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Abstract

Inverse problems recover the causes from the effects. And heat conduction equa-
tions describe the process of energy transfer by heat conduction. In this thesis, we focus
on calculating the boundary condition at the origin from the other boundary condition and
recovering the initial condition from the temperature distribution at a certain time. For the
convenience of research, the causes are given at first and the effects are found directly.
The goal is to recover the causes from the effects. The results can be compared with the

real causes.

The analytical solutions of the heat conduction equations are discretized with some
numerical methods. Then, the linear system obtained is an ill-posed problem. It can be
regularized by the truncated singular value decomposition. If the state of the causes is
smooth enough, the trend of the solution of the regularized problem with inverse opera-

tion is approaching to the real causes.

Keywords: Inverse Problems, Heat Conduction Equations, Numerical Methods, Dis-

cretization, Truncated Singular Value Decomposition, Regularization
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Chapter 1

Introduction

In this chapter, general inverse problems and thesis topics are introduced.

1.1 Inverse problems

An inverse problem is the inverse of a forward (direct) problem. A forward problem
is to find the effects from the causes, and an inverse problem one starts with the effects
and then calculates the causes [6]. There are several different kinds of inverse problems.
In image processing, for example, the forward problem is to find the result if there is
some noise of the original picture. The inverse problem is to recover the sharp image
from a given blurry image and it is known as deblurring. The sample example is shown in
Fig. 1.1. The forward problem is from (a) to (b) and the inverse problem is the opposite

direction.

(a) Original image. (b) Noisy image.

Figure 1.1: Sample example in image processing.
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The general model of the forward problem is constructed as follows:
b=T(x)+ €, (1.1)

where b is the effect, T is the forward operator, x is the cause and &, is the error term
coming from measurement noise. In the case of the example shown in Fig. 1.1, 7! is the
deblurring operator. Furthermore, if the forward map is a linear system, then the model

can be written as the linear system
b=Ax+ gy, (1.2)

where b € R™ is the effect, A € R™*" is the forward linear operator, x € R" is the cause,
and &,, € R" is the measurement error. Once the model has been constructed, the solution

of the inverse problem is considered as
x~A" b (1.3)

For a well-posed inverse problem, it is easy to recover the causes with the given ef-
fects. However, solving an ill-posed inverse problem is much harder. It is noticed that a

well-posed problem is introduced by Jacques Hadamard [2]:

H,: Existence. There should be at least one solution.

H;: Uniqueness. There should be at most one solution.

Hj: Stability. The solution must depend continuously on data.
If the operator is linear, this definitions are equivalent to:

H{: A is surjective (onto).

: A is injective (one-to-one).

55

H}: A=l is continuous.

The problem is ill-posed if at least one of the conditions H; — H3 fails. If H; fails,
then to solve this problem is non-sense. H, fails when the kernel of A contains more
than one element, that is Ker(A) # {0}. All elements in coset {x + Ker(A)} are the
solution of the inverse problem. In this case, the restriction of A to (Ker(A))* is con-
sidered to ensure the uniqueness, where (Ker(A))" is the orthogonal complement of the

subspace Ker(A). For the problem of finite dimension, (Ker(A))* equals to Range(A*)

o) doi:10.6342/NTU202001041



which is the range of the adjoint of A. If Hj fails, then the inverse crime occurs and
x=A"'(b—g,) =A"'b—A"'g,. The term A~ 'g,, may be very large even if &, is very
small. Thus, the results cannot be trusted. Calculating the condition number of A is a way

to discriminate whether the problem is well-posed or not. See A.1 for more details.

Large condition number k(A) means A is ill-posed. The relative error £(x*) may
be so large even if using the more precise computer systems. Moreover, there exists
measurement errors in the system concerned. To overcome this, truncated singular value
decomposition (TSVD) helps to find the more stable solution [3]. See A.2 for more de-
tails. The reduced form of singular value decomposition is used to improve computing
efficiency. In this thesis, we focus on TSVD to solve inverse heat conduction problems.

The mathematical model is given in the next section.

1.2 Thesis topics

There are three classifications of inverse problems: determination of the initial con-
dition of the system, determination of the boundary conditions of the system and identi-
fication of physical parameters or parameter identification of the system. In this thesis,
only the initial or the boundary conditions problems of the heat conduction equations are
studied. The schematic diagrams are shown in Fig. 1.2. The horizontal axis is the space
x and the vertical axis is time t. In Fig. 1.2 (a) which is the initial condition case, f(x) is
the cause and g(x) is the effect. In Fig. 1.2 (b) which is the boundary condition case, A(t)

is the cause and s(¢) is the effect.

. a(x)

it ----—— - -

/ . :

[ |

[ I

|

[ ~ N

:_ h(t) < s(t) :

| |

; I

I |

4 ; I
0 f(x) xtL [0 x=1
(a) The initial condition case. (b) The boundary condition case.

Figure 1.2: The schematic diagrams of one-dimensional problems.
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To derive the heat conduction equation, it is assumed that:

1. All physical parameters including the density, the specific heat capacity and the
thermal conductivity of the system are constants.
2. The temperature changes immediately when energy enters into the small volume.

3. The temperature is uniform in the small volume.

The system is chosen as a small volume region. From energy balance:
storage = in — out 4 generation.

In the case, the generation equals to 0. The relation can be written as
AV Cu)
<p ) ]f J-nds, (1.4)

where A is the difference operator, p is the density of the system, AV is the volume of the
system which is not a function of time ¢, C is the specific heat capacity of the system, u
is the temperature of the system, §; is the surface integral of a vector field over a closed
surface S which is the surface area of the system, J is heat flux, n is the unit normal vector
of the surface area of the system and J-n is the inner product of J and n. The minus
symbol is because n is outer-pointing normal. The integration without the minus symbol

equals to the energy out minus the energy in. Moreover, from Fourier’s law, we have
J=—-DVu, (1.5)

where D is the thermal conductivity of the system, and Vu is the gradient of the tempera-
ture. The minus symbol is due to the direction of heat flux which is from high temperature

area to low temperature area. On the other hand, from divergence theorem, we have

fiJ-ndS:/VV-JdV, (1.6)

where V - J is the divergence of heat flux and |, is the volume integral. From the assump-

tion 1 and AV is not a function of ¢, the equation (1.4) can be written as

D
V- (=DVu)dV = — | Vuav. 1.7
At / ) AV /V wav, (1.7)

where V2u is the Laplacian of the temperature.

4 doi:10.6342/NTU202001041



Let AV approach to 0 and Af tend to 0, then the equation is read as

8u_D 2 a2
E_p_CV u=pBV-u, (1.8)

where 8 = [% is the thermal diffusivity. Since B is constant, the equation (1.8) is linear.
For one-dimensional case, the equation becomes

2
@Zﬁﬂ (1.9)

ot ox?’

Consider the domain in x € [0,L] and ¢ € [0, T']. If the temperature distribution in the

domain at t = 0 is f(x), then the initial condition is

u(x,0) = f(x). (1.10)

If the temperature is constant ug in the left region of the domain and there is no heat loss

on the right boundary, then the boundary conditions are

u(0,1) = uo, (1.11a)
du
Zo(Ln)=o. (1.11b)

Letia="% 7= % and X = I)—i, then the dimensionless equation is obtained,

di BT J*i  d%i

or T Zoe Yo (112
where o0 = LZ—zT The initial condition is transformed to
STy )
a(,0) = LD =40 _ 7 (1.13)
Uuo
And the boundary conditions are transformed to
1(0,7) =0, (1.14a)
i, _
—(1,7) =0. 1.14b
3 x( ,f) ( )

These initial and boundary conditions appear to be more simple. In addition, it
is showed that the homogeneous boundary conditions contain physical meaning. For

convenience, the equation is written as

Uy — Oty =0, (1.15)

7 2; . . . .
where u; = % and u,, = % We use this form in the rest of this thesis.

5 doi:10.6342/NTU202001041



1.3 Outlines

The concepts of inverse problems are in section 1.1 and thesis topics inverse heat
conduction problems (IHCP) are in section 1.2. In chapter 2, the IHCP problems in
semi-infinite domain are considered. The Green’s functions are used to solve the forward
problems and the finite difference methods are used to validate the solutions in section
2.1. The models which are constructed by the solutions from the Green’s functions and
the methods to solve these problems are in section 2.2. The results are shown in section
2.3. In chapter 3, the IHCP problems in finite domain are considered. Separation of
variables is used to solve the forward problems in section 3.1. The solutions from this
method are validated by substituted into the equations directly. The models which are
constructed by the solutions from separation of variables and the methods to solve these
problems are in section 3.2. The results are shown in section 3.3. The conclusions are in
chapter 4. Some supplementary materials are in appendix A including condition numbers,
TSVD and the details about Green’s functions, finite difference methods and separation

of variables . Sample matlab codes are in appendix B.

6 doi:10.6342/NTU202001041



Chapter 2

Heat conduction problems in

semi-infinite domain

In this chapter, the heat conduction equation in semi-infinite domain and o¢ = 1 is

considered.

U — Uy =0, 0<x<oo, 0<t<oo. 2.1)
The initial condition is assumed to be zero:
u(x,07) =0. (2.2)

Two different boundary conditions are used and they are the causes in this chapter:

1. The first kind boundary condition is

u(0,t) = hy(t). (2.3)
2. The second kind boundary condition is

uy(0,1) = hy(t). (2.4)

The thermal sensor is set at x = 1 and the temperature measured is denoted as s(r)

which is the effect.

u(l,t) =s(z). (2.5)

The schematic diagram of the problem in this chapter is shown in Fig. 1.2 (b).

7 doi:10.6342/NTU202001041



2.1 Methods for forward problems

For the forward problems, s(¢) is calculated from 4(r) which represents / (z) or h(t).
There exists analytical solutions of s(¢) by Green’s functions [4]. The Green’s function G
is the solution of the equation LG = &, where L is the linear differential operator and 0 is
the Dirac’s delta function. For one-dimensional heat conduction equation, L = d; — (Xaxz.

If the differential equation is Lu = f, then

[/G d&} /LG E)dE = /5 EVdE = f(x).  (2.6)

Therefore, u = [ G(x,§)f(&)d& is a solution and it is unique in the problem concerned
[4]. The solutions of the forward problems can be obtained by Green’s functions. See
A.3 for more details. For equation (2.1) with the initial condition (2.2) and the first kind

boundary condition (2.3),

e 1/4(t—1)
sp(t) = u(1,1) = N_/ e M0 dT =2y 2.7)

And with the second kind boundary condition (2.4),

—1/4(t—7)
ss(t) / 7)dt = L. (2.8)

Voo

Where £ and .Z; are integral operators. The finite difference methods are also used to
validate the solutions of the forward problems. See A.4 for more details. And the results

are shown in section 2.3.

2.2 Numerical methods for inverse problems

For the inverse problems, s(¢) is given to recover A(t). The method mentioned in this
section is from [7]. This method is called collocation method. First, the models of the
forward problems are constructed. Consider A(¢) in a finite interval [0, 7|. The interval is
discretized into 1 segmentations. Set nodes {#; = iAt} where i =0, 1,2,...,1 and the size

of time step At = % Define

1, iftj_1§t<l‘j.
9,(t) = (2.9)

0, otherwise.

8 doi:10.6342/NTU202001041



The approximation 4*(¢) of h(z) is chosen to be piecewise constant.
n
1))=Y hj¢;(r), (2.10)
=1

where £ are real numbers. From equation (2.7) or (2.8),

s*(t;) = L h*(t;) = Zh,%,z, Zh,wjr, (2.11)

where s* is the discretized form of s or s;, .2 represents the integral operator .Z in
equation (2.7) or . in equation (2.8), i = 1,2,...,n and y;(t;) can be calculated from
Z¢;(t;). For the first kind boundary condition (2.3),

vi(t) = L5 ¢;(t;) = <2if>

ti—t;

(2.12)

ti— tjl

where erf (x) = f foe ~* du. For the second kind boundary condition (2.4), from [7]
() = % 0;(1) {2 I (1 erf( 1 ))] ti_tj (2.13)
(1) — (t:) = — | —e — — ] .
J\" s Y\ \/Z 2\/2 ti_tjil
The problem can be transformed to the finite dimension linear system:
Cnhyy = sy, (2.14)
where
v (1) 0 0 h§ 59
t ) - 0 hS 55
Cp = %:( 2) yalta) . : , h% = :2 and s% = 2
| Vi) valn) - wy(y) | KN | S |

For inverse problem, the elements of Cy, are calculated by equation (2.12) or equa-
tion (2.13) and s3, is given. The goal is to recover hj. Since Cy is a lower triangular
matrix, it can be solved directly, but the results are worse. TSVD helps to find the more

stable solution.

2.3 Numerical results

In this section, some numerical results are demonstrated.

9 doi:10.6342/NTU202001041



Example 2.1. Consider the heat equation (2.1) with the initial condition (2.2) and the first

kind boundary condition (2.3) where
he(t) = —1% 4 3t. (2.15)

The temperature is measured in ¢ € [0,2]. For finite difference methods, M = 10
and x); = 5 are selected. Another parameter N is chosen to lead y to approach 1/4. The
results of the forward problem by two methods are shown in Fig. 2.1. The horizontal axis
is time ¢ and the vertical axis is s(¢). The results from two methods are close to each other.
So the solution of s(t) is credible.

For inverse problem, the elements of Cy are calculated by equation (2.12) and sj, is
from the solutions of the forward problem by Green’s functions. The results are shown
in Fig. 2.2 where n = 50. The horizontal axis is time ¢ and the vertical axis is A(¢). The
blue curves are the real causes and the red curves are from inverse calculations. The
left is the result without any regularization and it is solved directly by Cy \s;ﬁ, in matlab.
The solution is unstable obviously. The rest parts in the figure are solved by TSVD with
different cut-off levels . oy is the maximum singular value of the matrix Cy, and k is
the number of singular values which are used in calculating. o;/u roughly equals to the
condition number of C;, in each case where Cj, is the approximation of Cy by TSVD.
From Fig. 2.2, the trend of &¢(T) can be recovered, but the results oscillate especially
when p/o; = 1073 or 1072

Example 2.2. Consider the heat equation (2.1) with the initial condition (2.2) and the
second kind boundary condition (2.4) where

1, ifre[02,04]U[1, 12],
hy(t) = (2.16)

0, otherwise.

The temperature is measured in ¢ € [0,2]. For finite difference methods, M = 20
and xjr = 5 are selected. Another parameter N is chosen to lead y to approach 1/4. The
results of the forward problem by two methods are shown in Fig. 2.3. And the results
of the inverse problem are shown in Fig. 2.4 where n = 50. All formats of the figures
are the same as example 2.1. The solution of s(¢) can be trusted since the results from
two methods are close to each other. The result without any regularization is not stable

neither. The trend of A4(7') can also be recovered, but the results oscillate as well.

10 doi:10.6342/NTU202001041
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Figure 2.1: The numerical results of the forward problem for example 2.1.
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Figure 2.2: The numerical results of the inverse problem for example 2.1.
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Figure 2.3: The numerical results of the forward problem for example 2.2.
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Figure 2.4: The numerical results of the inverse problem for example 2.2.
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Chapter 3

Heat conduction problems in finite

domain

In this chapter, the heat conduction equation in finite domain is considered.
Uy — Oy, = 0, O<x<L, t>0. (3.1
The initial condition is the cause in this chapter and it is
u(x,0) = f(x). (3.2)
Four different boundary conditions are used:

1. Dirichlet boundary condition is

u(0,¢) =0, wu(L,t)=0, t>0. (3.3)
2. Neumann boundary condition is
uy(0,1) =0, u(L,t)=0, t>0. (3.4)

3. Mixed boundary condition case 1 is

u(0,6) =0, u(L,t)=0, t>0. (3.5)
4. Mixed boundary condition case 2 is
ue(0,7) =0, wu(L,t)=0, t>0. (3.6)

For t = T, the temperature distribution is g(x) which is the effect.
u(x, T) = g(x). 3.7
The schematic diagram of the problem in this chapter is shown in Fig. 1.2 (a).

13 doi:10.6342/NTU202001041



3.1 Methods for forward problems

For the forward problems, g(x) is calculated from f(x). Separation of variables can

be used to find the analytic solution in this domain. See A.5 for more details. From A.5,

L
8 =u(eT) = [ Ky T)f()dy (3.8)

where K (x,y,T) depends on the boundary condition.

1. For Dirichlet boundary condition, it is

<
el

Ki(x,y,T) = % i e~ CEVaT Gy (%) sin (%) . (3.9)
v=1

2. For Neumann boundary condition, it is

K> (x,y,T Z —(F)%aT o (%) cos <@> ) (3.10)

L

3. For mixed boundary condition case 1, it is

K3(x,y,T % i o= Tsin <(V — 1L/2)7rx> sin <(v — 1L/2)71'y> . 3.11)

4. For mixed boundary condition case 2, it is

4,y T % i (U2 ar o ((\/—114/2)7rx> cos <(\/—1L/2)7ry> ) (3.12)

3.2 Numerical methods for inverse problems

For the inverse problems, g(x) is given to recover f(x). The method in this section
is from [8]. The trapezoid rule is used to find the numerical integration (3.8) of g(x).
The size of space segmentations is Ay = ]L\, . Letxg =y9 =0, xy =yy =L, and x; = iAy

yj = jAy. Denote g(x;) as g;, f(v;) as f; and K(x;,y;,T) as K;;. With the trapezoid rule,

1 1
8i NA)’[ Kiofo+ Kifi + ..+ Kyn—1)fn-1+ 2KiNfN] (3.13)
where i =0,1,2,--- N and N is the number of segmentations. Thus, the problem can be

transformed to the finite dimension linear system:

KF =G (3.14)

14 doi:10.6342/NTU202001041



where

1Ko Koi --- AKon Jo 0
2 2
1 1
~ 5Kio Kii - 3K 1 1
K=ay| 2 P F= Ml aa 6= 8
I $Kno Kni -+ SKww | | Sy | | 8N |

Since K(x,y,T) has infinite many terms, it can not be calculated numerically. But it
is convergent. For convenience, the sum of K(x,y,T) is limited to a finite number of
expansion terms 100. For Dirichlet boundary condition,

100

2 v
Ki(x.y.T)~ 7 v;e(wz‘” sin (%) sin (%) . (3.15)

For inverse problems, G is known from the given temperature distribution g(x). K
can be calculated from the expansion shown above. The problem is to find the solution of
F. Since K is ill-conditioned, TSVD is also applied to solve the problem. The following

are some examples.

3.3 Numerical results

In this section, some numerical results are demonstrated.

Example 3.1. Consider the heat equation (3.1) with initial condition equation (3.2) and
Dirichlet boundary condition equation (3.3) where o =L =1, f(x) = sin(zx) and T = 1
in equation (3.7). The analytical solution is

2

g(x) =sin(mx)e ™ . (3.16)

The result is shown in Fig. 3.1 where n = 20.

Example 3.2. Consider the heat equation (3.1) with initial condition equation (3.2) and
Dirichlet boundary condition equation (3.3) where o = 0.01, L = 1, f(x) = 2x,x € [0,0.5]
or —2(x—1),x € (0.5,1] and T = 1 in equation (3.7). The analytical solution is

- 8 2n—1)mw(2x—1 2 2
g(x) = Z T oS <( n )725( X )> 000172 (2n—1)% (.17)

n=1

Use 100 terms to approximate g(x). The result is shown in Fig. 3.2 where n = 20.
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Figure 3.1: The numerical results for example 3.1.
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Figure 3.2: The numerical results for example 3.2.
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Example 3.3. Consider the heat equation (3.1), initial condition equation (3.2) and
Dirichlet boundary condition equation (3.3) where o = 0.01, L = 1, f(x) = sin(7mx) +

0.1sin(4mx) 4 0.2sin(97x) and T = 1 in equation (3.7). The analytical solution is
g(x) = sin(mx) x e 00 1 0.1sin(47x) x e 167" 4 0.25in(97x) x e 0817 (3.18)
The result is shown in Fig. 3.3 where n = 40.

Example 3.4. Consider the heat equation (3.1), initial condition equation (3.2) and
Dirichlet boundary condition equation (3.3) where o = 0.01, L = 1, f(x) = —x*> +x and

T =1 in equation (3.7). The analytical solution is
8 (]
g() = — ¥ sinf(2n— 1) a]e 001 (2k=1)? (3.19)
n=1
Use 100 terms to approximate g(x). The result is shown in Fig. 3.4 where n = 40.

Example 3.5. Consider the heat equation (3.1), initial condition equation (3.2) and Neu-
mann boundary condition equation (3.4) where @ = L = 1, f(x) = cos(mx) and T = 1
in equation (3.7). The analytical solution is g(x) = cos(n’x)e’”z. The result is shown in

Fig. 3.5 where n = 20.

Example 3.6. Consider the heat equation (3.1), initial condition equation (3.2) and the
mixed boundary condition case 1 equation (3.5) where @ = L = 1, f(x) = sin(37x) and
T =1 in equation (3.7). The analytical solution is g(x) = sin(%nx)e_(%”)2. The result is

shown in Fig. 3.6 where n = 20.

Example 3.7. Consider the heat equation (3.1), initial condition equation (3.2) and the
mixed boundary condition case 2 equation (3.6) where & = L = 1, f(x) = cos(47x) and
T =1 in equation (3.7). The analytical solution is g(x) = cos(%n’x)e_(%”y. The result is

shown in Fig. 3.7 where n = 20.

In these figures, the horizontal axis is x and the vertical axis is f(x). The blue curves
are the real causes and the red curves are from inverse calculations. The results are solved
by TSVD with different cut-off levels u. & is the maximum singular value of the ma-
trix K and k is the number of singular values which are used in calculating. The trend
of f(x) can be recovered, but the results perform worse when the real causes have kink
points or are not smooth enough. Besides, The endpoints in Fig. 3.5, 3.6 and 3.7 are
unexpected. These phenomenons may be due to Dirichlet’s theorem for one-dimensional

Fourier series.

17 doi:10.6342/NTU202001041



p/ o, =0.0001andk =9 pnlo,=0.001andk =8

Figure 3.3: The numerical results for example 3.3.

plo,=0.0001andk=9 /o =0.001andk=8
03 0.3

0.2 0.2

f(x)
f(x)

0.1 0.1

0.3
x X
i * 0.1
0
0 0.5 1
X X

Figure 3.4: The numerical results for example 3.4.
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Figure 3.6: The numerical results for example 3.6.

19

doi:10.6342/NTU202001041



p/ o, =0.0001 andk = 10

05! "*%ao

#lo,=0.001andk=8

“o

~ Coroas

0 0.5 1
X
plo,=01andk=5

0g

Figure 3.7: The numerical results for example 3.7.

20

doi:10.6342/NTU202001041



Chapter 4

Conclusion

4.1 Thesis summary

The inverse heat conduction problems are studied in this thesis. There are analytical
solutions to the forward problems concerned. They can be solved by Green’s functions
or separation of variables. It is motivated by these methods to construct the models of
the forward problems. The models are discretized to the finite dimensions linear sys-
tems by discretizing the function A(z) or using numerical integral. Since the problems
are ill-posed, TSVD is used to find more stable solutions. These inverse heat conduction
problems can be applied to fire identification (recovering the initial condition) or temper-

ature detecting of motors (finding the boundary condition).

4.2 Future works

In future works, two-dimensional heat conduction problems can be considered. In
addition, the parameter ¢ is set as a function of the position x and the temperature u.

Further, the heat conduction equations are changed to others equations.
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Appendix A

Supplementary materials

A.1 Condition numbers

If x = [x1,X2,...,x,]7 € R"is a vector and ||x|| is some norm of x, such as p-norm of
x which is ||x||, := (¥ [xi|? )1/ P The operator norm of matrix A is defined as
141 =sup 220 = up . (A
w20 11X x| =1
Assume x* € R” be a numerical solution of the system Ax = b where A € R™*" and
b € R™. From H{ and H in section 1.1, m is equal to n. Define the residual vector r*
as b — Ax*. Suppose relative residual p(x*) is controlled by &, which is the precision in
computer systems.

_ b= Ax  flAx = AxT|

p(x*) = = = <&, (A.2)
1]] 15]] 1Ax] ‘
The relative error €(x*) bound is obtained by
oy =l =AY ATTIAN (@)l k)]l
e(x) = = < < = , (A3)
[l [l 1Al || Ax]| el

where k(A) = ||[A~!||||A|| is defined as the condition number of A. If two-norm |x||; =

(x-x)!/2 is used, then k(A) = % is the ratio of the maximum singular value G,,x(A)

and the minimum singular value G,,(A). On the other hand,

o =l Al AT AT ) Il
e(x*) = = > — > — . (A4
5] [[A[ || IA[IlA=TB]] = [JAflA=T]I]|2]
Therefore, the result is
P ((A; <e(x) < K(A)p(¥') < K(A)e. (AS5)
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A.2 Truncated singular value decomposition

If A=UXVT is the singular value decomposition (SVD) of A, where U, V € R"*"
are orthogonal matrices and X = diag (o;) € R"*" is a diagonal matrix with o3 > 0y >
.-+ > 0y > 0, where o; are singular values of A and i = 1,2,--- ,n. Let kK = max {i|o; >

p}, where p is the cut-off level. Choose ¥y = diag (oy,---,0,0,---,0), then £ =

diag(oii, e Gik,O, --+,0) is the pseudo inverse of X;. Take
Ay =U% VT = argmin ||A — B|>. (A.6)
rank(B)=k

By Eckart—Young—Mirsky theorem [1][5], the matrix A is the closest approximation to
A that can be achieved by a matrix of rank k. Since k < n, A; may not be invertible. The
inverse is replaced with the Moore-Penrose inverse A,j. Thus, the solution of equation
(1.3) by TSVD method is

x=Afb=(VZUT)b. (A.7)

A.3 Green’s functions

The texts in this section are from [4]. Consider the heat conduction equation with

o = 1 and firis kind BC.
U — e =06(x—E&)0(t), & >0,
u(x,07) =0,
u(0,1) =0, >0,
u(x,t) -0 as x— oo,

The Green’s function is

1
G 6u) = 5 [ 8 — e (A8)

Consider the inhomogeneous equation,

U — g = p(x,t), x>0, t>0,
u(x,07) =0,
u(0,1) = 0.
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The solution is
t oo
uet) = [ dv [ p(E DG (.6t~ 7).
- 0
Consider the homogeneous equation with nonzero initial condition,
u—un=0, x>0, >0,
u(x,07) = f(x),
u(0,¢) =0.
This is equivalent to
U — e =0(t)f(x), x>0, t>0,
u(x,07) =0,
u(0,t) = 0.
The solution of u(x,) can be calculated from equation (A.9) .
Consider the inhomogeneous equation with nonzero initial condition,
ut_uxx:p(xut)v xzoy t207
u(x,0") = f(x),
u(0,1) = 0.
The solution of u(x,) is sum of the solutions of two problems below:
Up — Uxx :P(x:t)7 x>0, 120,
u(x,07) =0,

u(0,¢) =0.

U —ue =0, x>0, t >0,
u(x,07) = f(x),
u(0,t) = 0.
Consider the homogeneous equation with nonzero boundary condition,
u—uy =0, x>0, t>0,
u(x,07) =0,

u(0,1) = hy(t).

25
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Let w(x,t) = u(x,t) —hy(t), then
Wi — W = —hy(t) —hp(07)8(1),
w(x,07) =0,
w(0,7) = 0.

where hy(t) = %. The solution of w(x,#) can be calculated from equation (A.9) .

Consider the heat conduction equation with & = 1 and second kind BC.
u—upe=0(x—8)8(t), & >0,
u(x,07) =0,
uy(0,£) =0, t>0,
up(x,t) >0 as x—» oo,

The Green’s function is

1
Ga(.8,1) = 5 [ 7P R (A.10)

Consider inhomogeneous equation

Uy — g = p(x,t), x>0, t>0,

u(x,07) =0,
u(0,7) = 0.
The solution is
u(x, ) = / dT/O p(E,7)Ga(x, &, — T)dE. (A11)

Consider the homogeneous equation with nonzero boundary condition
u—un=0, x>0, t>0,
u(x,07) =0,
ux(0,1) = hy(t).
Let w(x,t) = u(x,t) — xhy(t), then
Wy — Wy = —xhg(t) — xhg(07)5(2),
w(x,07) =0,

wy(0,7) = 0.
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where hy(t) = %. The solution of w(x,7) can be calculated from equation (A.11) . Thus,
the analytical solution u(x,t) of the heat conduction equations with nonzero boundary

conditions can be obtained.

A.4 Finite difference methods

Let u(x;,t,) ~ U!", where x; = iAx, t, =nAt,i=0,1,2,....M,n=0,1,2,....N, Ax =
% and At = % M and N are the numbers of segments of space and time respec-

tively. For all x; € interior points (i =1,2,....M — 1),

urtt—-ur 1

Iy = (Ax)z(U‘n’l =2U!"+ l-’fH). (A.12)
The relation can be rewritten as
Ut = Ul + (1 =20)Uf + U7, (A.13)

where Y = ﬁ and this explicit method is stable whenever y < 1/2. It should be careful
to treat the boundary points. For the first kind boundary condition, U}l = h¢(t,) at xo =0
is substituted in equation (A.13). And if xj, is large enough, then the numerical boundary
(far field) condition Uy; = 0 is considered and substituted in equation (A.13). Thus, the

linear equation is

U™ = AU + 74, (A.14)
where

Ut 1-2y v
Uyt y 1-2y v

1 . .

Ut = : yAp = .. ,

Uyt y 1-2y v
ULt y 1-2y
Uy Yhy(tn)
U 0

Un: 7Zf:
Upt
Uy, 0
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For the second kind boundary condition, Ulz_ AZ*I = hy(t,) at xo = 0. It implies that U" | =

U{' —2Axhg(t,). The relation can be rewritten as

USt = (1= 2y)Uf + 24U} — 2yAxhs(t). (A.15)

n

If x)y is large enough, then the numerical boundary (far field) condition % =0is

considered. It implies that Uy, =0 w1~ The relation is

ULt = 29Uy, + (1-29)U} (A.16)
Thus, the linear equation is
Ut = AU — 2, (A.17)
where
Uyt 1-2y 2y
uptt y 1-2y v
urtt =1 A=
Uﬁlzltll y 1=-2y v
Uit 2y 1-2y
Uy 2yAxhy(t,)
un 0
U" = , s =
Up—1
Ul 0

A.S Separation of variables

Consider Dirichlet boundary conditions and in finite domain

— Oy, =0, O<x<L, t>0,
u(x,O) :f(x)a
u(0,1) =0,
u(L,t) =0.
Suppose u(x,t) = X (x)T(t), then L = X7 = 2 and X(0) = X(L) = 0. Where 7’ = 4T

and X" = d . Consider A is positive, 0 and negative.
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1.LIfA = ,thenT(¢) = Ae®% and X (x) = Bsinh(@yx) + Ccosh(@yx).

2.IfA=0 ,thenT(t)=A and X (x) = Bx+C.

3.IfA = —w2, then T(t) = Ae~ % and X (x) = Bsin(wyx) + Ccos(@yx).

The solutions in case 1 diverge and contradict the equilibrium state in the reality. In case
2, from boundary conditions, B = C = 0. In case 3, from boundary conditions, C = 0 and
wy = Y¥E . So the analytical solution is

xX,t) = i Dy sin (%) e (), (A.19)

v=1

From initial condition, Dy = % fOL f(y)sin(¥£y)dy. Suppose the function is measurable.

Change the order of summation and integral, then
L
8 =u(eT) = [ K(ry.T)f()dy, (A20)
For Dirichlet boundary condition,

2 « vr \% 1%
Ki(wyT) =1 Z ~(F)aT s1n< Zx> sin( Zy> . (A21)

v=1

Similarly, for Neumann boundary condition,

2 > (vz) \% \%
K> (x,y, T Z Z (F)%0T o (%) cos (ﬂ> . (A.22)

L

For mixed boundary condition case 1,

Y o (EERT Gy <(V—1/2W> Gin <(V_1/2)”y) , (A.23)

K T)=
3(xay> ) L L

(g (v—1/2)mx (v—1/2)my
Z e cos <L cos — ) (A.24)
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Appendix B

Sample matlab codes

B.1 Example 2.2

The forward problem is shown in Fig. 2.3.

hforward problem

hf=0(x) double(x>=0.2 & x<=0.4)+double(x>=1 & x<=1.2); %h function hf=h_s(t)

t0=0;tN=2;x0=0;xM=5;D=1; %Set the domain considered (D is \alpha)
m=20; %Set the number of spatial steps (FD method)
Tinitial=zeros(m+1,1); %Set the initial condition

%Calculate s(t) by Green’s function

n=50; %Set the number of time steps
s=zeros(n+1,1);s(1)=0; %Set the initial condition s(1)
delt=(tN-t0)/n; hthe size of time steps

for i=1:n

fun=0(y) -1./sqrt(pixy).*exp(-1./(4.%*y)) .*hf(i*delt-y);
s(i+1)=integral (fun,t0,i*delt);

end

%Calculate s(t) by finite difference
delx=(xM-x0)/m; %the size of spatial steps
deltt=(0.5%(delx"2) /D) ;nn=ceil ((tN-t0)/deltt)*2; %Calculate \Delta t

deltt=(tN-t0)/nn; %the size of time steps
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d=D*deltt/(delx"2); hd is \gamma
%Construct the matrix B
B=zeros(m+1) ;B(1,1:2)=[1-2*d,2%*d];
for i=2:m
B(i, (i-1):(i+1))=[d,1-2%d,d];
end

B(m+1, (m-1): (m+1))=[d,-2*d,1+d] ;

%Calculate the distribution of temperature T
T=zeros(m+1,nn+1);T(:,1)=Tinitial;
for j=2:nn+l

T(:,j)=B * T(:,j-1);

T(1,j)=T(1,j)-2 * d * delx * hf(deltt*(j-2));

t=t0+[0:n] *delt;

tt=t0+[0:nn] *deltt;x_1=round(1/delx)+1;
pl=plot(t,s,’b’);hold on;
p2=plot(tt,T(x_1,:),’ro’);
p3=plot([t0,tN], [0,0], k’);

set(gca, ’FontWeight’,’bold’,’fontsize’,18);

xlabel(’t’);ylabel(’s(t)’);

legend([pl p2],{’using Green’’s function ’,’using Finite Difference’},’fontsize’,20
hold off;
h———plot——————————————— yA

The inverse problem is shown in Fig. 2.4.

%hinverse problem

hf=0(x) double(x>=0.2 & x<=0.4)+double(x>=1 & x<=1.2); %h function hf=h_s(t)

t0=0;tN=2;x0=0;xM=1; %Set the domain considered
n=50; %Set the number of time steps n
delt=(tN-t0)/n; %the size of time steps
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%Construct the matrix C and s

C=zeros(n); %the matrix of collocation method
s=zeros(n,1); Y%discretization of s(t)
for i=1:n
for j=1:1i
C(i,j)=psif ((i-j+1)*delt)-psif((i-j)*delt); %psif is psi function
end

fun=0(y) -1./sqrt(pixy).*exp(-1./(4.%y)) .*hf(i*delt-y); %Green’s function
s(i)=integral (fun,t0,i*delt);
end

£f=C\s;

subplot (2,3, [1 4])

fplot(hf, [0,2],’b-");hold on;
t_plot=(t0+0.5%delt:delt:tN-0.5*delt);

plot ([t0,tN], [0,0], k- ,t_plot,f,’r--");xlabel(’t’);ylabel ("h(t)’);
axis([0,2,-10,10]);title([’\eta = ’,num2str(n)]);

%hcollocation method with TSVD
for j=1:4
cutoff=10"(j-5); % cut-off level
[U,D,V]=svd(C) ;de=D(1,1)*cutoff;
k=1;
while D(k,k) >= de
V(:,k)=V(:,k)/D(k,k);
k=k+1;
if k>n
break;
end
end

k=k-1;

3 doi:10.6342/NTU202001041



Us=U’*s;

f_svd=V(:,1:k)*Us(1:k); Jmotivated by reduced forms of SVD

subplot(2,3,j+1+floor(j/3))

fplot (hf, [0,2],’b-") ;hold on;

plot ([t0,tN], [0,0],°k-’,t_plot,f_svd,’r--);
axis([t0,tN,-0.2,1.2]);xlabel(’t’);ylabel (’h(t)’);

title([’\mu / \sigma_1 = ’,num2str(cutoff),’ and k = ’,num2str(k)]);
fh——-plot———————————————— - %

end

function y=psif(t) %psif is \psi function

y=zeros(1,length(t));
for i=1:length(t)
if £(i)>0
y(1)=-(2/sqrt(pi)*sqrt(t (1)) . kexp(-1./(4xt(1)))-(1-erf (1./(2*sqrt(t(1))))))
else
y(1)=0;
end

end

B.2 Example 3.2

The result is shown in Fig. 3.2.

f=0(x) 2*x.*double(x>=0 & x<=0.5)+2*(1-x) .*double(x>0.5 & x<=1);
L=1;T=1;D=0.01;x0=0;xN=L;M=25;
dely=L/M;
k=0(n,x,y,t) 2/L* exp(-(n*pi). 2*D.*t/(L"2)) .*sin(n*pi*x/L) .*sin(n*pi*y/L);
kk=zeros(1,M+1) ;K=zeros (M+1,M+1) ;G=zeros (M+1,1) ;
for i=1:M+1

for j=1:M+1

for nn=1:100
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kk(nn)=k(nn, (i-1) *dely, (j-1)*dely,1);
end
K(i,j)=sum(kk);
end
G(1)=g2((i-1)*dely,T);
end
K(C:,1)=K(:,1)/2;K(: ,M)=K(:,M)/2;K=K*dely;
x_plot=(0:M)*dely;

for j=1:4
cutoff=10"(j-5);
[U,D,V]=svd(K) ;de=D(1,1)*cutoff;
1=1;
while D(1,1) >= de
V(:,1)=v(:,1)/D(1,1);
1=1+1;
if 1>M+1
break;
end
end
1=1-1;
uG=U"’*G;
f_svd=V(:,1:1)*uG(1:1);

subplot(2,2,j)

fplot (£, [x0,xN],’b--");hold on;
plot(x_plot,f_svd,’ro’, [x0,xN], [0,0],’k’);axis([x0,xN,0,1.2]);
set(gca, ’FontWeight’,’bold’,’fontsize’,16);

xlabel(’x’) ;ylabel("f(x)’);

title([’\mu / \sigma_1 = ’ ,num2str(cutoff),’ and k = ’,num2str(1)]);

end
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