
doi:10.6342/NTU202003019

國立臺灣大學電機資訊學院電機工程學研究所

碩士論文

Graduate Institute of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

基於 AQuA 之自動化安卓軟硬體互操作性測試

Automated Platform Interoperability Testing for Android

Application based on AQuA

陳昱成

Yu-Chen Chen

指導教授：王凡 博士

Advisor: Farn Wang, Ph.D.

中華民國 109 年 7 月

July, 2020

doi:10.6342/NTU202003019

i

doi:10.6342/NTU202003019

ii

誌謝

能完成這篇論文，我要特別感謝我的指導教授王凡老師，程式出問題時老師

總是不厭其煩的幫助我解決瓢蟲，還有我的爸爸、媽媽、哥哥的支持，也要感謝

實驗室的冠甫、宇謙、書維對我的支持與幫忙，謝謝大家。在論文有困難需要幫

忙時互相討論，一起解決問題是撰寫論文時的一大樂趣。也感謝歷屆學長姐幫我

們把路都鋪好了，讓我們可以乘坐在巨人的肩膀上寫程式。

doi:10.6342/NTU202003019

 iii

中文摘要

 在現在這個人人一台智慧型手機的時代，手機 APP 呈現爆炸性的成長，但對

其好壞的判斷標準卻不多，目前我們看一個 APP 的好壞標準大概都是去商店看下

面評價有幾星，這樣的做法略顯主觀，而其中一個組織 Application Quality

Alliance，簡稱 AQuA，寫了一套評斷 APP 的標準，本篇論文把這套標準程式化、

降低人工成本，盡量透過模擬使用者操作，達成黑箱測試來評斷測試 APP 有無符

合 AQuA 所列之標準。本篇論文包含以下技術:

I. 根據 AQuA 所制訂之標準，實現模擬測試者使用安卓手機操作硬體與系統，

達到軟硬體與系統互操作性測試。

II. 透過執行步驟與測試結果，測試者可取得相應資訊與潛在問題。

關鍵字：程式品質、自動化測試、安卓程式、黑箱測試

doi:10.6342/NTU202003019

 iv

ABSTRACT

 In this generation, everyone holds a smart phone and the applications have become

numerous. There are not many standards can decide an application’s quality. People

usually judge application’s quality through the play store’s user responses. These

responses may be a little bit subjective. Among the standards, there is an organization

called AQuA (Application Quality Alliance). They wrote a suite of standard for android

application. In this thesis, we transform these manual operations into programs,

simulating people’s behavior as possible and achieve black-box testing to evaluate the

application’s quality. This thesis includes following techniques:

I. According to AQuA, we simulate the behaviors of hardware operating and system

changing to achieve the interoperability testing of hardware and software.

II. Testers can gain potential problems through testing steps and test reports.

Keywords：application quality、automated testing、Android application、black-box

testing

doi:10.6342/NTU202003019

 v

CONTENTS

口試委員會審定書 ... #

誌謝 ..i

中文摘要 ... iii

ABSTRACT ...iv

CONTENTS .. v

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

Chapter 1 Introduction .. 1

1.1 Motivation... 1

1.2 Purpose ... 2

1.3 Research Method .. 2

1.4 Organization ... 3

Chapter 2 Related Work .. 4

2.1 Stress Testing of Android Applications .. 4

2.2 Application Quality Testing .. 5

Chapter 3 Preliminaries .. 8

3.1 Android Automated Testing Framework .. 8

3.2 Android Application Structure .. 11

3.3 Android Debug Bridge ... 13

3.4 Test as a Dragon .. 14

Chapter 4 Testing Algorithms and Procedures ... 16

4.1 AQuA 3.1&3.2&3.3 HTTP and Network Connectivity 19

doi:10.6342/NTU202003019

 vi

4.1.1 AQuA 3.1 HTTP Usage... 19

4.1.2 AQuA 3.2&3.3 Network Connectivity .. 20

4.2 AQuA 3.4 Resource downloading .. 21

4.3 AQuA 4.7 Effects of timezone change ... 22

4.4 AQuA 6.1&6.2 Sdcard operation ... 23

4.5 AQuA 8.1 Language - Correct operation .. 24

4.6 AQuA 9.1&9.2&9.3 Suspend and resume .. 25

4.7 AQuA 9.5 Resource sharing ... 26

Chapter 5 Test Reports .. 27

5.1 AQuA 3.1 HTTP Usage & AQuA 3.2&3.3 Network Connectivity 28

5.2 AQuA 3.4 Resource downloading .. 30

5.3 AQuA 4.7 Effects of timezone change ... 31

5.4 AQuA 6.1&6.2 Sdcard operation ... 33

5.5 AQuA 8.1 Language - Correct operation .. 34

5.6 AQuA 9.1&9.2&9.3 Suspend and resume .. 37

5.7 AQuA 9.5 Resource sharing ... 38

Chapter 6 Conclusion .. 40

6.1 Summary ... 40

6.2 Future work ... 40

Reference ... 41

doi:10.6342/NTU202003019

 vii

LIST OF FIGURES

Fig. 3.4-1 issue tracker .. 15

Fig. 3.4-2 redmine ... 15

Fig. 4.1-1 AQuA 3.1&3.2&3.3 HTTP and Network Connectivity 19

Fig. 4.2-1 AQuA 3.4 Resource Downloading .. 21

Fig. 4.3-1 AQuA 4.6 Effects of daylight time change ... 22

Fig. 4.4-1 AQuA 6.1&6.2 Sdcard operation .. 23

Fig. 4.5-1 AQuA 8.1 Language – Correct operation ... 24

Fig. 4.6-1 AQuA 9.1&9.2&9.3 Suspend and resume .. 25

Fig. 4.7-1 AQuA 9.5 Resource sharing .. 26

Fig. 5.1-1 “OPEN POINT” crashed .. 29

Fig. 5.3-1 “斷食追蹤” crashed ... 32

Fig. 5.3-2 “OPEN POINT” crashed ... 32

Fig. 5.5-1 “極光清理” in English .. 35

Fig. 5.5-2 “極光清理” in Chinese (Simplified) .. 35

Fig. 5.5-3 “極光清理” in Chinese (Traditional) .. 36

Fig. 5.7-1 “OPEN POINT” crashed .. 39

doi:10.6342/NTU202003019

 viii

LIST OF TABLES

Table 2.2-1 The test cases we write ... 7

Table 5.1-1 Test report of AQuA 3.1&3.2&3.3 ... 28

Table 5.2-1 Test report of AQuA 3.4 ... 30

Table 5.3-1 Test report of AQuA 4.7 ... 31

Table 5.4-1 Test report of AQuA 6.1&6.2 ... 33

Table 5.5-1 Test report of AQuA 8.1 ... 34

Table 5.6-1 Test report of AQuA 9.1&9.2&9.3 ... 37

Table 5.7-1 Test report of AQuA 9.5 ... 38

doi:10.6342/NTU202003019

 1

Chapter 1 Introduction

1.1 Motivation

Years ago, people used to browse website using computer or laptop. As

smartphone took place dumbphone recently, websites and applications such as video

streaming, games, second-hand car dealer, and lots of companies developed their own

applications on smartphone. While using smartphone applications, an issue occurs that

how to determine the quality of an application. Low quality may decrease the number of

users and then lose profit. The quality testing issues above had two major challenges:

I. High cost [1]: User interfaces differ from application to application in spite of

slight difference between two system versions, even the same system version but

two different devices. This kind of heterogeneity [2] results in failure of porting

one testing script for this application or device to another application or device,

and the testing script must be rewritten. Thus, many software test cases still rely

on manual operation which cost significant and the test report can also be

different from person to person.

II. Lack of testing standards: up to what number of testing cases can you ensure the

quality of application? Does the testing script gain sufficient confidence? This is

the reason why we lack testing standards.

doi:10.6342/NTU202003019

 2

1.2 Purpose

 As the challenges mentioned above and the rapidly growing number of

application, world’s companies observe the profit among it. They keep developing their

own app quality specifications and criteria. And in this one, there is a non-profit global

organization called AQuA (Application Quality Alliance) which headed by volunteers

and knowledge contributors and holds the most influential. AQuA dedicates themselves

to support the industry improving smartphone application quality, cooperating with

business partner such as Motorola, Nokia, LG. So far, AQuA have announced several

application quality criteria including memory usage, network connectivity, event

handling, messaging and calls, etc. In Addition, each application quality criteria test

distinctly defined test scope, test steps, and test results.

 Till this moment in the whole world, the people who uses smartphone over

who have cellphone is approximately 70% ~ 80%. Among them, the market share of

Android is obviously more than iOS. Therefore, we developed an automated testing

script for AQuA testing criteria on Android platform.

1.3 Research Method

 In this thesis, we focused on the interoperation of the hardware and the

software. We implemented black-box automated testing scripts on our platform, TaaD

(Test as a Dragon) based on AQuA. When user wants to test an Android application,

doi:10.6342/NTU202003019

 3

what he or she needed to do is only to connect the device to the computer and click the

AQuA button in TaaD. Once AQuA button be clicked, the testing scripts we designed

based on AQuA will start from beginning to end. The procedure of AQuA button can be

divide into three part: head, middle, and result. Each of the testing scripts we put in head

phase will only execute once. The middle phase will take a number parameter from user,

and go through each page until the number of pages we passed reach the number

parameter. The testing scripts we placed in middle phase will execute in every page we

got. After all, an AQuA testing report will be generated and will be uploaded to our

server.

1.4 Organization

 In Chapter 2 and 3, we introduced related work, frameworks, and some

preliminaries we used. In Chapter 4, we showed the three part of AQuA button and

presented the algorithm of the testing scripts we designed based on AQuA. In Chapter 5,

we showed our testing results. In Chapter 6, we had a conclusion of our research and

future wok.

doi:10.6342/NTU202003019

 4

Chapter 2 Related Work

2.1 Stress Testing of Android Applications

If we had done unit test and functionality test, then it will not be too much to

do stress testing.

The easy way is hiring a monkey, allowing it to press anything it could touch

casually. Under this circumstance, is our application still fine? Thus, Google’s Android

development team developed a command-line tool called Monkey. However, Monkey is

more intelligent than the real monkey. You can command Monkey to trigger some

events periodically or limit the button’s proportion, etc. Monkey includes a number of

options, but they can break down into four primary categories: Basic configuration

options, Operational constraints, Event types and frequencies, Debugging options. Due

to triggering random events, Monkey has vital limitations.

A. R. Fasolino, D. Amalfitano, and P. Tramontana et al. proposed an approach

based on stress testing and regression testing [3][4][5]. They automatically built an

application GUI model and generated executable test cases by a crawler.

The approaches mentioned above need no programming scripts. This is not only

advantage but also disadvantage. Within the limitation of non-scripts, we can only

detect crash result, furthermore cannot obtain the information of system and user

experience. In comparison with our automated testing tool, we can either do monkey or

doi:10.6342/NTU202003019

 5

obtain the information of system and user experience.

2.2 Application Quality Testing

AQT (Application Quality Testing) is an automated black-box testing

platform. It is designed for developing testing techniques to provide API specification

for screenshot and management of the screen activity in Android device [6]. Making use

of AQT, developers can send ADB commands through the platform to Android device

and execute. The platform can perform installation, uninstallation, click, swipe,

modification of the volume, making phone call, and obtain the information of logcat,

CPU usage status, memory usage status, and XML layouts.

Every time AQT performing an action, the result will be save into an

actionResult list. Developers can check if the action successful or not by checking

actionResult. For example, when developers uninstall an application on device, there

will be a “TRUE” message in the returned actionResult. If the uninstallation fails, there

would be a “FALSE” message in the returned actionResult. On the other hand, when

developers want to check the status of hardware, for example, GPS, the returned

actionResult will contain “TRUE” if the GPS wis activated. The returned actionResult

will contain “FALSE” if the GPS is deactivated. In addition to actionResult, AQT will

give a problem detection in the beginning. Developers can take the report as a reference.

doi:10.6342/NTU202003019

 6

Surya Kant Josyula, and Daya Gupta implemented an application that

connect their server. Through the communication between server, they will test the

interoperability of the device’s electrical components [7]. Cuixiong Hu, and Iulian

Neamtiu proposed a method to automated find bugs in GUI [8].

Liu et al. mentioned an automated testing method which according to both

Capture and Replay approach for Android applications [9]. The method converted

captured user interaction events and input arguments into test scripts and replayed by

Robotium.

Lin, Wang, and Hsiao had implemented some AQuA test cases in AQT

[10][11][12]. In this thesis and K. F. Chen, we completed the rest of AQuA test. This

thesis focused on the interoperation of hardware and software, and K. F. Chen put an

effort on user experience [13]. Table 2.3-1 listed the terms which we implemented, and

the terms with * mean those are finished by K. F. Chen.

doi:10.6342/NTU202003019

 7

Table 2.2-1 The test cases we write

ID Title ID Title

AQuA

3.1&3.2&3.3

Network connectivity *AQuA 7.14 Spelling errors

AQuA 3.4

Resource

downloading

AQuA 8.1 Language - Correct operation

AQuA 4.7

Effects of timezone

changing

AQuA

9.1&9.2&9.3

Suspend and resume

AQuA

6.1&6.2

Sdcard operation AQuA 9.5 Resource sharing

*AQuA 7.1 Readability

*AQuA

13.1&13.4

Scrolling in menus & Text field

scrolling

*AQuA 7.2 Read time *AQuA 13.2 Text field scrolling

*AQuA 7.5

Key layout ease of

use

*AQuA 13.5 Multiple touch

*AQuA 7.8 Function progress

doi:10.6342/NTU202003019

 8

Chapter 3 Preliminaries

 We review some Android automated testing techniques and some Android

automated testing frameworks. We will take a briefly look at how these techniques

detect the bugs or unusual results based on stress testing, UI (user interface) test scripts,

response capture, etc.

3.1 Android Automated Testing Framework

 Appium is an open source automated testing tool. It can be roughly

considering as a HTTP web server. It can manage a number of WebDriver sessions and

has had their REST API opened. When collaborate with Selenium WebDriver API and

specific client libraries, it can have the advance ability of crossing platform testing. In

addition to supporting almost every programming language, it can execute on both

Android and iOS.

 Espresso Test Recorder is a testing script generation tool. It can establish your

own UI testing scripts by recording your testing scenario without writing any line of

program. You can also use it to add an assert into your application screenshot to test

particular UI element.

doi:10.6342/NTU202003019

 9

Robotium is an open source Android automated UI black-box testing

framework. It provides finding and assert API, and can simulate gesture operation on

elements like click, long click, swipe, etc. With the support of it, test case developers

can write function using JAVA and user acceptance testing scenarios, spanning multiple

Android activities. On the other side, Robotium can collaborate with Maven, Gradle,

and Ant, and can perform testing by your code or even non-code which just based on the

APK. Robotium has an advance version called Robotium Recorder. Robotium Recorder

is more powerful than Robotium. It is a pity that it needs pay, and not free of charge.

Sikuli is a pretty interesting automated UI testing tool. It started as an open

source project originally by Taiwanese student in MIT (Massachusetts Institute of

Technology), then it was taken by CU Boulder (University of Colorado Boulder) and

released public. It uses real time pattern recognition of image powered by OpenCV to

detect the trigger GUI components and send events for UI testing [14]. Detection of

elements pop out or disappear, and click or swipe ain’t too much for Sikuli to jam.

Sikuli’s UI comes quite friendly. It is basically the button you can click. After you

clicked, Sikuli will do screenshot and inject your Jython code. The power of image

recognition in Sikuli can not only use as a testing tool but also book tickets automatized

for you.

doi:10.6342/NTU202003019

 10

MonkeyRunner is an API toolkit in Android SDK which supported by

Google’s Android development team. Programmers can write python script to simulate

keyevent, click, swipe, etc. Once you write your script in advance, MonkeyRunner can

complete a series of simulated action for you, achieving the purpose of automated

testing. MonkeyRunner has three main modules: MonkeyRunner, MonkeyImage,

MonkeyDevice. MonkeyRunner class provides the API to connect the device or

emulator and is responsible for controlling the mission in your script. MonkeyImage

class can do screenshot and then compare the similarity of two screenshots.

MonkeyDevice class provides the API such as installing, uninstalling, opening activity,

sending keyevent, and is mainly in charge of delivering commands to smartphone. The

difference between MonkeyRunner and Monkey is Monkey does not support scripts and

can only generate some random events.

UI Automator is a simple UI automated testing framework provided by

Google’s Android development team. Within Android testing, UI testing accounts for

lots proportion. In tradition, people testing UI in labor had more bothering and boring.

With the invention of UI Automator, it solved the potential error that might occur in

traditional testing. It is more convenient to test different mission or different operating

scenario using the framework.

doi:10.6342/NTU202003019

 11

Espresso is an automated UI testing framework developed by Google’s

Android development team. It is an automated UI testing tool and is mainly aimed at

emulate user operations at a single app project. It provides synchronization testing and

uses an independent UI thread to work. Espresso is suitable for white-box testing. In

traditional testing, we often used sleep or retry to catch UI after UI refreshed. The

advantage of Espresso is the synchronization of the UI thread. We do not need to write

waiting code, predicting UI refreshed. It can automated detect whether main thread is

idle or not, and execute the program we wrote. In other words, Espresso is dependent on

Activity Life Cycle.

3.2 Android Application Structure

At present, people develops Android applications in Kotlin or Java mostly and

the screen page in XML. The Android SDK (Software Development Kit) will include all

of data and code into an APK (Android package). After all, APK can be installed on

user’s Android device. APK elements can be divided into four different types:

I. Activities: A single activity represents a page of UI. An APK has many activities.

For example, when user wants to make a phone call, he/she will open the contact

application. At the beginning of contact application, there will be a list of contacts.

This page is the main activity of the contact application. Then, user might tap

doi:10.6342/NTU202003019

 12

somebody which user wants to call and the screen will change into the page of

detailed information. That page is another activity.

II. Services: The components run in background. It is similar to the kernel service in

OS. Service does not offer UI, and thus users will not be able to touch the service

or notice it. For example, getting data through network or the interaction between

activities.

III. Content providers: One single content provider can manage one group of shared

application data. Developers can save the data into file system, SQL, network, or

anywhere they want. If another application wants to access or modify the data, it

needs the permission of content provider.

Broadcast receivers: It is a component for broadcasting the notifications. Most

notifications are broadcasted by system. For example, low battery, screen closing, etc.

Applications can also broadcast, for example, notifying the specific resource finished

downloading and can be used.

doi:10.6342/NTU202003019

 13

3.3 Android Debug Bridge

ADB (Android Debug Bridge) is a command-line tool includes in the Android

SDK Platform-Tools package. It provides access to an Android device like Unix shell,

so that you can command the device. ADB executes like a client-server program that

includes three components: client, adbd, server. Client runs on developer’s computer as

a Unix shell and adbd is a daemon process runs on Android device. Server is

responsible for the communication between the client and the adbd. We listed some

ADB commands in common use below:

Check device connection:

adb devices

Dump current screen XML tree:

adb shell uiautomator dump && adb pull /sdcard/window_dump.xml .

Screenshot:

adb shell screencap -p /sdcard/screencap.png && adb pull /sdcard/screencap.png

Go Home page:

adb shell input keyevent 3

Go back:

adb shell input keyevent 4

doi:10.6342/NTU202003019

 14

3.4 Test as a Dragon

TaaD (Test as a Dragon) is an automated black-box testing platform we

developed. It can test applications across three systems: Web, Android, and iOS. When

developers open an application through TaaD, TaaD will convert the screen’s UI into

our IR. IR can tell developers which element on screen is clickable or text input field, so

that developers can use IR for black-box testing. If an Android application has web or

iOS version, their IRs are supposed to be same. Here are some arguments and APIs if

developers want to write testing scripts:

 currentStateDict: A dictionary saves the current screen’s IR.

 automataDict: A dictionary saves our currentStateDict from TaaD executed.

 Reach: If developers want to go to next page or some button, they can return

callAlgorithm and Reach and the number of the button in TaaD. TaaD will bring

the browser or device to another page.

 queryCurrentStateIndex: If developers want to do some action through our IR, they

need to get current screen’s IR first. The way they get current IR is to call

queryCurrentStateIndex to get currentStateIndex and the current IR will be in

automataDict[currentStateIndex].

doi:10.6342/NTU202003019

 15

Fig. 3.4-1 issue tracker

Fig. 3.4-2 redmine

Fig. 3.4-1 and Fig. 3.4-2 is the email issue tracker and redmine we will send when

generate test reports.

doi:10.6342/NTU202003019

 16

Chapter 4 Testing Algorithms and Procedures

First, we implemented APIs for others who also wants to write Android AUT

(Application Under Test) scripts on TaaD. Then, we’ll present our testing algorithms

based on AQuA test cases. Here are APIs we implemented:

 check_app_in_background.check(finding_string):

This API can help developers checking if the application is still work in background or

not. When calling, developers need to give the application’s package name as

finding_string argument.

 contact.accessing():

This API modifies the contacts on device. Developers must be careful when using this

API because after calling it, contacts will be clear.

 install_sdcard_check.can_install_to_sdcard(apk_path):

This API can tell developers where an APK can be installed. When calling, developers

need to give the APK path in computer as apk_path argument. In APK’s manifest.xml,

installLocation(0x010102b7) records a number. 0 and 2 represents that the APK can

install to both internal storage and sdcard, and the default is 0. 1 represents that the APK

is not allowed to install to sdcard. This API will return True if the number is 0 or 2, else

False.

 check_installation.check(package_name):

doi:10.6342/NTU202003019

 17

This API can help developers checking if the application installed successfully. When

calling, developers need to give the application’s package name as package_name

argument.

 listening_logcat.runProcess(finding_string):

This API can tell developers if specific event had had triggered from logcat. We used it

for listening HTTP request events. When calling, developers need to give the event

keyword which they want to find as finding_string argument. It will return True if found

it in logcat, else False.

 multitouch_check .check(apk_path):

Multitouch has two explanations. One is touching same position sequentially. Another is

touching two positions simultaneously This API can tell developers if an application

accepts touching two positions simultaneously. When calling, developers need to give

the APK path in computer as apk_path argument. It will return True if XML file accepts

multitouch, else False.

 ping_google.ping():

This API can tell developers if the network of the device is connecting. Nowadays, how

do people check the Internet connection? The answer is open your command line or

terminal, and ping 8.8.8.8, which is Google’s DNS server IP. We used this method and

ping Google from our device. It will return True if ping successful, else False.

doi:10.6342/NTU202003019

 18

 take_photo():

This API can divide into three part. First, it will open the camera main activity. Then, it

will execute eventkey 27, which is take photo from rear lens. Finally, it will execute

eventkey 4, which is go back and save the photo.

 Uninstallation.uninstall(package_name):

Before, we only had checking uninstallation API related to uninstallation. Now, this API

can help developers uninstalling the application if they want. When calling, developers

need to give the application’s package name as package_name argument. It will return

True if remove successful, else False. If the returned value is False, then probably the

application is not installed on the device at the beginning.

 battery.change(percent):

This API can fake your device battery percent. Give an integer in 1~100 as argument.

 broadcast.broadcast():

This API can send broadcast to specific package. Default we send to com.android.test.

 gps.access():

This API can tell developers if the GPS of the device is on. It will return True if gps

component is on work, else False.

doi:10.6342/NTU202003019

 19

4.1 AQuA 3.1&3.2&3.3 HTTP and Network Connectivity

Fig. 4.1-1 AQuA 3.1&3.2&3.3 HTTP and Network Connectivity

4.1.1 AQuA 3.1 HTTP Usage

Before testing AQuA 3.2 and 3.3. We will check if current activity uses http. Our HTTP

API will tell us the result. We will put this result and the result of AQuA 3.2 and 3.3

doi:10.6342/NTU202003019

 20

together at the test report section. The diagram is shown in Fig. 4.1-1.

4.1.2 AQuA 3.2&3.3 Network Connectivity

As we show in Fig. 4.1-1, first, we open airplane mode to disconnect the network. Then,

we will turn it back and check whether the application still works fine. If the activity

cannot pass all the checkpoint, the test result is FAIL, else PASS.

doi:10.6342/NTU202003019

 21

4.2 AQuA 3.4 Resource downloading

Fig. 4.2-1 AQuA 3.4 Resource Downloading

The diagram we shown in Fig. 4.2-1 is AQuA 3.4. When we entering an activity, we

will loop every button and isLongClickable button. Every time we press a button we

will check if there is button which text contain “save” or “download” or “下載” or “儲

存”. If the result is Yes, we will download it.

doi:10.6342/NTU202003019

 22

4.3 AQuA 4.7 Effects of timezone change

Fig. 4.3-1 AQuA 4.6 Effects of daylight time change

In AQuA 4.7, our purpose is to test if the time change of the device will affect the others

components and the diagram is shown in Fig. 4.3-1. First, we will change our device

time to the future 1 hours and see if the network and phone call work fine. Then, we will

change back the time and check again. If everything works fine, the test report is PASS.

If any of them fails, it is FAIL.

doi:10.6342/NTU202003019

 23

4.4 AQuA 6.1&6.2 Sdcard operation

Fig. 4.4-1 AQuA 6.1&6.2 Sdcard operation

The diagram we combined AQuA 6.1 with AQuA 6.2 is shown in Fig. 4.4-1. What

AQuA 6.1 wants to know is whether the APK can use sdcard. If the APK specify cannot

use sdcard, it is not required. If yes, we will try rnmount sdcard and run monkey to

check if the application is still work.

doi:10.6342/NTU202003019

 24

4.5 AQuA 8.1 Language - Correct operation

Fig. 4.5-1 AQuA 8.1 Language – Correct operation

In AQuA 8.1, we want to check if we change the system language, the application

language will change or not. Thus, we change device language first. Then, we will close

and restart the application. If the application’s language does not change, the test report

is FAIL, else PASS. The diagram is shown in Fig. 4.5-1.

doi:10.6342/NTU202003019

 25

4.6 AQuA 9.1&9.2&9.3 Suspend and resume

Fig. 4.6-1 AQuA 9.1&9.2&9.3 Suspend and resume

We combined AQuA 9.1, 9.2, and 9.3 in Fig. 4.6-1. Here, we want to check all of the

hardware listed in AQuA. When we first open an application, we will go Home page

and try accessing GPS, Bluetooth, WIFI, camera, touching screen, and phone calling.

After, we go back the application and check if the application works fine.

doi:10.6342/NTU202003019

 26

4.7 AQuA 9.5 Resource sharing

Fig. 4.7-1 AQuA 9.5 Resource sharing

Fig. 4.7-1 represents AQuA 9.5. In AQuA 9.5 they defined the shared database as

contact book. When we get in an activity, we will go Home page and try modify and

delete the contacts on the device. After accessing the contacts, we go back to the

application and check if it is still work.

doi:10.6342/NTU202003019

 27

Chapter 5 Test Reports

Here, we show our AQuA test reports in this section. The devices we use is

Android emulator Nexus 6P API 23 (4G RAM / 10G ROM, Android version is 7.1.1).

The applications we test are “神盾測速照相”, “歡歌-免費在線 K歌，全民音樂交

友必備軟體”, “極光清理 2020 — 殺毒、加速、清理、應用鎖”, “全民健保

行動快易通 | 健康存摺”, “間歇性斷食 - 零卡路里斷食追蹤，斷食計時器，

禁食，減肥”, “Akinator”, “接龍”, “郵保鑣”, “Hi-Life VIP”, “OPEN

POINT：消費累點 回饋優惠”. First 7 of them have 4~5 star rate on google play. 郵

保鑣, Hi-Life VIP have only 3 star on google play. The last one has only 2 star on

google play. Users can find these application under SUT folder.

doi:10.6342/NTU202003019

 28

5.1 AQuA 3.1 HTTP Usage & AQuA 3.2&3.3 Network

Connectivity

Table 5.1-1 Test report of AQuA 3.1&3.2&3.3

APP Network Connectivity

神盾測速照相 PASS

歡歌-免費在線 K歌，全民音樂交友必備軟體 PASS

極光清理 2020 — 殺毒、加速、清理、應用鎖 PASS

全民健保行動快易通 | 健康存摺 PASS

間歇性斷食 - 零卡路里斷食追蹤，斷食計時器，禁食，減肥 PASS

Akinator PASS

接龍 Not required

郵保鑣 PASS

Hi-Life VIP PASS

OPEN POINT：消費累點 回饋優惠 FAIL

doi:10.6342/NTU202003019

 29

Fig. 5.1-1 “OPEN POINT” crashed

The test report of AQuA 3.1&3.2&3.3 is shown in Table 5.1-1. Fig. 5.1-1 is the failure

result of application, “OPEN POINT：消費累點 回饋優惠”. The application crashed

when we check the application working fine.

doi:10.6342/NTU202003019

 30

5.2 AQuA 3.4 Resource downloading

Table 5.2-1 Test report of AQuA 3.4

APP resource downloading

神盾測速照相 Not required

歡歌-免費在線 K歌，全民音樂交友必備軟體 Not required

極光清理 2020 — 殺毒、加速、清理、應用鎖 Not required

全民健保行動快易通 | 健康存摺 Not required

間歇性斷食 - 零卡路里斷食追蹤，斷食計時器，禁食，減肥 Not required

Akinator Not required

接龍 Not required

郵保鑣 Not required

Hi-Life VIP Not required

OPEN POINT：消費累點 回饋優惠 Not required

Messenger PASS

Table 5.2-1 shows the test report of AQuA 3.4. The results may be predictable because

seldom applications need to download resources additionally.

doi:10.6342/NTU202003019

 31

5.3 AQuA 4.7 Effects of timezone change

Table 5.3-1 Test report of AQuA 4.7

APP Effects of timezone change

神盾測速照相 PASS

歡歌-免費在線 K歌，全民音樂交友必備軟體 PASS

極光清理 2020 — 殺毒、加速、清理、應用鎖 PASS

全民健保行動快易通 | 健康存摺 PASS

間歇性斷食 - 零卡路里斷食追蹤，斷食計時器，禁食，減肥 FAIL

Akinator PASS

接龍 PASS

郵保鑣 PASS

Hi-Life VIP PASS

OPEN POINT：消費累點 回饋優惠 FAIL

doi:10.6342/NTU202003019

 32

Fig. 5.3-1 “斷食追蹤” crashed

Fig. 5.3-2 “OPEN POINT” crashed

Fig. 5.3-1 and Fig. 5.3-2 are the failure event in Table 5.3-1 when we check application

working fine.

doi:10.6342/NTU202003019

 33

5.4 AQuA 6.1&6.2 Sdcard operation

Table 5.4-1 Test report of AQuA 6.1&6.2

APP Sdcard operation

神盾測速照相 Not required

歡歌-免費在線 K歌，全民音樂交友必備軟體 Not required

極光清理 2020 — 殺毒、加速、清理、應用鎖 Not required

全民健保行動快易通 | 健康存摺 Not required

間歇性斷食 - 零卡路里斷食追蹤，斷食計時器，禁食，減肥 Not required

Akinator PASS

接龍 PASS

郵保鑣 Not required

Hi-Life VIP Not required

OPEN POINT：消費累點 回饋優惠 Not required

Table 5.4-1 shows the test report of sdcard operation. “Akinator” and “接龍” can run

successfully after remount the sdcard. Others APK file does not allow to use sdcard.

doi:10.6342/NTU202003019

 34

5.5 AQuA 8.1 Language - Correct operation

Table 5.5-1 Test report of AQuA 8.1

APP

Chinese

(Traditional)

Chinese

(Simplified)

English

神盾測速照相 PASS FAIL FAIL

歡歌-免費在線 K歌，全民音樂交友必備軟體 PASS FAIL FAIL

極光清理 2020 — 殺毒、加速、清理、應用鎖 PASS PASS PASS

全民健保行動快易通 | 健康存摺 PASS FAIL FAIL

間歇性斷食 - 零卡路里斷食追蹤，斷食計時器，

禁食，減肥

PASS PASS PASS

Akinator FAIL FAIL PASS

接龍 FAIL FAIL PASS

郵保鑣 PASS FAIL FAIL

Hi-Life VIP PASS FAIL FAIL

OPEN POINT：消費累點 回饋優惠 PASS FAIL FAIL

doi:10.6342/NTU202003019

 35

Fig. 5.5-1 “極光清理” in English

Fig. 5.5-2 “極光清理” in Chinese (Simplified)

doi:10.6342/NTU202003019

 36

Fig. 5.5-3 “極光清理” in Chinese (Traditional)

Table 5.5-1 shows the language list after we changed system language. Fig. 5.5-1, Fig.

5.5-2, and Fig. 5.5-3 are the screenshot of all-PASS application, “極光清理 2020 —

殺毒、加速、清理、應用鎖”.

doi:10.6342/NTU202003019

 37

5.6 AQuA 9.1&9.2&9.3 Suspend and resume

Table 5.6-1 Test report of AQuA 9.1&9.2&9.3

APP Suspend and resume

神盾測速照相 PASS

歡歌-免費在線 K歌，全民音樂交友必備軟體 PASS

極光清理 2020 — 殺毒、加速、清理、應用鎖 PASS

全民健保行動快易通 | 健康存摺 PASS

間歇性斷食 - 零卡路里斷食追蹤，斷食計時器，禁食，減肥 FAIL

Akinator PASS

接龍 PASS

郵保鑣 PASS

Hi-Life VIP PASS

OPEN POINT：消費累點 回饋優惠 FAIL

Table 5.6-1 shows the results after we access the hardware list in AQuA. “間歇性斷食

- 零卡路里斷食追蹤，斷食計時器，禁食，減肥” and “OPEN POINT：消費累點 回

饋優惠” failed after we accessed the hardware and go back the application.

doi:10.6342/NTU202003019

 38

5.7 AQuA 9.5 Resource sharing

Table 5.7-1 Test report of AQuA 9.5

APP Resource sharing

神盾測速照相 PASS

歡歌-免費在線 K歌，全民音樂交友必備軟體 PASS

極光清理 2020 — 殺毒、加速、清理、應用鎖 PASS

全民健保行動快易通 | 健康存摺 PASS

間歇性斷食 - 零卡路里斷食追蹤，斷食計時器，禁食，減肥 PASS

Akinator PASS

接龍 PASS

郵保鑣 PASS

Hi-Life VIP PASS

OPEN POINT：消費累點 回饋優惠 FAIL

doi:10.6342/NTU202003019

 39

Fig. 5.7-1 “OPEN POINT” crashed

Table 5.7-1 shows the results after we modify the contact database. Fig. 5.7-1 is the

failure event of “OPEN POINT：消費累點 回饋優惠”. It has the similar behavior with

the result we access hardware.

doi:10.6342/NTU202003019

 40

Chapter 6 Conclusion

6.1 Summary

The test cases above are the part of interoperability of hardware and software in

AQuA. We implement it for testers who want to test their application’s quality. Testers

can get test reports and check the potential problems of the application.

We transform the test cases from manual into automated testing. As long as user

download our AQuA project from TaaD website, he or she can perform his/her own

AQuA testing on any android application without write any other codes.

6.2 Future work

Recently, TaaD can perform testing on iOS system. At the future, there will be an

AQuA – like version for iOS version. iOS system is a little different to Android system,

such as sdcard. iOS cannot plug in external sdcard. Thus, we cannot directly transplant

the original AQuA into iOS version.

doi:10.6342/NTU202003019

 41

Reference

[1] A. Seesing and A. Orso, “InsECTJ: a generic instrumentation framework for

collecting dynamic information within Eclipse,” in Proceedings of the 2005

OOPSLA workshop on Eclipse technology eXchange, 2005, pp. 45-49: ACM.

[2] Chawla and A. Orso, “A generic instrumentation framework for collecting dynamic

information,” The ACM/SIGSOFT International Symposium on Software Testing

and Analysis, In Online Proc. of the ISSTA Workshop on Empirical Research in

Software Testing, vol. 29, no. 5, pp. 1-4, 2004.

[3] R. Fasolino, D. Amalfitano, and P. Tramontana, “A gui crawling-based technique

for android mobile application testing,” in 2011 IEEE fourth international

conference on software testing, verification and validation workshops, 2011, pp.

252-261: IEEE.

[4] R. Fasolino, D. Amalfitano, G. Imparato, P. Tramontana, and S. De Carmine, “A

toolset for GUI testing of Android applications,” in 2012 28th IEEE International

Conference on Software Maintenance (ICSM), 2012, pp. 650-653: IEEE.

[5] M. Memon, A. R. Fasolino, D. Amalfitano, P. Tramontana, and S. De Carmine,

“Using GUI ripping for automated testing of Android applications,” in Proceedings

of the 27th IEEE/ACM International Conference on Automated Software

Engineering, 2012, pp. 258-261: ACM.

doi:10.6342/NTU202003019

 42

[6] W. H. Chiang, “Experiment of a framework for automated testing of Android

Application,” Master Thesis, Electrical Engineering, National Taiwan University,

2015.

[7] S. K. Josyula, D. Gupta, “Internet of things and cloud interoperability application

based on Android” in 2016 IEEE International Conference on Advances in

Computer Applications (ICACA).

[8] C. Hu, I. Neamtiu, “Automating GUI testing for Android applications” in

Proceedings of the 6th International Workshop on Automation of Software Test.

[9] C. H. Liu, C. Y. Lu, S. J. Cheng, K. Y. Chang, Y. C. Hsiao, and W. M. Chu,

“Capture-replay testing for android applications,” in 2014 International

Symposium on Computer, Consumer and Control, 2014, pp. 1129-1132: IEEE.

[10] H. Lin, “Automated Testing for Quality of Android Applications,” Master Thesis,

Electrical Engineering, National Taiwan University, 2016.

[11] G. Q. Wang, “Automated Testing for Quality Android Applications,” Master Thesis,

Electrical Engineering, National Taiwan University, 2017.

[12] T. Hsiao, “Automated AQuA Testing for Android Applications,” Master Thesis,

Electrical Engineering, National Taiwan University, 2019.

[13] K. F. Chen, “” Master Thesis, Electrical Engineering, National Taiwan University,

2020.

doi:10.6342/NTU202003019

 43

[14] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: using GUI screenshots for search

and automation,” in Proceedings of the 22nd annual ACM symposium on User

interface software and technology, 2009, pp. 183-192: ACM.

