Fz 2 FIPFTAFRITPLIREF T T
L=

Graduate Institute of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

A3 AQUA 2 p F 1t % 5 R B8 T B T RIR
Automated Platform Interoperability Testing for Android
Application based on AQUA

fft & =
Yu-Chen Chen

R 2~ L
Advisor: Farn Wang, Ph.D.

PER R 109 & 77
July, 2020

doi:10.6342/NTU202003019

.ig/‘%&}i'ﬁzg’f LT 3T
oRXE B THF T E

R AQuA Z B $h4b42 7 BRAR 8% B 43 4 a2
Automated Platform Interoperability Testing for Android
Application based on AQuA

AHXARERE (25 R07921098) AR E#EALEHR TR
L22xRZATPUHX > NRE 109 £ 7 A 27T BATFHHHLR
FERBRORRN 0 HILEA

/ (&%)
N\

(38)

! %k é& o

PR E: ;% aé 4%X €37

>+ 2
A

RS EEHY AREURMA L ERET VEF > B AREEEE
WA RE PR A AR B A g § 4545 BB enA o L B
BT E R B AHA P BRI M F b) MBE R
PRI AR - ARRARREEAE DR Y - S B e L R E S e A

e LRGP L Aenf g B AR o

doi:10.6342/NTU202003019

EE ¥

PRSP R > 248 APP TR L o 2l
i APP it R A L BB T
IR AE ¢ - i k=% Application Quality
Alliance » f§ #£ AQUA » B 7 — £3E8F APP el i > Ao P B Em L

FMAINA R AEHHER '*Ff#ﬁ? F o a0 2 P58 R =ETp2 APP 3 & §

3
£ AQUA #7372 1Rl o A Fithe & 7T

L 1345 AQUA #tI5m2 R - F RATHR) X
iil] ﬁﬁg a?ﬁl;»i’ /Jl(» lf»u_—_"; Jf# IFII‘:}_/?IJE

RS Sy

H 43 3 en| $74L 8 4 A
THROREGE IR A 2

5 0 P o A :FI:

X TR R kAL

MAEF ¢ ARSN S p BRI AR RJRRGE

doi:10.6342/NTU202003019

ABSTRACT

In this generation, everyone holds a smart phone and the applications have become
numerous. There are not many standards can decide an application’s quality. People
usually judge application’s quality through the play store’s user responses. These
responses may be a little bit subjective. Among the standards, there is an organization
called AQUA (Application Quality Alliance). They wrote a suite of standard for android
application. In this thesis, we transform these manual operations into programs,
simulating people’s behavior as possible and achieve black-box testing to evaluate the
application’s quality. This thesis includes following techniques:

I. According to AQUA, we simulate the behaviors of hardware operating and system
changing to achieve the interoperability testing of hardware and software.

Il. Testers can gain potential problems through testing steps and test reports.

Keywords : application quality ~ automated testing -~ Android application ~ black-box

testing

doi:10.6342/NTU202003019

CONTENTS

CRE R € F T s #
o TP OUPSOTRORRPRRO i
B2 BB B o ii
ABSTRACT ettt ettt et e et e b e s ae e b e e are e ne e v
CONTENTS Lttt b et e e b e st e e sbe et e e s be e e te e sneeentes \
LIST OF FIGURESottt e Vil
LIST OF TABLES ...ttt sttt e viil
Chapter 1 INTrOQUCTIONoviiiiiiiiie i 1
1.1 IMOTIVALION. ...ttt bbbt 1
1.2 PUIPOSE ..ottt ettt 2
1.3 ReSearch MEthodccooiiiiiiiiiee s 2
14 OFQANIZALION ...ouiiiieiieieieiee ettt bbbt 3
Chapter 2 Related WOTK........c.ooiiiiiiiiiee s 4
2.1 Stress Testing of Android APplICAtIONScccoviriiiiieiiie s 4
2.2 Application Quality TESTING........ccoiuririiieieiere e 5
Chapter 3 PrelimMiNAries ...t 8
3.1 Android Automated Testing Frameworkc.ccocveveveieninenineneseeeeens 8
3.2 Android Application SErUCTUIE.........cccoiviiieiiieiere e 11
3.3 Android Debug Bridgecccooiiiriiiiiiiieiese e 13
34 TeStaS 8 DIagiN......ccueiiiiiiieiiee e s 14
Chapter 4 Testing Algorithms and ProCceduresccocvevevieeneiiesiiese e, 16
41 AQuUA3.1&3.2&3.3 HTTP and Network Connectivityc.ccocevvvvivenennns 19
\'

doi:10.6342/NTU202003019

411 AQUAIIHTTPUSAQE......ccoeiiiiiiiiiiiiieiic v 19

4.1.2 AQUA 3.2&3.3 Network Connectivity..........ccovvverieiesieesesiaensaen, 20

4.2 AQUA 3.4 Resource downloadingcccecveeereerieiieeieeseseesst s st anie 21

4.3 AQUA 4.7 Effects of timezone Changeccccovevviieieeve s 22

4.4 AQUA6.1&6.2 SAcard OPErationccccceevvereerieiieeseere e e esee e e 23

45 AQUAB8.1 Language - Correct OPeration...........cceceeveevvereeseeseerieseesneseenns 24

4.6 AQUA9.1&9.2&9.3 Suspend and reSUME........cceevvereereereeiieseesie e seeseeans 25

4.7 AQUA 9.5 ReSOUrce Sharingcccccvivieiieiiiiese e 26
Chapter5 TeSt REPOITScvciieie ettt ee e 27
51 AQUA3.1HTTP Usage & AQUA 3.2&3.3 Network Connectivity.............. 28

5.2 AQUA 3.4 Resource downloadingcccccveieevieiiieiieie e 30

5.3 AQUA 4.7 Effects of timezone changecccccveve v 31

54 AQUA6.1&6.2 Sdcard OPErationcccceveerueiieeieese e seese e 33

55 AQUA 8.1 Language - COrreCt OPeration..........ccocervereereeseesueereeseesneeennes 34

56 AQUA9.1&9.2&9.3 Suspend and reSUME..........ccoeureeeerienenesesieseeeeeeeas 37

57 AQUA 9.5 RESOUICE SNAINGoiviriiiiieiieieiiesie e 38
Chapter 6 CONCIUSION ...t 40
6.1 SUMMAIY ..o 40

6.2 FULUIE WOTK...c.oiiiiiiiiiieiee et 40
RETEIBNCE ... ettt bbbt 41

Vi

doi:10.6342/NTU202003019

LIST OF FIGURES

Fig. 3.4-1 ISSUE TFACKET ..ottt s b e 15
T TG A =To [4T T USSR 15
Fig. 4.1-1 AQUA 3.1&3.2&3.3 HTTP and Network Connectivity............c.ccocvvvrvenennn. 19
Fig. 4.2-1 AQUA 3.4 Resource DOWNIOading..........coverueririeeneiie e 21
Fig. 4.3-1 AQUA 4.6 Effects of daylight time change ..., 22
Fig. 4.4-1 AQUA 6.1&6.2 SACard OPErationccccereririeririieieieese e 23
Fig. 4.5-1 AQUA 8.1 Language — Correct OPerationcccceoverereenrerieneneseseseeeeeens 24
Fig. 4.6-1 AQUA 9.1&9.2&9.3 Suspend and reSUMEccoveverrerenierierieniesesieseeeeeans 25
Fig. 4.7-1 AQUA 9.5 ReSOUICE SNarNG........coveiieriiriiiiiisisieeeee e 26
Fig. 5.1-1 “OPEN POINT” crashedcccooeiiiiniiineiiseseeeee e 29
Fig. 5.3-1 “%7 8 3 B2 crashed.......cccooviiiiicce e 32
Fig. 5.3-2 “OPEN POINT” = crashedccccoooiiiiiiiiiiiieieeeee e 32
Fig. 5.5-1 “4& 6 727 in English.......cocoiiiiiniiiiii e, 35
Fig. 5.5-2 “4& s 772" in Chinese (Simplified) ..o, 35
Fig. 5.5-3 “4& s 32" in Chinese (Traditional)..........ccooeniniininninie, 36
Fig. 5.7-1 “OPEN POINT” crashedcccooeiiiiniiiieiiseseeeese e 39
vii

doi:10.6342/NTU202003019

LIST OF TABLES

Table 2.2-1 The teSt CASES WE WITTEoouiiiiiiiieieeieee et e 7
Table 5.1-1 Test report of AQUA 3.1&3.2&3.3ooviiiiiiieceeseee e 28
Table 5.2-1 Test report Of AQUA 3.4 ... 30
Table 5.3-1 Test report Of AQUA 4.7 ..o 31
Table 5.4-1 Test report 0Of AQUA 6.1&6.2ocveiviiiiiieiiee e 33
Table 5.5-1 Test report Of AQUA 8.1ouiiiiiiiiieeee e 34
Table 5.6-1 Test report of AQUA 9.1&9.2&9.3coi i 37
Table 5.7-1 Test report Of AQUA 9.5 ... 38
viii

doi:10.6342/NTU202003019

Chapter 1 Introduction
1.1 Motivation

Years ago, people used to browse website using computer or laptop. As
smartphone took place dumbphone recently, websites and applications such as video
streaming, games, second-hand car dealer, and lots of companies developed their own
applications on smartphone. While using smartphone applications, an issue occurs that
how to determine the quality of an application. Low quality may decrease the number of
users and then lose profit. The quality testing issues above had two major challenges:

I. High cost [1]: User interfaces differ from application to application in spite of
slight difference between two system versions, even the same system version but
two different devices. This kind of heterogeneity [2] results in failure of porting
one testing script for this application or device to another application or device,
and the testing script must be rewritten. Thus, many software test cases still rely
on manual operation which cost significant and the test report can also be
different from person to person.

Il. Lack of testing standards: up to what number of testing cases can you ensure the
quality of application? Does the testing script gain sufficient confidence? This is

the reason why we lack testing standards.

doi:10.6342/NTU202003019

1.2 Purpose

As the challenges mentioned above and the rapidly growing number of
application, world’s companies observe the profit among it. They keep developing their
own app quality specifications and criteria. And in this one, there is a non-profit global
organization called AQUA (Application Quality Alliance) which headed by volunteers
and knowledge contributors and holds the most influential. AQUA dedicates themselves
to support the industry improving smartphone application quality, cooperating with
business partner such as Motorola, Nokia, LG. So far, AQUA have announced several
application quality criteria including memory usage, network connectivity, event
handling, messaging and calls, etc. In Addition, each application quality criteria test
distinctly defined test scope, test steps, and test results.

Till this moment in the whole world, the people who uses smartphone over
who have cellphone is approximately 70% ~ 80%. Among them, the market share of
Android is obviously more than i0S. Therefore, we developed an automated testing
script for AQUA testing criteria on Android platform.

1.3 Research Method

In this thesis, we focused on the interoperation of the hardware and the

software. We implemented black-box automated testing scripts on our platform, TaaD

(Test as a Dragon) based on AQUA. When user wants to test an Android application,

2

doi:10.6342/NTU202003019

what he or she needed to do is only to connect the device to the computer and click the
AQUA button in TaaD. Once AQUA button be clicked, the testing scripts we designed
based on AQUA will start from beginning to end. The procedure of AQUA button can be
divide into three part: head, middle, and result. Each of the testing scripts we put in head
phase will only execute once. The middle phase will take a number parameter from user,
and go through each page until the number of pages we passed reach the number
parameter. The testing scripts we placed in middle phase will execute in every page we
got. After all, an AQUA testing report will be generated and will be uploaded to our
server.
1.4 Organization

In Chapter 2 and 3, we introduced related work, frameworks, and some
preliminaries we used. In Chapter 4, we showed the three part of AQUA button and
presented the algorithm of the testing scripts we designed based on AQUA. In Chapter 5,
we showed our testing results. In Chapter 6, we had a conclusion of our research and

future wok.

doi:10.6342/NTU202003019

Chapter 2 Related Work
2.1 Stress Testing of Android Applications

If we had done unit test and functionality test, then it will not be too much to
do stress testing.

The easy way is hiring a monkey, allowing it to press anything it could touch
casually. Under this circumstance, is our application still fine? Thus, Google’s Android
development team developed a command-line tool called Monkey. However, Monkey is
more intelligent than the real monkey. You can command Monkey to trigger some
events periodically or limit the button’s proportion, etc. Monkey includes a number of
options, but they can break down into four primary categories: Basic configuration
options, Operational constraints, Event types and frequencies, Debugging options. Due
to triggering random events, Monkey has vital limitations.

A. R. Fasolino, D. Amalfitano, and P. Tramontana et al. proposed an approach
based on stress testing and regression testing [3][4][5]. They automatically built an
application GUI model and generated executable test cases by a crawler.

The approaches mentioned above need no programming scripts. This is not only
advantage but also disadvantage. Within the limitation of non-scripts, we can only
detect crash result, furthermore cannot obtain the information of system and user

experience. In comparison with our automated testing tool, we can either do monkey or

4

doi:10.6342/NTU202003019

obtain the information of system and user experience.
2.2 Application Quality Testing

AQT (Application Quality Testing) is an automated black-box testing
platform. It is designed for developing testing techniques to provide API specification
for screenshot and management of the screen activity in Android device [6]. Making use
of AQT, developers can send ADB commands through the platform to Android device
and execute. The platform can perform installation, uninstallation, click, swipe,
modification of the volume, making phone call, and obtain the information of logcat,
CPU usage status, memory usage status, and XML layouts.

Every time AQT performing an action, the result will be save into an
actionResult list. Developers can check if the action successful or not by checking
actionResult. For example, when developers uninstall an application on device, there
will be a “TRUE” message in the returned actionResult. If the uninstallation fails, there
would be a “FALSE” message in the returned actionResult. On the other hand, when
developers want to check the status of hardware, for example, GPS, the returned
actionResult will contain “TRUE” if the GPS wis activated. The returned actionResult
will contain “FALSE” if the GPS is deactivated. In addition to actionResult, AQT will

give a problem detection in the beginning. Developers can take the report as a reference.

doi:10.6342/NTU202003019

Surya Kant Josyula, and Daya Gupta implemented an application that
connect their server. Through the communication between server, they will test the
interoperability of the device’s electrical components [7]. Cuixiong Hu, and lulian
Neamtiu proposed a method to automated find bugs in GUI [8].

Liu et al. mentioned an automated testing method which according to both
Capture and Replay approach for Android applications [9]. The method converted
captured user interaction events and input arguments into test scripts and replayed by
Robotium.

Lin, Wang, and Hsiao had implemented some AQUA test cases in AQT
[10][11][22]. In this thesis and K. F. Chen, we completed the rest of AQUA test. This
thesis focused on the interoperation of hardware and software, and K. F. Chen put an
effort on user experience [13]. Table 2.3-1 listed the terms which we implemented, and

the terms with * mean those are finished by K. F. Chen.

doi:10.6342/NTU202003019

Table 2.2-1 The test cases we write

ID Title ID Title
AQUA
Network connectivity | *AQuA 7.14 | Spelling errors
3.1&3.2&3.3
Resource
AQuUA 3.4 AQuUAS8.1 Language - Correct operation
downloading
Effects of timezone | AQUA
AQuA 4.7 Suspend and resume
changing 9.1&9.2&9.3
AQUA
Sdcard operation AQuUA9.5 Resource sharing
6.1&6.2
*AQUA Scrolling in menus & Text field
*AQUA 7.1 | Readability
13.1&13.4 scrolling
*AQUA 7.2 | Readtime *AQUA 13.2 | Text field scrolling
Key layout ease of
*AQUA 7.5 *AQuUA 13.5 | Multiple touch
use
*AQuUA 7.8 | Function progress

doi:10.6342/NTU202003019

Chapter 3 Preliminaries

We review some Android automated testing techniques and some Android
automated testing frameworks. We will take a briefly look at how these techniques
detect the bugs or unusual results based on stress testing, Ul (user interface) test scripts,
response capture, etc.

3.1 Android Automated Testing Framework

Appium is an open source automated testing tool. It can be roughly
considering as a HTTP web server. It can manage a number of WebDriver sessions and
has had their REST API opened. When collaborate with Selenium WebDriver API and
specific client libraries, it can have the advance ability of crossing platform testing. In
addition to supporting almost every programming language, it can execute on both
Android and i0S.

Espresso Test Recorder is a testing script generation tool. It can establish your
own Ul testing scripts by recording your testing scenario without writing any line of
program. You can also use it to add an assert into your application screenshot to test

particular Ul element.

doi:10.6342/NTU202003019

Robotium is an open source Android automated Ul black-box testing

framework. It provides finding and assert API, and can simulate gesture operation on

elements like click, long click, swipe, etc. With the support of it, test case developers

can write function using JAVA and user acceptance testing scenarios, spanning multiple

Android activities. On the other side, Robotium can collaborate with Maven, Gradle,

and Ant, and can perform testing by your code or even non-code which just based on the

APK. Robotium has an advance version called Robotium Recorder. Robotium Recorder

is more powerful than Robotium. It is a pity that it needs pay, and not free of charge.

Sikuli is a pretty interesting automated Ul testing tool. It started as an open

source project originally by Taiwanese student in MIT (Massachusetts Institute of

Technology), then it was taken by CU Boulder (University of Colorado Boulder) and

released public. It uses real time pattern recognition of image powered by OpenCV to

detect the trigger GUI components and send events for Ul testing [14]. Detection of

elements pop out or disappear, and click or swipe ain’t too much for Sikuli to jam.

Sikuli’s UI comes quite friendly. It is basically the button you can click. After you

clicked, Sikuli will do screenshot and inject your Jython code. The power of image

recognition in Sikuli can not only use as a testing tool but also book tickets automatized

for you.

doi:10.6342/NTU202003019

MonkeyRunner is an API toolkit in Android SDK which supported by

Google’s Android development team. Programmers can write python script to simulate

keyevent, click, swipe, etc. Once you write your script in advance, MonkeyRunner can

complete a series of simulated action for you, achieving the purpose of automated

testing. MonkeyRunner has three main modules: MonkeyRunner, Monkeylmage,

MonkeyDevice. MonkeyRunner class provides the API to connect the device or

emulator and is responsible for controlling the mission in your script. Monkeylmage

class can do screenshot and then compare the similarity of two screenshots.

MonkeyDevice class provides the API such as installing, uninstalling, opening activity,

sending keyevent, and is mainly in charge of delivering commands to smartphone. The

difference between MonkeyRunner and Monkey is Monkey does not support scripts and

can only generate some random events.

Ul Automator is a simple Ul automated testing framework provided by

Google’s Android development team. Within Android testing, UI testing accounts for

lots proportion. In tradition, people testing Ul in labor had more bothering and boring.

With the invention of Ul Automator, it solved the potential error that might occur in

traditional testing. It is more convenient to test different mission or different operating

scenario using the framework.

10

doi:10.6342/NTU202003019

Espresso is an automated Ul testing framework developed by Google’s
Android development team. It is an automated Ul testing tool and is mainly aimed at
emulate user operations at a single app project. It provides synchronization testing and
uses an independent Ul thread to work. Espresso is suitable for white-box testing. In
traditional testing, we often used sleep or retry to catch Ul after Ul refreshed. The
advantage of Espresso is the synchronization of the Ul thread. We do not need to write
waiting code, predicting Ul refreshed. It can automated detect whether main thread is
idle or not, and execute the program we wrote. In other words, Espresso is dependent on
Activity Life Cycle.
3.2 Android Application Structure
At present, people develops Android applications in Kotlin or Java mostly and
the screen page in XML. The Android SDK (Software Development Kit) will include all
of data and code into an APK (Android package). After all, APK can be installed on
user’s Android device. APK elements can be divided into four different types:
I. Activities: A single activity represents a page of Ul. An APK has many activities.
For example, when user wants to make a phone call, he/she will open the contact
application. At the beginning of contact application, there will be a list of contacts.

This page is the main activity of the contact application. Then, user might tap

11

doi:10.6342/NTU202003019

somebody which user wants to call and the screen will change into the page of

detailed information. That page is another activity.

Il. Services: The components run in background. It is similar to the kernel service in

OS. Service does not offer Ul, and thus users will not be able to touch the service

or notice it. For example, getting data through network or the interaction between

activities.

I1l. Content providers: One single content provider can manage one group of shared

application data. Developers can save the data into file system, SQL, network, or

anywhere they want. If another application wants to access or modify the data, it

needs the permission of content provider.

Broadcast receivers: It is a component for broadcasting the notifications. Most

notifications are broadcasted by system. For example, low battery, screen closing, etc.

Applications can also broadcast, for example, notifying the specific resource finished

downloading and can be used.

12

doi:10.6342/NTU202003019

3.3 Android Debug Bridge

ADB (Android Debug Bridge) is a command-line tool includes in the Android
SDK Platform-Tools package. It provides access to an Android device like Unix shell,
so that you can command the device. ADB executes like a client-server program that
includes three components: client, adbd, server. Client runs on developer’s computer as
a Unix shell and adbd is a daemon process runs on Android device. Server is
responsible for the communication between the client and the adbd. We listed some
ADB commands in common use below:
Check device connection:
adb devices
Dump current screen XML tree:
adb shell uiautomator dump && adb pull /sdcard/window_dump.xml .
Screenshot:
adb shell screencap -p /sdcard/screencap.png && adb pull /sdcard/screencap.png
Go Home page:
adb shell input keyevent 3
Go back:

adb shell input keyevent 4

13

doi:10.6342/NTU202003019

3.4 TestasaDragon

TaaD (Test as a Dragon) is an automated black-box testing platform we
developed. It can test applications across three systems: Web, Android, and i10S. When
developers open an application through TaaD, TaaD will convert the screen’s Ul into
our IR. IR can tell developers which element on screen is clickable or text input field, so
that developers can use IR for black-box testing. If an Android application has web or
I0S version, their IRs are supposed to be same. Here are some arguments and APIs if

developers want to write testing scripts:

o currentStateDict: A dictionary saves the current screen’s IR.
o automataDict: A dictionary saves our currentStateDict from TaaD executed.
o Reach: If developers want to go to next page or some button, they can return

callAlgorithm and Reach and the number of the button in TaaD. TaaD will bring

the browser or device to another page.

® queryCurrentStatelndex: If developers want to do some action through our IR, they

need to get current screen’s IR first. The way they get current IR is to call

queryCurrentStatelndex to get currentStatelndex and the current IR will be in

automataDict[currentStatelndex].

14

doi:10.6342/NTU202003019

test.as.a.dragen@gmail.com F£
T I -

* Ever since, software QA people live happily forever-

TaaD issue report 4 on com digidust elokence akinator freemium and project 8005 by r07943149@ntu edu tw

Nr-4

- product : com digidust elokence akinator freemium

. component : r07943149@ntu.edu.tw; android; com.digidust.elokence.akinator.freemium; component
« subject - subject

« SuUmMmary : summary

. trackerld -1
- version:s1.7d
. datetime : 2020-07-14 16:12:02 571510

. description iEOLIAS 1 Language-correct English check'PASS]
- testTraces:

« stateDict-
-0
=« countVisits - 4
- countUntriggered : 41
= countScreenUntriggered - o
- fraces

Fig. 3.4-1 issue tracker

AQuA 8.1 Language-correct
E £ 07921098 r07921098 #% 8 1 548 Bii0A.

HREE: New

T Normal

#WorRE: r07921098 r07921098
=348

AQuA 8.1 Language-correct English check:PASS

FHEH

HEEVSREE R

Fig. 3.4-2 redmine

Fig. 3.4-1 and Fig. 3.4-2 is the email issue tracker and redmine we will send when

generate test reports.

15

doi:10.6342/NTU202003019

Chapter 4 Testing Algorithms and Procedures

First, we implemented APIs for others who also wants to write Android AUT
(Application Under Test) scripts on TaaD. Then, we’ll present our testing algorithms
based on AQUA test cases. Here are APIs we implemented:

) check_app_in_background.check(finding_string):

This API can help developers checking if the application is still work in background or
not. When calling, developers need to give the application’s package name as
finding_string argument.

o contact.accessing():

This APl modifies the contacts on device. Developers must be careful when using this
API because after calling it, contacts will be clear.

) install_sdcard_check.can_install_to_sdcard(apk_path):

This API can tell developers where an APK can be installed. When calling, developers
need to give the APK path in computer as apk path argument. In APK’s manifest.xml,
installLocation(0x010102b7) records a number. 0 and 2 represents that the APK can
install to both internal storage and sdcard, and the default is 0. 1 represents that the APK
is not allowed to install to sdcard. This API will return True if the number is 0 or 2, else
False.

° check_installation.check(package name):

16

doi:10.6342/NTU202003019

This API can help developers checking if the application installed successfully. When

calling, developers need to give the application’s package name as package name

argument.

) listening_logcat.runProcess(finding_string):

This API can tell developers if specific event had had triggered from logcat. We used it

for listening HTTP request events. When calling, developers need to give the event

keyword which they want to find as finding_string argument. It will return True if found

it in logcat, else False.

° multitouch_check .check(apk_path):

Multitouch has two explanations. One is touching same position sequentially. Another is

touching two positions simultaneously This API can tell developers if an application

accepts touching two positions simultaneously. When calling, developers need to give

the APK path in computer as apk_path argument. It will return True if XML file accepts

multitouch, else False.

° ping_google.ping():

This API can tell developers if the network of the device is connecting. Nowadays, how

do people check the Internet connection? The answer is open your command line or

terminal, and ping 8.8.8.8, which is Google’s DNS server IP. We used this method and

ping Google from our device. It will return True if ping successful, else False.

17

doi:10.6342/NTU202003019

) take_photo():

This API can divide into three part. First, it will open the camera main activity. Then, it

will execute eventkey 27, which is take photo from rear lens. Finally, it will execute

eventkey 4, which is go back and save the photo.

) Uninstallation.uninstall(package_name):

Before, we only had checking uninstallation API related to uninstallation. Now, this API

can help developers uninstalling the application if they want. When calling, developers

need to give the application’s package name as package name argument. It will return

True if remove successful, else False. If the returned value is False, then probably the

application is not installed on the device at the beginning.

o battery.change(percent):

This API can fake your device battery percent. Give an integer in 1~100 as argument.

o broadcast.broadcast():

This API can send broadcast to specific package. Default we send to com.android.test.

o gps.access():

This API can tell developers if the GPS of the device is on. It will return True if gps

component is on work, else False.

18

doi:10.6342/NTU202003019

4.1 AQUA3.1&3.2&3.3 HTTP and Network Connectivity

Open Airplane .
P P «——VYes No Not required
mode
Y
. . Go to next
Close Airplane N .
» activity and
mode
then come back

Z e

Fig. 4.1-1 AQUA 3.1&3.2&3.3 HTTP and Network Connectivity

411 AQUA3.1HTTP Usage

Before testing AQUA 3.2 and 3.3. We will check if current activity uses http. Our HTTP
API will tell us the result. We will put this result and the result of AQUA 3.2 and 3.3

19

doi:10.6342/NTU202003019

together at the test report section. The diagram is shown in Fig. 4.1-1.

4.1.2 AQUA 3.2&3.3 Network Connectivity

As we show in Fig. 4.1-1, first, we open airplane mode to disconnect the network. Then,
we will turn it back and check whether the application still works fine. If the activity

cannot pass all the checkpoint, the test result is FAIL, else PASS.

20

doi:10.6342/NTU202003019

4.2 AQUA 3.4 Resource downloading

Have
download
button

Not required Ye

Yes Yes

ong click al
isLongClickable
button?

Have Long click next
No—_download isLongClickable
button button

T Back

Find download

Record File Download _|Open airplane
system space " mode

h 4

No ile system space d?jﬁ%@g it le Close airplane
changed? need) mode

Yes

Fig. 4.2-1 AQUA 3.4 Resource Downloading

The diagram we shown in Fig. 4.2-1 is AQUA 3.4. When we entering an activity, we

will loop every button and isLongClickable button. Every time we press a button we

will check if there is button which text contain “save” or “download” or “ [&§” or “ff

1%>. If the result is Yes, we will download it.

21

doi:10.6342/NTU202003019

4.3 AQUA 4.7 Effects of timezone change

Change time to 1H
after

No
Change t1111e ’es No
back
No
Can make phone cal
No
Yes

- No

Fig. 4.3-1 AQUA 4.6 Effects of daylight time change

In AQUA 4.7, our purpose is to test if the time change of the device will affect the others
components and the diagram is shown in Fig. 4.3-1. First, we will change our device
time to the future 1 hours and see if the network and phone call work fine. Then, we will
change back the time and check again. If everything works fine, the test report is PASS.

If any of them fails, it is FAIL.

22

doi:10.6342/NTU202003019

4.4 AQUA6.1&6.2 Sdcard operation

Not Required

Yes
¥
- "y
_ Unmount
Mount SDecard ‘—[SDecard]
\ A
v
- ™y
Back to APP — He
\ A
Yes

Fig. 4.4-1 AQUA 6.1&6.2 Sdcard operation

The diagram we combined AQUA 6.1 with AQUA 6.2 is shown in Fig. 4.4-1. What
AQUA 6.1 wants to know is whether the APK can use sdcard. If the APK specify cannot
use sdcard, it is not required. If yes, we will try rnmount sdcard and run monkey to

check if the application is still work.

23

doi:10.6342/NTU202003019

4.5 AQUA8.1 Language - Correct operation

English S
Chinese(Traditional) Change system
Chinese(Simplified) language R::; ;IT

language change?

No .
sing Google translate

Yes

Fig. 4.5-1 AQUA 8.1 Language — Correct operation

In AQUA 8.1, we want to check if we change the system language, the application

language will change or not. Thus, we change device language first. Then, we will close

and restart the application. If the application’s language does not change, the test report

is FAIL, else PASS. The diagram is shown in Fig. 4.5-1.

24

doi:10.6342/NTU202003019

4.6 AQUA9.1&9.2&9.3 Suspend and resume

Access GPS. Bluetooth,
Go Home WIFI. Make phone call.
monkey touch. take photo

Back to

APP works fine Application

No

Yes

Fig. 4.6-1 AQUA 9.1&9.2&9.3 Suspend and resume

We combined AQUA 9.1, 9.2, and 9.3 in Fig. 4.6-1. Here, we want to check all of the

hardware listed in AQUA. When we first open an application, we will go Home page

and try accessing GPS, Bluetooth, WIFI, camera, touching screen, and phone calling.

After, we go back the application and check if the application works fine.

25

doi:10.6342/NTU202003019

4.7 AQUA 9.5 Resource sharing

i T

, Modify

Go Home Contacts
L A

v

i T

No—< APP works fine Go .bac.k

Application

k. A

Yes

Fig. 4.7-1 AQUA 9.5 Resource sharing

Fig. 4.7-1 represents AQUA 9.5. In AQUA 9.5 they defined the shared database as

contact book. When we get in an activity, we will go Home page and try modify and

delete the contacts on the device. After accessing the contacts, we go back to the

application and check if it is still work.

26

doi:10.6342/NTU202003019

Chapter 5 Test Reports

Here, we show our AQUA test reports in this section. The devices we use Is

Android emulator Nexus 6P API 23 (4G RAM / 10G ROM, Android version is 7.1.1).

The applications we test are “4#¢ ‘5 Rli& Pe4p” , “Bc-A p &RKE > 22 F 2
%l T, YRR IR 2020 — BGE s e I BT, "2ARR
FRRA | R GRS, CRHEES - FHRISEES HAPEE

#a > prose” o “Akinator?, ‘A7, “#Ri%4R7 | “Hi-Life VIP”, “OPEN
POINT : i % %2 w4 @ a" . First 7 of them have 4~5 star rate on google play. &

w4, Hi-Life VIP have only 3 star on google play. The last one has only 2 star on

google play. Users can find these application under SUT folder.

27

doi:10.6342/NTU202003019

5.1

AQUA 3.1 HTTP Usage & AQUA 3.2&3.3 Network

Connectivity

Table 5.1-1 Test report of AQUA 3.1&3.2&3.3

APP

Network Connectivity

A hpliE PR AP PASS
BB-AL P AMKE o 2 Bl i PASS
Bk FE 2020 — ARF s deid o~ FIE R4 PASS
PRBEERERFLELEL [EEFE PASS
M Era - BT ETAH BAPE R > £ 4 5 5 | PASS
Akinator PASS
Fo-S 15 Not required
R 154 PASS
Hi-Life VIP PASS
OPENPOINT : i % %2 w4 g4 FAIL

28

doi:10.6342/NTU202003019

Q0O V1758

TOPEN POINT, BEIEEE

C BRERERRER

Fig. 5.1-1 “OPEN POINT” crashed
The test report of AQUA 3.1&3.2&3.3 is shown in Table 5.1-1. Fig. 5.1-1 is the failure
result of application, “OPEN POINT : ' % 8 w4 i &" . The application crashed

when we check the application working fine.

29

doi:10.6342/NTU202003019

5.2

AQUA 3.4 Resource downloading

Table 5.2-1 Test report of AQUA 3.4

APP

resource downloading

Not required

Not required

kI 2020 — M

Not required

2REFEFEEL L | RS

Not required

B G - BB LB LB MO F R £ 4 R

Not required

Akinator Not required
AT Not required
2R iR Not required
Hi-Life VIP Not required

OPENPOINT : i} % %8 w4 gk

Not required

Messenger

PASS

Table 5.2-1 shows the test report of AQUA 3.4. The results may be predictable because

seldom applications need to download resources additionally.

30

doi:10.6342/NTU202003019

5.3 AQUA 4.7 Effects of timezone change
Table 5.3-1 Test report of AQUA 4.7
APP Effects of timezone change
A f iR R AP PASS
BE-Ly pMmKE o 2R F B i i PASS
B FE 2020 — ARF s deid o~ FIR S R4 PASS
PRBEEREFHLELL | EEFE PASS
FEcphers - PHRIETSEHO S PFE - F5 0 B9 | FAIL
Akinator PASS
B PASS
R {54 PASS
Hi-Life VIP PASS
OPENPOINT : i} % %2 w4 E 2 FAIL

31

doi:10.6342/NTU202003019

QO V082

METRIBHE) BRLEE

C BReEmERES

Fig. 5.3-1 “%7 & £ g2 crashed

© W4 01257

TOPEN POINT) BZLHEE

C BReEmEmRiE

Fig. 5.3-2 “OPEN POINT” crashed
Fig. 5.3-1 and Fig. 5.3-2 are the failure event in Table 5.3-1 when we check application

working fine.

32

doi:10.6342/NTU202003019

5.4

AQUA 6.1&6.2 Sdcard operation

Table 5.4-1 Test report of AQUA 6.1&6.2

APP

Sdcard operation

O R PR A

Not required

Bac-F A KE o 2 F B e kg

Not required

BRI 2020 — KA i FR k4

Not required

Not required

FHES - FHRIEAUHO HIPEE S B

Not required

Akinator PASS
P32 PASS
R iF-4R Not required
Hi-Life VIP Not required

OPENPOINT : i} % % 8 w4 E 4

Not required

Table 5.4-1 shows the test report of sdcard operation. “Akinator” and “#:%:” can run

successfully after remount the sdcard. Others APK file does not allow to use sdcard.

33

doi:10.6342/NTU202003019

5.5 AQUA 8.1 Language - Correct operation
Table 5.5-1 Test report of AQUA 8.1

Chinese Chinese
APP English

(Traditional) (Simplified)
A pliE PR AP PASS FAIL FAIL
Ba-ALf mMKE o 25 F A g PASS FAIL FAIL
R FIE 2020 — #A 4o > FIE - B* 4 | PASS PASS PASS
PRBEEREFHLELL [EEFE PASS FAIL FAIL
M s - PRI o gl 7o P8

PASS PASS PASS
Fao g
Akinator FAIL FAIL PASS
A FAIL FAIL PASS
ELgE PASS FAIL FAIL
Hi-Life VIP PASS FAIL FAIL
OPENPOINT : i} ¢ g w44 PASS FAIL FAIL

34

doi:10.6342/NTU202003019

Boost

38% RAM used

-4 Upgrade to Premium
VIP Features and No Ads

= 9

Junk Clean Antivirus
GGND 8
Battery Saver CPU Cooler
ﬁ -~ ®

Fig. 5.5-1 “4& & 732" in English

JIIBES

29% RTFER

A AREER

VIP SheE, EI-& H—F

5
=
T
w
P
Y

&
&
s
i3
o)
]
o
®
Bl

Fig. 5.5-2 “4& - 72 in Chinese (Simplified)

35

doi:10.6342/NTU202003019

©®.nss3s
a8 ¥

FHREGHR sp_
VIP Ihik » S S B=F

ala
m

HUREE

B
it

n

BaEE c

he}
[
2
Be

(]

Fig. 5.5-3 “4& = /732" in Chinese (Traditional)
Table 5.5-1 shows the language list after we changed system language. Fig. 5.5-1, Fig.
5.5-2, and Fig. 5.5-3 are the screenshot of all-PASS application, “f& ;32 2020 —

P SN 4“—@ N ‘}%‘EE-’_ N }'@’;f ﬁ?l:u'

36

doi:10.6342/NTU202003019

5.6

AQUA 9.1&9.2&9.3 Suspend and resume

Table 5.6-1 Test report of AQUA 9.1&9.2&9.3

APP Suspend and resume
A P PR AR PASS
BE-Lp M KEr 2R F B0 d i PASS
Bk IR 2020 — AR s deid o~ FIE o R4 PASS
PRBEERERFLELEL [EEFE PASS
WhHPE s - RHR LSS HL AR #8 5 Rw | FAIL
Akinator PASS
AT PASS
R (AR PASS
Hi-Life VIP PASS
OPENPOINT : i % %2 w4 g4 FAIL

Table 5.6-1 shows the results after we access the hardware list in AQuA. “RF &4+ %7 &

- RARIGTSEHO TSP FER £ 9 277 and “OPENPOINT : i} 3 % 8 ®

4% i 8.7 failed after we accessed the hardware and go back the application.

37

doi:10.6342/NTU202003019

5.7

AQUA 9.5 Resource sharing

Table 5.7-1 Test report of AQUA 9.5

APP Resource sharing
AR RIE PR AR PASS
BE-Ly e KE o 2R F Bl PASS
kI 2020 — AE e o I B A PASS
PRBEEREFHLELL | R FE PASS
FhpErs - PHRIGTSYH $Ta 2B £48 » B | PASS
Akinator PASS
P32 PASS
R (%4 PASS
Hi-Life VIP PASS
OPENPOINT : i # R 8 w4 %2 FAIL

38

doi:10.6342/NTU202003019

OPEN POINT has stopped

C Open app again

Fig. 5.7-1 “OPEN POINT” crashed
Table 5.7-1 shows the results after we modify the contact database. Fig. 5.7-1 is the
failure event of “OPEN POINT : i}’ % % 8 w4 & & 7. It has the similar behavior with

the result we access hardware.

39

doi:10.6342/NTU202003019

Chapter 6 Conclusion
6.1 Summary

The test cases above are the part of interoperability of hardware and software in
AQUA. We implement it for testers who want to test their application’s quality. Testers
can get test reports and check the potential problems of the application.

We transform the test cases from manual into automated testing. As long as user
download our AQUA project from TaaD website, he or she can perform his/her own
AQUA testing on any android application without write any other codes.

6.2 Future work

Recently, TaaD can perform testing on iOS system. At the future, there will be an
AQUA — like version for iOS version. 10S system is a little different to Android system,
such as sdcard. i0S cannot plug in external sdcard. Thus, we cannot directly transplant

the original AQUA into iOS version.

40

doi:10.6342/NTU202003019

Reference

[1] A. Seesing and A. Orso, “InsECTJ: a generic instrumentation framework for
collecting dynamic information within Eclipse,” in Proceedings of the 2005
OOPSLA workshop on Eclipse technology eXchange, 2005, pp. 45-49: ACM.

[2] Chawla and A. Orso, “A generic instrumentation framework for collecting dynamic
information,” The ACM/SIGSOFT International Symposium on Software Testing
and Analysis, In Online Proc. of the ISSTA Workshop on Empirical Research in
Software Testing, vol. 29, no. 5, pp. 1-4, 2004.

[3] R. Fasolino, D. Amalfitano, and P. Tramontana, “A gui crawling-based technique
for android mobile application testing,” in 2011 IEEE fourth international
conference on software testing, verification and validation workshops, 2011, pp.
252-261: IEEE.

[4] R. Fasolino, D. Amalfitano, G. Imparato, P. Tramontana, and S. De Carmine, “A
toolset for GUI testing of Android applications,” in 2012 28th IEEE International
Conference on Software Maintenance (ICSM), 2012, pp. 650-653: IEEE.

[5] M. Memon, A. R. Fasolino, D. Amalfitano, P. Tramontana, and S. De Carmine,
“Using GUI ripping for automated testing of Android applications,” in Proceedings
of the 27" IEEE/ACM International Conference on Automated Software

Engineering, 2012, pp. 258-261: ACM.

41

doi:10.6342/NTU202003019

[6]

[7]

[8]

[9]

W. H. Chiang, “Experiment of a framework for automated testing of Android

Application,” Master Thesis, Electrical Engineering, National Taiwan University,

2015.

S. K. Josyula, D. Gupta, “Internet of things and cloud interoperability application

based on Android” in 2016 IEEE International Conference on Advances in

Computer Applications (ICACA).

C. Hu, I. Neamtiu, “Automating GUI testing for Android applications” in

Proceedings of the 6th International Workshop on Automation of Software Test.

C. H. Liu, C. Y. Lu, S. J. Cheng, K. Y. Chang, Y. C. Hsiao, and W. M. Chu,

“Capture-replay testing for android applications,” in 2014 International

Symposium on Computer, Consumer and Control, 2014, pp. 1129-1132: IEEE.

[10] H. Lin, “Automated Testing for Quality of Android Applications,” Master Thesis,

Electrical Engineering, National Taiwan University, 2016.

[11] G. Q. Wang, “Automated Testing for Quality Android Applications,” Master Thesis,

Electrical Engineering, National Taiwan University, 2017.

[12] T. Hsiao, “Automated AQuA Testing for Android Applications,” Master Thesis,

Electrical Engineering, National Taiwan University, 2019.

[13] K. F. Chen, “” Master Thesis, Electrical Engineering, National Taiwan University,

2020.

42

doi:10.6342/NTU202003019

[14] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: using GUI screenshots for search
and automation,” in Proceedings of the 22" annual ACM symposium on User

interface software and technology, 2009, pp. 183-192: ACM.

43

doi:10.6342/NTU202003019

