum 911d)p6¥jr ’:H'lg 6.24? .Runti me versus number of
(CNP). : || < transactions (CNP).
,-._I[I &

Fig. 6.24 illustrates the scalability of-thé CNPand the modified A-Close algorithms,
where the number of transactions varies from 20,000 to 100,000. The runtime of both
algorithms increases linearly as the number of transactions increases. This is because
more closed patterns can be mined with the increasing number of transactions. The
modified A-Close algorithm thus generates more candidates and requires more effort on
the join steps, support counting, and closure computation, whereas the CNP algorithm
reduces much search space to mine patterns by employing projected databases.
However, the CNP algorithm performs consistently better than the modified A-Close

algorithmin all cases.

Fig. 6.25 depicts the runtime versus the transaction length for both algorithms,

where the transaction length varies from 4 to 64. Generally, as the transaction length

94

increases, the number of closed patterns increases, and hence the runtime increases. We
see that the runtime of the modified A-Close algorithm increases faster than that of the
CNP agorithm, especially when the transaction length increases to 64. It is clear that
the modified A-Close algorithm is not effective in dealing with long transactions
because more combinations of candidate super-patterns are considered in the join step
and it needs to scan the database multiple times to count the supports. It also spends a
lot of time on the closure computation to find closed patterns. Nevertheless, the CNP
algorithm outperforms the modified A-Close algorithm significantly since it uses the
projected databases to determine the supports of the patterns and adopts two pruning

strategies to accel erate the mining process for longer transactions.

=¢=A-Close === CNP £ =¢==A-Close == CNP
1400000 90000
1200000 80000 -
1000000 I _ 70000 1
0 | & 60000 -
¥ 800000]
£ = 50000
‘g‘ 600000 £ 40000 -
3 J
& 400000 & 30000
20000 -
200000 10000 -
O 0 T T T
4 8 16 32 64 1 2 3
Transaction length Number of sequences

Fig. 6.25. Runtime versus transaction length Fig. 6.26. Runtime versus number of
(CNP). sequences (CNP).

In Fig. 6.26, we examine the relationship between the runtime and the number of
sequences in a transaction for the CNP and the modified A-Close algorithms. The
runtime of both algorithms increases as the number of sequences in a transaction
increases. This is because more computation is required to check if a par of
multi-sequences is similar. However, the CNP agorithm performs better than the

modified A-Close algorithm.

95

In Fig. 6.27, we evaluate the performance on the CNP and the modified A-Close
algorithms with different distance thresholds (&). When the distance threshold increases,
the runtime of both algorithms aso increases. This is because more closed patterns can
be generated for the larger distance threshold. However, the CNP algorithm runs about
2-17 times faster than the modified A-Close algorithm. It is due to that our pruning
strategies avoid generating unnecessary patterns and the projected databases can be used

to reduce the search space of finding smilar patterns, which speed up the mining

process.
—=o—A-Close =i—CNP =@—=CNP —=@=detached-CNP
90000 60000
80000 - > =0000
70000 - _
= 60000 - 1 & 40000
() Q
£ 0000 ¢ £ 30000
£ 40000 - AE
2 30000 /4 & 20000
20000 ~ 10000
10000
O T T T O !
0.001 0.005 0.01 0.015 0.02 1 2 3 4
£ 14
Fig. 6.27. Runtime versus distance threshold * Fig. 6.28. Runtime versus number of
(CNP). resolutions (CNP).

Fig. 6.28 demonstrates the effect of the number of resolutions () on the runtime of
the CNP and the detached-CNP a gorithms, where the detached-CNP algorithm contains
no restoring operation to restore patterns from lower resolutions to higher resolutions;
instead, it mines patterns from different resolution levels separately. As the number of
resolutions increases, the runtime of both algorithms also increases. The major cost of
the CNP algorithm is to grow closed patterns in the low resolution and restore them to
the high resolution in the mining process. The more the Haar wavelet transforms are

applied, the smoother the numerical sequences are and they have a better chance to be

96

similar. The CNP agorithm thus produces more closed patterns in the low resolution
and requires more effort on the restoring operations. On the other hand, the cost of the
detached-CNP algorithm is to mine patterns from different resolution levels. As the
level of resolution is lower, more closed patterns can be mined and more runtime is
required, whereas fewer patterns are generated with higher level of resolutions and less
runtime is required. However, the CNP agorithm outperforms the detached-CNP
algorithm by 20% on average. Notice that the runtime increases moderately when y
varies from 4 to 5. This is because fewer frequent patterns can be found in the low
resolution as the length of the transformed time-series is short. That is, when y= 4, the
length of each transformed time-series becomes 2, whereas the length of each
transformed time-series becomes 1 when ¥=.5. In both cases, the time required to find
frequent patterns in the low resolution isnot that different from each other. Therefore,
the overall runtime slightly increaseswhen yvariesfrom 4 to 5.

In summary, the experimental result"s,fgt_]qw that the CNP algorithm is scalable and
efficient on all the parameter settings. Thé_CNP algorithm spends much less runtime
because it uses projected databases to.localize the pattern extension and support
counting, and employs two pruning étrategi&s to prune the unnecessary extensions. In
contrast, the modified A-Close algorithm requires multiple scans of the database and
spends much time on computing the closures of the frequent patterns. Therefore, the

CNP agorithm significantly outperforms the modified A-Close algorithm.

6.4.2 Evaluationson real data

To further evaluate the performance of the CNP algorithm on real-world datasets,
we collect a stock dataset from Yahoo Finance [65] which provides daily closing prices
for S&P (Standard and Poor’s) 500 companies [55]. The data is collected from the
period of Jan 1¥ 2009 to July 7" 2009. There are 128 trading days in total. Moreove,

this period is characterized as the turnover point creeping up from the recession to the

97

recovery period.

Next, we apply the 50-day short-term moving average (MA50) and 200-day
long-term moving average (MA200) to the time-series sequences of each company in
the collected stock dataset. Generally, there are 500 companiesin S& P but five of them
are removed due to incomplete data. As a result, there are 495 transactions in the
database and each of which contains two sequences of length 128. Since the stock price
scale is different for each of the S& P 500 companies, we normalize the dataset by the
min-max normalization [19].

The performance of the CNP and the modified A-Close algorithms on the real dataset
Is smilar to that on the synthetic datasets. Fig. 6.29 shows the runtime versus the
minimum support threshold. For smaller minimum support thresholds, the runtime for
mining closed patterns becomes significant for both algorithms. When the minimum
support threshold is larger than;60%, the runtime.of-both algorithms remains almost
constant. This is because no pattern can-,be discovered after the minimum support
threshold exceeds 60%. Nevertheless, an éi(ception can' be noticed for the case where
the performance of the CNP algorithm_degrades. a little when the minimum support
threshold increases from 95% to 106%. This is;caused by how we generate frequent
1-patterns. Recall that we use the lower and upper bounds of the indices in an array to
find candidates that are similar to a pivot with respect to the first dimension. For each
candidate, we further check if it is similar to the pivot with respect to the second
dimension. When the minimum support threshold is 95%, most pivots are potential to
be frequent 1-patterns since there are sufficient candidates that are similar to the pivots
with respect to the first dimension. Thus, additiona runtime is required to check
whether sufficient candidates are similar to those pivots with respect to the second
dimension. On the other hand, when the minimum support threshold is 100%, most
pivots cannot find sufficient candidates with respect to the first dimension, and hence it

IS unnecessary to check the second dimension and no additional runtime is required.

98

However, the performance of the CNP agorithm is aways better than that of the
modified A-Close algorithm because the latter consumes much time in generating large

number of candidates and calculating the supports and closures of the patterns.

=4=—A-Close =i—CNP

1000000 4

100000

10000
< 1000

£
= 100 >
S
x 10

1 T T T T T T T T T T T T T T T T T T T
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Minimum support (%)

Fig. 6.29. Runtime verm%énnl md@support for S& P 500 stock.
V.. A P

% -_"'\. r__, 4 (\l -"'-, _\.:
AAWA

‘ == A-Close == CNP |
1000000 b

100000 -

—

10000 -

[any
o
o
o
&

100 4

Runtime (s

10 A

1 T T T
0.01 0.02 0.03 0.04 0.05
&

Fig. 6.30. Runtime versus distance threshold for S& P 500 stock.

Fig. 6.30 illustrates the runtime versus the distance threshold. We observe a
significant performance improvement as the distance threshold drops to 0.01. With
smaller distance threshold, more closed patterns fail to satisfy the similarity constraint

and thus fewer closed patterns can be mined from the data. However, the CNP algorithm

consistently outperforms the modified A-Close algorithm in all cases.

Mining the stock dataset, we could find some interesting patterns. For example, we
find a pattern that represents a golden cross in Fig. 6.31a, where a golden cross is a
signal of bullish markets and occurs when the line of the short-term moving average
passes through the long-term moving average from the lower side to the upper side
[12][56]. There are 26 companies in the projected database having the golden cross
pattern and they are categorized in the following sectors according to S&P official
website [55]: information technology (7), financial (5), industrials (5), materials (3),
consumer discretionary (3), healthcare (2), and consumer staples (1). Note that the

number in the bracket after a sector name denotes the number of companies found in the

sector. —
E rs
% =5 g
= S
JBL AXP
0.44 0.46
0.42 = 0.44
oa o 042 4
go : % 0.4
3038 et E 0.38
2036 N 036
3 7 3 034 -
2 034 ——MAGO) | | *|Z g3 | ——MA (50)
—=— MA (200) —=— MA (200)
0.32 — 0.3 —
3 4 5 8 9 10 11 12 15 3 4 5 8 9 10 11 12 15
Date (Jun) Date (Jun)
@ (b)
HPQ MAS
0.41 0.43
0.4 0.42
0.39 - 0.41
g 0.38 ¢ 04
£ 037 - £ a0
Z 036 - z
£ 035 &2 038 4
8 034 - 8 037 1
= 033 - ——MA(50) Z 036 - —o—MA (50)
: —=— MA (200) —=— MA (200)
0.32 — 0.35 —
15 16 17 18 19 22 23 24 25 18 19 22 23 24 25 26 29 30
Date (Jun) Date (Jun)
(© (d)

Fig. 6.31. The golden crosses of JBL, AXP, HPQ, and MAS.

100

The pattern shows a continuing upward trend in stock price in the recovery period
and implies that numerous companies gradually revive as the global economy
progressively recovers from the recession. Moreover, we clearly see that the golden
cross pattern is taken place in June. We further check the patterns in the projected
database and find that the golden crosses for those patterns shift slightly. Here we show
some of those patterns in Figs. 6.31a, 6.31b, 6.31c, and 6.31d which represent the
companies JBL, AXP, HPQ, and MAS, respectively. These shifts are caused by the
tolerance of distance threshold. Since the tolerance of distance threshold may cause a
pair of multi-sequences to be similar but a slightly different, the golden cross may occur
at a different point. In addition, we shift the patterns of these companies to the same
time interval to show that they are indeed similar to each other asillustrated in Fig. 6.32.
Moreover, we verify that each stock of these éémpanies has a positive outlook since its
golden cross occurs. Interestingly; this phenomenon has confirmed that a golden crossis
indeed a buy point for traders. Besudeﬁgbe result demonstrates that the sectors of
information technology, financial, ané Fndﬁstrlals are Ilkely to revive faster than other

Ty !|,
sectors. t .__l'

JBL-MA(50) e AXP-MA(50) ----- HPQ-MA(50) I MAS-MA(50)
——JBL-MA(200) - AXP-MA(200) ----- HPQ-MA(200) - - - - MAS-MA(200)
0.5

0.45

0.4

0.35

Moving Average

03 -

0.25 T T T T T T T

1 2 3 4 5 6 7 8 9
Date

Fig. 6.32. The golden crosses of JBL, AXP, HPQ, and MAS in the same timeinterval.

101

PBCT CEPH
0.95 0.95
0.9 0.9
& 0.85 & 0.85 -
o g
g 08 - S os
I b 1
2075 7 £ 075 7
3 3
s 07 - s 0.7 A
—o— MA (50) —o— MA (50)
0.65 - 0.65 -
—=— MA (200) —=— MA (200)
0.6 — 0.6 ——
15 16 17 20 21 22 23 24 27 28 29 30 5 6 9 10 11 12 13 16 17 18 19 20
Date (Apr) Date (Mar)
€ (b)
SHW AMGN
0.95 1
09 $ 0.95
0.9
& 085 - & 0.85
© ©
5 0.8 5 0.8
0.75
£ 075 - 5
'S S 0.7
2 07 2 oss
0.65 - —+—MA(S0) [L] 06 ——MA (50)
—=— MA (200) 0.55 —8— MA (200)
0.6 — 05 e
2930 2 3 4 5 6 9 10111213 (}, 24 252627 2 3 4 5 6 9 10 11
Date (Jan-Feb) = Date (Feb - Mar)
; ; I = | d
T :
(C) A I'.{J‘.E]:ll 5'.!. o [()
Fig. 6.33. The death crosses of PBCT, CEPH, SHW, and AMGN.
BTy N a -y .

o,
e

Another interesting pattern founzj isshown in F-ig. 6.33a. It isadeath crosswhichis
a signal of bearish markets and occurs when the line of long-term moving average
passes through the short-term moving average from the lower side to the upper side
[12][56]. The pattern reflects that there are numerous companies suffering hard times
during the recession and they have not yet recovered. The pattern can be projected onto
the companies, such as PBCT, CEPH, SHW, and AMGN as shown in Figs. 6.33a, 6.33b,
6.33c, and 6.33d, respectively. The occurrences of the death crosses for these companies
spread out from January to April. This signifies that many stocks have suffered
depreciation at different time points during the recession. These four companies can be
categorized into the sectors of financial, healthcare, and consumer discretionary.

Moreover, we shift the patterns of these companies to the same time interval to show

102

that they are indeed similar to each other asillustrated in Fig. 6.34.

——— PBCT-MA(50) ---oer CEPH-MA(50) ----- SHW-MA(50) ------- AMGN-MA(50)
—— PBCT-MA(200) -~ CEPH-MA(200) ----- SHW-MA(200) - - --- AMGN-MA(200)
1

0.95 4
0.9
0.85
0.8
0.75
0.7 -
0.65 -
0.6 -
0.55 A
0.5 T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12
Date

Fig. 6.34. The death crosses of PBCT:CEPH SHWandAM GN inthe sametimeinterval.

= o) ; N o
& h II/\I N el
. A | =

&

In summary, since the CNP aI'gQri[t nﬂﬁs he projected databases to grow patterns

Moving Average

and compute the supports, and.{_e_;ﬁpl' t\/\n/z) qupin_gf é_t'r'ategies to stop growing the
unnecessary patterns, it achieves much better performance in comparison to the

modified A-Close dgorithminall cases.

103

Chapter 7 Conclusionsand Future Work

In the dissertation, we have proposed three algorithms. The first algorithm, called
CMP, is designed to mine closed patterns from a time-series database, where each
transaction contains multiple time-series sequences. The second agorithm, called CFPR,
integrates the idea of allowing flexible gaps between itemsin a pattern and is capabl e of
discovering closed flexible patterns in a time-series database. The third algorithm,
called CNP, mines multi-resolution closed patterns directly from raw numerical data
without any transformation from numerical sequences to symbolic sequences as
performed in the CMP and CFP agorithms. It aims at providing analyzers different
views on data by various resolutions.

The CMP agorithm consists ofithree phases. First, we transform each time-series
sequence into a symbolic sequenceSecond, We scan the transformed database to find
all frequent 1-patterns, and build'a projected database for each frequent 1-pattern. Third,
we recursively use a frequent k—pattern'h'-‘_g'nd its_projected database to generate its
frequent super-patterns at the next level in'tfhe frequenf pattern tree, where k > 1. The
CMP algorithm adopts a DFS manner-and wuses the projected database to localize
support counting, candidate pruning, and closure checking. Therefore, it can efficiently
mine closed patterns. The experimental results show that the CMP agorithm
outperforms the modified Apriori and BIDE algorithms by one or two orders of
magnitude.

The CFP algorithm takes into consideration the flexible gaps between items in a
pattern to mine closed flexible patterns in a time-series database. The problem of mining
closed flexible patterns is solved by initialy transforming a time-series database into a
symbolic database, and then identifying frequent 1-patterns within the transformed
database, and recursively mining closed flexible patterns in a DFS manner. Since the
CFP agorithm localizes the pattern extension in a small number of projected databases

and eliminates unnecessary patterns by two pruning strategies and the closure checking

104

scheme, it is more efficient and scalable than the modified Apriori agorithm. The
experimental results show that the CFP algorithm outperforms the modified Apriori
algorithm by an order of magnitude.

Transforming time-series databases into symbolic databases may change the
context in which the values may be seen and some valuable information may still be
uncovered. Moreover, a notable disadvantage for the symbolic sequence analysis is that
the number of symbols and breakpoints must be supplied. Therefore, the CNP agorithm
is designed to address with these issues. It mines multi-resolution closed numerical
patterns in a multi-sequence time-series database. Initially, the Haar wavelet transform
is applied to convert each time-series in the database into a sequence in the low
resolution, and then all frequent 1-patterns.are identified from the transformed database.
Subsequently, each frequent k-patternis récursively extended to find frequent
super-patterns in a DFS manner.-For‘eéach frequent k-pattern found in the low resolution,
it is restored back to the high resolution! Afs';@_rajlt, all closed numerical patterns can be
mined in the low and high resolutions. Smce the CNP.algorithm employs the projected
database to localize the pattern.growth anditakes the benefits of pruning strategies to
speed up the mining process, the CNPaIgorithm has demonstrated a significant runtime
improvement in comparison to the modified A-Close algorithm.

At present, our work on the CMP agorithm has been published on Data and
Knowledge Engineering Journal [32] and the work on the CFP algorithm has been
published on Expert Systems with Applications Journal [64]. The significant
contribution of this dissertation is that we have designed three efficient agorithms
which are able to solve real-world problems. Specificaly, we have presented a novel
concept of mining closed multi-sequence patterns in a time-series database and designed
the CMP algorithm to mine closed multi-sequence patterns. Moreover, we have
removed the limitation of exact sequence alignments and incorporated the idea of

flexible-range of consecutive gaps to discover patterns. We have proposed the CFP

105

algorithm to mine closed flexible patterns in a time-series database. In addition, we have
used the Haar wavelet transform to view a time-series database in multiple resolutions
and designed a novel algorithm, CNP, to mine closed numerical multi-sequence patterns
in a time-series database. We have devised effective closure checking schemes and
pruning strategies with respect to each proposed agorithm to avoid generating
redundant candidates, and hence each results in less execution time. All the proposed
algorithms are evaluated with both synthetic and real datasets. The experimental results
show that the CMP algorithm outperforms the modified Apriori and BIDE algorithms
by one or two orders of magnitude; the CFP agorithm outperforms the modified Apriori
algorithm by an order of magnitude; and the CNP algorithm outperforms the modified
A-Close algorithm by one or two orders of /magnitude.

The limitations of the proposed algorithmé-are addressed as follows. First, since we
use an existing data discretizationsmethod, such as SAX representation, to transform
time-series sequences into symbolic sequences in the initial phase of the CMP and CFP
algorithms, we may not know whether the-'_’breakpoi nts are best determined and what is
the effect of the discretization. Second,.the:\CNP-algorithm cannot cope with multiple
sequences that have different Iengthé or_missing values in a transaction since no gap
symbol is taken into consideration. Finally, the CNP algorithm is unable to mine closed
patterns in a database that contains non-aligned time-series because the concept of gap
symbolsis not integrated in the mining process.

The present dissertation has illustrated that the CM P, CFP, and CNP algorithms can
efficiently mine closed patterns from both synthetic and real-world datasets; however, in
the future, subsequent studies can be conducted in the following directions:

1. We may modify the CMP algorithm to mine closed patterns in one-sequence

databases.

2. We may combine the essence of the CMP and CFP agorithms and develop a

novel algorithm to address the problem of mining closed flexible patterns in

106

10.

multi-sequence time-series databases.

We may allow a user-specified gap interval, instead of a user-specified
maximum gap threshold, in the CFP algorithm to find specific patterns in
which auser isinterested.

It is worth extending the CNP algorithm further to mine closed patterns with
some complicated constraints. For instance, a gap constraint may be pushed
into the mining process.

We may modify the CNP algorithm to mine multi-resolution closed numerical
patterns in one-sequence databases.

In the CNP algorithm, instead of measuring whether a pair of multi-sequences
issimilar by calculating the distance between each two numerical pointsin the
sequences, other mechanisms may be'adopted to improve the efficiency of this
task.

The CNP algorithm uses the @ ready mined patterns to check if a newly found
pattern is closed. This Is a timé'_:k:onwmi ng task; therefore, it is helpful to
design effective closure checking.sehemes.in‘order to speed up the algorithm.
Without generalization, too.many patterns may be mined and they may be too
detailed. By generalizing with a concept hierarchy, we may be able to obtain
patterns that are more abstract and meaningful.

We have implemented the memory-based algorithms for the CMP, CFP, and
CNP agorithms. It will be worth further study on implementing the disk-based
algorithms for avery large database.

We may further apply the proposed methods to analyze other real-world
applications, such as bioinformatics, medical diagnosis, hurricane forecasts,

etc.

107

References

[1]

[2]

[3]

[4]

[3]
[6]

[7]
[8]

[9]

R. Agrawal, K. Lin, H. S. Sawhney, K. Shim, Fast similarity search in the presence
of noise, scaling, and trandation in time-series databases, in: Proceedings of the
21th International Conference on Very Large Data Bases, 1995, pp. 490-501.

C. D. Ahrens, Meteorology today: an introduction to weather, climate, and the
environment (8" ed.), Thomson Brooks/Cole, Belmont, 2007.

D. Alter, Liver-function testing, MLO: Medical Laboratory Observer 40 (12) (2008)
10-17.

J. Ayres, J. Gehrke, T. Yiu, J. Flannick, Sequential pattern mining using a bitmap
representation, in: Proceedings of the 8th ACM International Conference on

Knowledge Discovery and DataMining, 2002; pp. 429-435.

BBC News, <http://news.bbc.do.uk/2/hi/bﬁsi Ness/7073131.stm>.

D. J. Berndt, J. Clifford, Finding/ patterns in timeseries: a dynamic programming

approach, Advances in'Knowledge D;'géo'very and Data Mining (1% ed.), American

Association for Artificial Intelligence, 1996, pp. 220248,

Central Weather Bureau, <http!/Avww.cwhb.gov.tw/>.

L. Chang, T. Wang, D. Yang, H. Luan, SegStream: mining closed sequential

patterns over stream dliding windows, in: Proceedings of the 8th IEEE

International Conference on Data Mining, 2008, pp. 83-92.

H. Chen, W. Chung, J. J. Xu, G. Wang, Y. Qin, M. Chau, Crime data mining: a

genera framework and some examples, |EEE Computer 37 (4) (2004) 50-56.

[10] T. S. Chen, S. C. Hsu, Mining frequent tree-like patterns in large datasets, Data and

Knowledge Engineering 62 (1) (2007) 65-83.

[11] Y. L. Chen, T. C. K. Huang, A novel knowledge discovering model for mining

fuzzy multi-level sequential patterns in sequence databases, Data and Knowledge
Engineering 66 (3) (2008) 349-367.

[12] Y. Chen, S. Mabu, K. Shimada, and K. Hirasawa, A genetic network programming

108

with learning approach for enhanced stock trading model, Expert Systems with
Applications 36 (10) (2009) 12537-12546.

[13] C. J. Chu, V. S. Tseng, T. Liang, Efficient mining of temporal emerging itemsets
from data streams, Expert Systems with Applications 36 (1) (2009) 885-893.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms
(2" ed.), The MIT Press, Cambridge, 2003.

[15] G. Das, K. Lin, H. Mannila, Rule discovery from time series, in: Proceedings of
the 4th International Conference on Knowledge Discovery and Data Mining, 1998,
pp. 16-22.

[16] Data Bank for Atmospheric Research, <http://dbar.as.ntu.edu.tw/>.

[17] C. Faloutsos, M. Ranganathan, Y. Manolopoulos, Fast subsequence matching in
time-series databases, ACM:SIGMOD Record 23 (2) (1994) 419-429.

[18] J. Han, G. Dong, Y. Yin, Efficient' mining of partial periodic patternsin time series
database, in: Proceedings of thé}_—';;_L_5th International Conference on Data
Engineering, 1999, pp. 106-115. f

[19] J. Han, M. Kamber, Data ‘mining;.concepts.and techniques (2™ ed.), Morgan
Kaufmann, San Francisco, 2006..

[20] J. Han, J. Pei, B. Mortazavi-Ad, Q. Chen, U. Dayal, M. Hsu, FreeSpan: frequent
pattern-projected sequential pattern mining, in: Proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2000, pp. 355-359.

[21] J. Han, J. Wang, Y. Lu, P. Tzvetkov, Mining top-k frequent closed patterns without
minimum support, in: Proceedings of the 2002 IEEE International Conference on
Data Mining, 2002, pp. 211-218.

[22] J. W. Huang, C. Y. Tseng, J. C. Ou, M. S. Chen, A general model for sequential
pattern mining with a progressive database, |EEE Transactions on Knowledge and

Data Engineering 20 (9) (2008) 1153-1167.

109

[23] Y. Huang, L. Zhang, P. Zhang, A framework for mining sequential patterns from
spatio-temporal event data sets, IEEE Transactions on Knowledge and Data
Engineering 20 (4) (2008) 433-448.

[24] L. J, K. L. Tan, K. H. Tung, Compressed hierarchical mining of frequent closed
patterns from dense data sets, IEEE Transactions on Knowledge and Data
Engineering 19 (9) (2007) 1175-1187.

[25] E. Keogh, Fast similarity search in the presence of longitudinal scaling in time
series database, in: Proceedings of the Ninth International Conference on Tools
with Artificial Intelligence, 1997, pp. 578-584.

[26] E. Keogh, S. Kasetty, On the need for time series data mining benchmarks. a
survey and empirical demonstration,,in: Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge 'Discovery and Data Mining, 2002, pp.
102-111. _

[27] C. Kim, J. Lim, R. T. Ng, K. Shimi; SQUIRE: sequential pattern mining with
quantities, The Journal of Systems anc-i"*;Software 80.(10) (2007) 1726-1745.

[28] M. Kontaki, A. N. Papadopoulos, Y..Manolopoulas, Adaptive similarity search in
streaming time series with dlidi hg windows; Data and Knowledge Engineering 63
(2) (2007) 478-502.

[29] R. J. Larsen, M. L. Marx, An introduction to mathematical statistics and its
applications (3" ed.), Prentice Hall, New Jersey, 2001.

[30] A.J. T. Lee, C. S. Wang, W. Y. Wang, Y. A. C, H. W. Wu, An efficient algorithm
for mining closed inter-transaction itemsets, Data and Knowledge Engineering 66
(1) (2008) 68-91.

[31] A.J. T. Lee, Y. T. Wang, Efficient data mining for calling path patterns in GSM
networks, Information Systems 28 (8) (2003) 929-948.

[32] A.J. T.Lee, H.W.Wu, T. Y. Lee, Y. H. Liu, K. T. Chen, Mining closed patternsin

multi-sequence time-series databases, Data and Knowledge Engineering 68 (10)

110

(2009) 1071-1090.

[33] C. H. L. Lee, A. Liu, W. S. Chen, Pattern discovery of fuzzy time-series for
financia prediction, |[EEE Transactions on Knowledge and Data Engineering 18 (5)
(2006) 613-625.

[34] T. H. Lee, R. Kim, J. T. Benson, T. M. Therneau, L. J. Melton III, Serum
aminotransferase activity and mortality risk in a United States community,
Hepatology 47 (3) (2008) 880-387.

[35] Y. S. Lee, S. J. Yen, Incremental and interactive mining of web traversal patterns,
Information Sciences 178 (2) (2008) 287-306.

[36] H. F. Li, C. C. Ho, S. Y. Lee, Incremental updates of closed frequent itemsets over
continuous data streams, Expert Systems with Applications 36 (2) (2009)
2451-2458. . |

[37] J. Lin, E. Keogh, S. Lonardi,/B- Chiu, A 'Symbolic representation of time series,
with implications for streaming al'g_q'__i_thms, in: Proceedings of the 8th ACM
SIGMOD Workshop on Research Issues in|Data Mining and Knowledge Discovery,
2003, pp. 2-11.

[38] M. Y. Lin, S. C. Hsueh, C. W. Chang, Fast discovery of sequential patternsin large
databases using effective time-indexing, Information Sciences 178 (22) (2008)
4228-4245.

[39] F. Masseglia, P. Poncelet, M. Teisseire, Efficient mining of sequential patterns with
time constraints: reducing the combinations, Expert Systems with Applications 36
(2) (2009) 2677-2690.

[40] F. Masseglia, P. Poncelet, M. Teissaire, Incremental mining of sequential patterns
in large databases, Data and Knowledge Engineering 46 (1) (2003) 97-121.

[41] F Morchen, A. Ultsch, Optimizing time series discretization for knowledge
discovery, in: Proceedings of the 11thACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2005, pp. 660-665.

m

[42] Y. Nishi, R. Doering, Handbook of semiconductor manufacturing technology (1%
ed.), Marcel Dekker Inc., New Y ork, 2000.

[43] N. Pasqguier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed itemsets
for association rules, in: Proceeding of the 7th International Conference on
Database Theory, 1999, pp. 398-416.

[44] J. Pel, J. Han, R. Mao, CLOSET: an efficient algorithm for mining frequent closed
itemsets, in: Proceedings of the 5th ACM-SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery, 2000, pp. 21-30.

[45] J. Pei, J. Han, B. Mortazavi-Adl, H. Pinto, PrefixSpan: mining sequential patterns
efficiently by prefix-projected pattern growth, in: Proceedings of the 17th
International Conference on Data Engineering, 2001, pp. 215-224.

[46] W. C. Peng, Z. X. Liao, Mining sequehtial patterns across multiple sequence
databases, Data and Knowledge Engineering 68 (10) (2009) 1014-1033.

[47] D. Perera, J. Kay, |. Koprinska, K| Yacef, O. R. Zaiane, Clustering and sequential
pattern mining of online coIIaboravae learning’ data, IEEE Transactions on
K nowledge and Data Engineering 21.(6).(2009) 759-772.

[48] P. J. Pockros, E. R. Schiff, M. L Shiffman,J.' G. McHutchison, R. G. Gish, N. H.
Afdhal, M. Makhviladze, M. Huyghe, D. Hecht, T. Oltersdorf, D. A. Shapiro, Oral
IDN-6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity
in patients with chronic hepatitis C, Hepatology 46 (2) (2007) 324-329.

[49] A. H. Ritchie, D. M. Williscroft, Elevated liver enzymes as a predictor of liver
injury in stable blunt abdominal trauma patients: case report and systematic review
of the literature, Canadian Journal of Rural Medicine 11 (4) (2006) 283-287.

[50] S. Russdll, A. Gangopadhyay, V. Yoon, Assisting decison making in the
event-driven enterprise using wavelets, Decision Support Systems 46 (1) (2008)
14-28.

[51] S.R. Song, W.Y.Ku, Y. L. Chen, Y. C.Lin, C. M. Liu, L. W. Kuo, T. F. Yang, H. J.

112

Lo, Groundwater chemical anomaly before and after the Chi-Chi Earthquake in
Taiwan, Terrestrial, Atmospheric and Oceanic Sciences 14 (3) (2003) 311-320.

[52] R. Srikant, R. Agrawal, Mining sequential patterns, in: Proceedings of the 11th
International Conference on Data Engineering, 1995, pp. 3-14.

[53] R. Srikant, R. Agrawal, Fast agorithms for mining association rules, in:
Proceedings of the 20th International Conference Very Large Data Bases, 1994, pp.
487-499.

[54] R. Srikant, R. Agrawal, Mining sequential patterns. generalizations and
performance improvements, in: Proceedings of the 5th International Conference on
Extending Database Technology, 1996, pp. 3-17.

[55] Standard and Poor's, <http://www?2.standardandpoors.com>.

[56] Stockson Wall Street, . |
<http://stocksonwal | street.net/2009/07/31/golden-crass-shows-bullish-technical -in
dicator/>. [=

[57] Taiwan Stock Exchange Corporation, -'%'{_http://www.tse.com.tw/ch/i ndex.php>.

[58] J. I. Takeuchi, K. Yamanishi, A ‘unifying framework for detecting outliers and
change points from time seriés, [EEE Transactions on Knowledge and Data
Engineering 18 (4) (2006) 482-492.

[59] H. J. Teoh, C. H. Cheng, H. H. Chu, J. S. Chen, Fuzzy time series model based on
probabilistic approach and rough set rule induction for empirical research in stock
markets, Data and Knowledge Engineering 67 (1) (2008) 103-117.

[60] C. S. Wang, A. J. T. Lee, Mining inter-sequence patterns, Expert Systems with
Applications 36 (4) (2009) 8649-8658.

[61] J. Wang, J. Han, BIDE: efficient mining of frequent closed sequences, in:
Proceedings of the 20th International Conference on Data Engineering, 2004, pp.
79-90.

[62] J. Wang, J. Han, J. Pei, CLOSET+: searching for the best strategies for mining

113

frequent closed itemsets, in: Proceedings of the 9th ACM International Conference
on Knowledge Discovery and Data Mining, 2003, pp. 236-245.

[63] Y. Wang, E. P. Lim, S. Y. Hwang, Efficient mining of group patterns from user
movement data, Data and Knowledge Engineering 57 (3) (2006) 240-282.

[64] H. W. Wu, A. J. T. Lee, Mining closed flexible patterns in time-series databases,
Expert Systems with Applications 37 (3) (2010) 2098-2107.

[65] Y ahoo Finance, <http://finance.yahoo.com>.

[66] X. Yan, J. Han, R. Afshar, CloSpan: mining closed sequential patterns in large
databases, in: Proceedings of the 2003 SIAM International Conference on Data
Mining, 2003, pp. 166-177.

[67] T. Q. Yang, A time series data mining,based on ARMA and MLFNN model for
intrusion detection, Journal .of Communicétion and Computer 3 (7) (2006) 16-22.

[68] D. Yuan, K. Lee, H. Cheng, G."Krishna, Z."Lli, X. Ma, Y. Zhou, J. Han, ClSpan:
comprehensive incremental mining"g}_'gqrithms of , closed sequential patterns for
multi-versional software mining, in: ﬁoc&dings of the 2008 SIAM International
Conference on Data Mining, 2008, pp:84-95

[69] M. J. Zaki, SPADE: an effici ent.al gorithm fer'mining frequent sequences, Machine
Learning 42 (1) (2001) 31-60.

[70] M. J. Zaki, C. Hsiao, Efficient algorithms for mining closed itemsets and their
lattice structure, |IEEE Transactions on Knowledge and Data Engineering 17 (4)
(2005) 462-478.

114

m-ﬂ

s

s

e

(1999/9 - 2003/6)

Concordia University, Montréal, P.Q.

Bachelor of Engineering in Computer Engineering
(2003/9 - 2004/6)4 _

University of Chicagb';x';g_hi._bago, IL

Master of Science in'C(;'_FEnput-er Science

(2006/9 - 2010/1)

Bz & &8 Fug g miF 3o g Lo

A.J T. Lee C.S Wang, W. Y. Weng, Y. A. Chen, H. W. Wu,
An efficient algorithm for mining closed inter-transaction
itemsets, Data and Knowledge Engineering 66 (1) (2008)
68-91.

A. J T. Lee Y. H. Liu, H. M. Tsai, H. H. Lin, H. W. Wu,
Mining frequent patterns in image databases with 9D-SPA
representation, The Journal of Systems and Software 82 (4)
(2009) 603-618.

A.J T Leg H.W. Wu, T. Y. Lee, Y. H. Liu, K. T. Chen,
Mining closed patterns in multi-sequence time-series
databases, Data and Knowledge Engineering 68 (10) (2009)
1071-1090.

H. W. Wu, A. J. T. Lee, Mining closed flexible patterns in
time-series databases, Expert Systems with Applications 37
(3) (2010) 2098-2107.

< ";55 I

