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ABSTRACT

Sediment transport is an important issue for human. It is closely related to human
society, such as bridge scour and water quality. A sediment particle in flow not only
follows the flow direction, but also diffuses through the surrounding water due to
turbulence. Markov chain is used to approach the movement of sediment particles.
From this perspective, particle movement is regarded as a stochastic process in our
study; moreover, the proposed models simulate particle trajectories based on stochastic
methodologies and physical mechanisms, underscoring mechanics in the stochastic
differential equation.

To simulate sediment particle movement, the stochastic diffusion particle tracking
model (SD-PTM) has been derived from the Langevin equation, which is able to show
the random characteristics of sediment movement. SD-PTM has two basic elements, the
mean drift term and the turbulence term. One of the particle characteristics, the mean
drift term, is that particles follow the flow direction; another one is called the turbulence
term that describes random behaviors caused by turbulence diffusion. This movement is
known as Brownian motion. In general, the diffusion movement is modeled by the
Wiener process.

The aim of this study is to simulate sediment particle trajectories under the normal
flow condition by the SD-PTMs, one-particle PTM and two-particle PTM. The
difference between the single particle model and the paired particle model is that the
paired particle model accounts for large eddy turbulence. In other words, the paired
particles may have similar random movement if the locations of particles are in the
immediate vicinity of each other. Besides, to observe assemblage of particles’ motion in

the macroscopic manner, the sediment concentrations can be estimated. Moreover,
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sediment concentrations involve the property of uncertainty on account of sediment
particles’ stochastic trajectories. Therefore, to demonstrate such uncertainty of sediment
particles, the ensemble means and ensemble standard deviations of sediment trajectory
as well as concentrations are presented in the study respectively. The proposed models
are validated against experimental data by ensemble mean velocity and sediment
concentrations. Moreover, this study also discussed the random movement of sediment
particles under various flow conditions, laminar cavity flow and fully developed
turbulent open channel flow. Results show that the random movement of sediment
particles is significant in turbulent flow. Thus, it is appropriate to consider the
fluctuation of sediment concentrations under high Reynolds number flow conditions.
Besides, the Markovian property of the PTMs is validated in our study. However, the
variance of particle displacement and time are not a linear proportion as the result.
Resuspension of sediment particles may cause particle movement to be anomalous

diffusion.

Keyword: stochastic differential equation, stochastic model, particle tracking

model, sediment transport, two-particle model, Markovian property, anomalous

diffusion.
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Chapter 1  Introduction

Irregular movement of particles owing to turbulence has been studied for many
years. The drag force of turbulence fluid is a main factor that causes a particle to move
randomly. For instance, hydraulic and environmental engineers have been highly
concerned with sediment transport caused by turbulence. This is important for designing
flow structure, water quality management and ecological environment. According to the
particle properties, sediment particles can be classified into suspended load and bed load
in flow. In general, a particle floating in the water column is classified as suspended
load; bed load is defined as a particle moving near the bed. To study sediment transport,
researchers and engineers used to concentrate on deterministic methods. There are many
kinds of modeling approaches, such as the sediment-transport balance method and the
sediment-divided method. Sediment-transport balance method is a method that offers
the sediment balance equation derived from the sediment transport formula. In
sediment-divided method, different particle movement is considered in order to decide
whether a suspended load model or bed load model needs to be applied. The
aforementioned models are mainly focused on particle concentration, i.e. particles in the
Eulerian model seem to be presented by concentrations. However, more detailed
information on trajectories of particles is preferred. Consequently, simulating sediment
transport by Lagrangian models became more and more popular recently and were
promoted in various fields such as hydraulics, marine, environment, economics, physics

etc.( Man et al., 2007; Spivakovskaya et al., 2007; Oh and Tsai, 2010; Shah et al., 2011)

In order to study bed-load transport, Einstein (1942) established the foundation of
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the applicability of probabilistic concepts. The entrainment probability function is
innovated in sediment entrainment to bed load. In other words, stochastic properties
have been suggested for the transport of sediment particles. A new viewpoint for

stochastic models for sediment transport has been implemented ever since.

One category of the stochastic models is particle tracking models (PTM), also
known as “Random walk models”. This type of model can be treated as the transport of
a constituent of large number of moving particles which can be simulated as discrete
particles. Because of discrete particle characteristics, this stochastic process might be
regarded as a Markov-process theory, meaning that particle position only depends on
the present state instead of all past history. The PTM normally employs two terms: the
mean drift term and random term. This stochastic transport model based on physical
mechanisms are called the stochastic diffusion particle tracking model (SD-PTM),
which is built on stochastic differential equations (SDE). Since SD-PTM, a type of
Langevin equation is equivalent to the Fokker-Planck equation (FPE) derived from the
advection-diffusion (ADE) equation for suspended sediment transport. The detail of
model development will be introduced in chapter 4. In addition to this, turbulence
flow plays an essential role because we are focused on the sediment transport in open
channel flows. Unfortunately, turbulence in the open channel flows is not completely
understood even in recently. Because of insufficient knowledge about turbulence, there
exists uncertainty when attempting to modeling particle movement in flows. As such,
the stochastic method is an appropriate way to describe the movement of sediment

particles in this study.

doi:10.6342/NTU201603194



1.1 Problem statement

The problem of sediment transport is closely related to the environment such as
water quality, estuary improvement, environmental protection and estuary surrounding
construction. In order to reach the above objectives, it is important to study the law of
natural environment. With an enhanced understanding of sediment transport
mechanisms, hydraulics constructions or engineering management can operate more
effectively based on this scientific information. However, the natural environment is too
difficult to simulate, as it involves multiple interacting factors. In other words, it is
impossible to have complete information on all the factors in the natural process.
Moreover, sediment motion in the flow and eddies are a complex process, which can be
regarded as a stochastic process. Most sediment transport models such as ADE or the
Exner equation are deterministic models, meaning that if a model with the same input(s)
will yield the same results. These deterministic models simplify the uncertain variables
(e.g. sediment properties, and flow discharge) to deterministic values and neglect the
irregular eddy effect. Stochastic models for complicated and random natural process are
thus developed. These stochastic methods such as uncertainty analysis that considers
uncertainties incurred in data by considering their probability of occurrences. Yen (2002)
discussed the hydraulic problems with stochastic perspectives, which can be briefly

summarized as follows.
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Input System Output

Deterministic Deterministic Deterministic

Deterministic Stochastic Stochastic
Stochastic Deterministic Stochastic
Stochastic Stochastic Stochastic

Table 1.1 Different types of model (modified from Yen, 2002)

In this study, we consider the stochastic model-- SD-PTM to describe sediment particle
movement in the open channel flows. A different concept of SD-PTM, two-particle
PTM, is proposed by Spivakovskaya and Heemink (2006). Unlike traditional SD-PTM,
the two-particle PTM suggested that the behavior of sediment particles caused by
turbulence flow is correlated in space. Therefore, to more comprehensively model
sediment particles, it is desirable to develop the two-particle PTM considering the effect

of spatial correlation of particle behavior.

1.2  Research Hypotheses

Motion of sediment particles caused by turbulence is an irregular motion, which is
difficult to describe exactly. This study raises two main hypotheses in the PTMs.
Markovian property

Sediment particles in open channel flows are poorly understood because of its
random motion. Therefore, sediment particle motions are regarded as a memoryless

stochastic process. The memoryless behavior is called as Markovian property. Based on
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this, the FPE is used to describe particles’ movement. In the other words, sediment
particles relates to the present state rather than the previous state.
Fickian law

Turbulent diffusivity plays an important role in the high Reynolds number flow.
For instance, in turbulent flow, the effect of turbulence is more significant than that of
the molecular diffusion. As will be introduced in chapter 4, turbulent diffusion is also
considered as some form of random motion. The behavior of turbulence flow is
analogous to Fickian diffusion. In Fickian law, the variance of particles displacement is
defined to be linearly proportional to time. Figure 1.1 presents the flow chart of the
PTMs. The difference between one-particle and two-particle PTMs is in the stochastic

diffusion process. The two-particle PTM emphasizes the inter-particle relationship.
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Input data

Initial condition Particle properties
Initial particle position Settling velocity
Bed boundary Flow conditions

Sediment diffusivity

Deterministic Inputs
¥

Stochastic Diffusion Process

One —particle . Turbulent
P™M [ Mean drift ]_[ diffusion ]

Two —particle ) Small scale Large scale
PIM [ Mean drift ’ | turbulence turbulence

Stochastic Governing Equation

Monte Carlo Simulation

Markovian or not? Stochastic Outputs Fickian or not?
Particle Trajectory Sediment Concentration
Ensemble Mean Ensemble Mean
Ensemble Variance Ensemble Variance

Figure 1.1 Flow chart of two-particle PTM

doi:10.6342/NTU201603194



1.3  Objectives of Study

This study is intended to develop a refined stochastic diffusion particle tracking
model for sediment transport in open channel flows to estimate sediment concentrations.
The main objectives are

to incorporate a more sophisticated turbulent diffusivity formula and a recently

developed mechanism of re-suspension into the proposed stochastic particle

tracking model,

to simulate the movement of sediment particles under various flow conditions;

to verify the proposed model by comparing the quantified sediment concentrations

and velocity with experimental data;

to compare and discuss the difference of the concentration fluctuations by

proposed one-particle and two-particle models.

1.4  Overview of Thesis

This thesis includes two main hypotheses which are previously defined. Chapter 2
is a literature review about different opinions of quantitative sediment particles, and the
important hydraulics parameters to the proposed models. In chapter 3, the foundation of
stochastic theories and numerical schemes are presented. Chapter 4 is the development
of the SD-PTM, including the derivation of SD-PTM from ADE and the equivalent
equation, FPE, as well as the definition of hydraulics parameters. Chapter 5
demonstrates three applications by the proposed models with comparison of
experimental data and the various flow field data, respectively. Lastly, Chapter 6
supplies a summary of the findings, contributions, and recommendations for future

studies in this field.
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Chapter 2 Literature Review

2.1 Stochastic Methods

Sediment transport model can be basically divided into two categories, the
Lagrangian methods and the Eulerian methods. These kinds of methods are used to
quantify particles in the flow. However, the erratic movement of particles which caused
by flow eddies brings challenge for hydraulic engineers. In 1827, Brown first found that
this phenomenon on microscopic scale, and named it “Brownian motion”. In 1905,
Albert Einstein explained the physical mechanisms of Brownian motion and then
Wiener built up the mathematical theory for such motion. Particle movement with
Brownian motion can be regarded as a stochastic process. A stochastic process includes

a group of random variables, which represents the evolution of a random variable over

time (i.e. {X,teT}and{t <..<t } =T ). Despite the results of deterministic models,

the outcomes of the stochastic models are random, though the same initial and boundary
conditions are used. It indicates that stochastic models are more realistic in many cases,
especially for “large numbers” problems. However, it is generally easier to analyze the
problem by deterministic models rather than stochastic ones. This study focuses on

implementing stochastic models to sediment transport

In 1980, Durbin proposed a new definition of concentration in turbulent flows with
a stochastic two-particle model. It demonstrates the difference of the predictions of
concentration fluctuation by the two-particle model and those by one-particle model.
The difference between one-particle model and two-particle model such as the

production of fluctuations is related to dispersion of the blob’s mass center by large
8
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scale turbulence. Durbin indicates that the process of blob mixing is with uncertainty. In
other words, whether the behavior of turbulent eddies mixing two blobs together would
occur depended on the probability. Therefore, the blobs’ dispersion is relative to each
other. With this new concept, Spivakovskaya et al. (2007) predicted the probable
concentrations of the contaminant in order to reduce the possible environmental damage.
In addition, the multiple particle model is constructed and the forward-reverse estimator
is used to estimate the ensemble mean and standard deviation of the concentration of
contaminant with the given number of critical locations. The following sections will

describe the common methods to quantify particles in the flow.

2.1.1 The Eulerian model

In the Eulerian model, particles are treated as a continuum. In order to quantify
particles, concentration is defined as the particles average spacing. The mathematical
formulation of Eulerian model is governed by the advection-diffusion equation:

%Jrv.(uC)_v.(DVc):o. (2.1)

Where c is the ensemble mean of sediment particle concentration; V is the divergence

operator (0/0ox,06/8y,0/éz); D indicates the diffusion coefficient in the streamwise

(DX,Dy,DZ); and Vc is the gradient vector of sediment concentration. For

incompressible fluids, V-u=0, equation(2.1) becomes:

& +U-Ve-v-(DVe) =0, (22)

In general, this partial differential equation can be solved by numerical techniques such

as finite differences, finite elements or finite volumes.
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2.1.2 The Lagrangian model

Unlike the Eulerian model, the Lagrangian model focused on the movement of
individual particles, easily applying stochastic concept to each other (i.e. the collision of
inter-particle). The basic ideas of Lagrangian models are from the random-walk particle
tracking models. The random-walk model accurately simulates the turbulent dispersion
with mathematical expression described by stochastic diffusion equations (Gardiner,
1985). In this model, the diffusion processes affect particle trajectories and is regarded
as stochastic processes (i.e. the governing equation is stochastic). To avoid the
inaccurate result by advection-diffusion equation in regions where the gradient of
concentration tends to be high, the stochastic differential equations can be applied to
such transport problems so the concentration with the probability function can be
generated. The Fokker-Plank equation, known as the forward Kolmogorov equation
(Tsai, 2012), is applied to develop the particle tracking models by defining the partial

differential equation for the conditional probability density function

0°f(oo")

8f(xt|x0,t) afu(xt) 1 y
D ) oxox, (23)

i i,j
where i=1,2,3; j=123; f(x,t|x0,to) denotes the probability density function

which initial position is X, attime t,; U ismeanand oo’ is variance. To describe

Brownian motion, there is a stochastic diffusion equation such as Langevin equation.
The Fokker-Plank equation derivate from the Langevin equation in Ito scheme gives the
form as equation(2.3) which has the property of Markovian chain. The numerical
techniques for parabolic stochastic partial differential equation are suggested to tackle
more sophisticated sediment transport problem. The detailed introduction about

Langevin equation is presented in the following chapter

10
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2.2 Pickup Probability

The incipient motion of a sediment particle on a stream bed may occur in a form or
forms like rolling, sliding, and saltation, which depends on the characteristics of near
bed load flow. Einstein (1905) took bed load particles as stochastic process and defined
pickup probability in this issue, giving incipient problem a new concept. Although the
methods of stochastic have been applied to model the hydraulics of open-channel flow
and sediment transport for a long time, there still remains much space for advancement
in stochastic modeling like the initial entrainment and particles motion near the bed.
However, most Researchers have investigated the critical shear stress by experimental
or theoretical methods. Lee and Balachandar (2011) proposed the theoretical prediction
of the threshold for incipient motion which is based on a force or momentum balance
(i.e. the force balance relations such as hydrodynamic drag, lift force gravitational and
frictional forces are considered). On the other hand, Wu and Lin (2002) laid the
foundation of the positive fluctuations of the streamwise velocity nearing the bed to
decide pickup probability. Instead of previous assumption that velocity fluctuation
obeys the normal distribution, the streamwise instantaneous velocity is based on
lognormal distributions. In this foundation, the instantaneous velocity follows the
lognormal distribution from zero to infinite.

Different from previous studies that were based on the normal and the lognormal
distribution, Bose and Dey (2010) suggested a probability function with the

Gram-Charlier series expansion according to the two-sided exponential or the Laplace

distribution. They indicated that the velocity fluctuations (u’,w’) comply with Gram

Charlier-based two-sided exponential or Laplace distributions. The streamwise velocity

fluctuations can be expressed as a probability density function by assuming U=u'/ o,
11
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and W=W'/o,, where o,,0, areroot-mean square of U' and W', respectively,

R 1 1 A B
pa(u)— E IJCJO J( )_ 1+2C10 8C20(1+|U|—U2)
(2.9)

_ic ]
48

i|—0G%) +...] exp(—|dl)
where the coefficients C, is related to them, , Cy=mg; C,=-1+(m,/2);

Cy =—2my,+(my, /6) . The probability density function p,(V) of vertical velocity
fluctuations is similarly given by an expression in which substituting 4 for w’, and

CpCy and Cy by Cy,Cp and Cyy, respectively. The moments m;, and mg,

related to the C;, and C,,, respectively, can be shown as,

My, = [ ap,(@)dd,  my, =] Vp,@)dv (2.5)

Owing to experimental data, the coefficients C;, and C, can be estimated. The

integral in equation(2.4), one can write

&l exp(-ixg) |
L) =[ ==l Loy de. (2.6)

Thanks to the smallness or dividing by a large number, the coefficients in

equation(2.4) can be neglected and reduced to

A 1 Al 2 i
P (1) == 0%) exp(-[a]) . (2.7)

Bose and Dey (2013) raised the hypothesis that the sediment particles can be
transported not only bedload motion by the velocity fluctuations in turbulent flows, but
also as suspended load. Cheng and Chiew (1999) assumed that only the suspended
particles are replaced with the bed load, and the wash load is egligible. It is said that the

suspended particles at the top of the bed-load layer occur resuspension when the vertical

12
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velocity fluctuations W' of the turbulent flow exceeds the settling velocity W, of

particles. Following this discussion, the vertical velocity fluctuations’ PDF, equation(2.4)

obeyed the one-sided exponential-based Gram-Charlier series can be shown as

! 1 A A2 ~
, >20)=— +W-— —
P, (w>0) T (17 W— W )exp( W) 2.8)

P.(w<0)=0
Namely, they supposed that the instantaneous hydrodynamic force acting on a
particle of the near bed velocity fluctuations is an important mechanism toward the
sediment entrainment. In this assumption, the submerged weight of a particle is

considered as a constant for a given particle size. Here, the probability of vertical
velocity fluctuations contacts with the value of o,, and the value of o, is related to
the bed layer. Table 2.1 shows the comparison of previous studies. They also obtained
the following expression for the relationship between o, and bed layer property. For
the bed layer is very thin, the bed is regarded as rough (Grass, 1971), it is

o, ~U.. (2.9)
On the contrary, the bed is considered as smooth for thicker bed layer by Grass (1971),

one can be written as

U, 14

o Ud 13
—2=1—exp{—0.093( - j } (2.10)

where U., d and v are shear velocity, particle diameter and kinematic viscosity of

fluid, respectively.
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Published

Entrainment

year Authors PDF of turbulence fluctuations type Thresholds for entrainment | Bedload type
1998 | Cheng and Chiew Gaussian Lifting F>W Rough bed
(streamwise velocity)
: Smooth bed
1999 Cheng and Chiew (vertci;czlljs\z?gci ty) Su:ft?;(izd W > w, and
y P Rough bed
2002 Wu and Lin Log-normal Lifting F>W Rough bed
(streamwise velocity)
_ Smooth bed,
2003 Wu and Chou Log-normal Lgrt]'gg Folo +F L >WL, transition bed
(streamwise velocity) Rollin and and
g F >W Rough bed
- Smooth bed,
2007 Wu and Jin Gram-Charlier joint probability Lg‘;lgg Folo +F L >WLy transition bed
g (streamwise and vertical velocity) Rollin and and
g F >W Rough bed
Gram-Charlier expansion based on Suspended Rough bed
2013 Bose and Dey the Laplace-type afticles W > w, and
(streamwise and vertical velocity) P Smooth bed

Table 2.1 Summary of previous study
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2.3 Turbulent diffusion and dispersion

There are two categories of mixing process in a flow, diffusion and dispersion (Chien
and Wan, 1999; Elder, 1958; Fisher et al, 1979; French, 1985). Diffusion can be used to
describe the random scattering of particles, which is caused by molecular motion or
eddy fluctuations, in the laminar flow field and the turbulent flow field, respectively. In
contrast to diffusion, the variation of velocity distribution over the cross section leads to
dispersion. In other words, dispersion is the scattering of particles associated with shear

and transverse turbulent diffusion.

In this thesis, our focus is on the diffusion process. Following Roberts and Webster
(2002) and Kirmse (1964), the velocity fluctuations of a turbulent flow have efficiently
transport of momentum and heat. Comparing to molecular diffusion, the turbulent
transport has more significant effect since the magnitude of eddy size is larger than
molecular (i.e. turbulent energy is larger than molecular energy). The eddies are
considered as continuous evaluation in time and its eddies range in size from Integral
scales down to Batchelor scales. Pope (2000) indicated that even the flow with small
length scale, the order of small length scale turbulence exceeds three or more orders of
magnitude to the length scale of molecule. Figure 2.1 illustrates that the highest energy
has the largest length scale, and also indicates that the Batchelor scale is much smaller

than an order of magnitude than Kolmogorov scale.

The behavior of suspended particles is related to turbulent flow structure. The
important concept in sediment theory is that the vertical concentration distribution is

related to the ratio of turbulent sediment diffusion to momentum diffusion coefficient

15
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(Cellino, 1998; Rouse, 1937; Tsujimoto, 2010). The ratio is a value which represents the
difference between the diffusion of sediment particles and the diffusion of fluid particles
(e.g. the molecule of water) in a flow. In 1937, Rouse obtained the turbulent sediment
diffusion coefficient under the assumption of the log law for open channel turbulent
flow. Without the supposition of log law profile, Absi et al. (2011) used the accurate
analytical formulation for turbulent kinetic energy and eddy viscosity which calibrated

by DNS data to calculate the coefficient of turbulent diffusion.

Batchelor = Kolmogorov Integral
v v v
Energy
Z‘Inertial Subrange,
E ~ 53
| | | | |
0.01 0.1 1 10 100

Scales, mm

Figure 2.1 The classic turbulence energy spectrum versus to length scales for the open

channel flow (Roberts and Webster, 2002).
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24  Summary

In this chapter, different types of quantitative sediment transport methods are
introduced (e.g. the Eulerian and the Lagrangian model). However, this study is focused
on the Lagrangian model instead of the Eulerian model. Mechanisms such as sediment
entrainment probability and diffusion coefficient are introduced in this section and more
details will be mentioned in chapter 4. The aforementioned techniques will be applied to

simulate sediment transport in chapter 5.
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Chapter 3  Stochastic Theories

The specific objective in this thesis is to explore sediment transport in regular flow
through an analysis of stochastic methods. Particles’ erratic behavior in fluid can be
considered as stochastic, which may be caused by flow turbulence or particle interaction.
The Lagrangian model is used in this study in order to describe more details about
particle motion. Moreover, different from the Eulerian model, the Langrangian model is
more suitable and efficient to simulate the problem if the observer only concentrates on
a particular region rather than the whole domain. Therefore, the particle tracking model
based on the Lagrangian concept and the uncertainty characteristic is introduced. The
abovementioned method is known as the stochastic diffusion process. Besides, there is
another stochastic method called the stochastic jump diffusion process, which can be
applied to condition of extreme flow events. This chapter introduces the simulation
techniques of the stochastic theory such as the Markov process (or Markov chain) and
the Wiener process (or Brownian motion) for particle tracking model. In addition, the

numerical form for the stochastic differential process is also presented.

3.1 Markov Process

The Markov process is a stochastic process on a finite or countable number of

possible values (Ross, 2007). In general, the possible value of the process is regarded as

nonnegative integers (e.g.{0,1,2,...}). The Markov chain in mathematical form can be

given as
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P{X,0 = J|X, =1, X,y =iy Xy =1, Xg =ig} =P} 3.1)
It indicates that in the process there is a sate i which will correspond to a fixed

probability B; . In other words, the property of Markov chain can be said that the future
state is independent of the past states and will be influenced only by the present state. In
this point, movement of a particle in a water system is assumed to be followed by the
Markov process. For assumptions of the stationary process and Markovian property,

there is a random walk theory of stochastic processes available to describe the state of

sediment transport.

3.2 Brownian Motion

A pollen grain moved randomly in water is observed by Robert Brown in 1827,
who named this phenomenon as Brownian motion. Regarding to molecular diffusion, a

pollen grain has a stochastic trajectory. This phenomenon is based on the theory of
random walk. Each particle moves left or right with the same probability % and obeys

the well-known equation, Fick’s law. It can be noted that the motion of particle is
independent because of the dynamic balance of retarding force and heat fluctuations. In
spite of considering one-dimensional Fick’s law usually, the flux in an arbitrary
direction is corresponding only to the concentration gradient in a specific direction,
three-dimensional Fick’s law can be directly derived. For the concentration changing

with time, the solution of unsteady state diffusion can be obtained as follows

c(xt) =

1 x?
exp| ——— 3.2
J4xDt p( 4Dtj (3.2)

where c(x,t) is concentration; D is diffusion coefficient; t is observation time.
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This distribution is the normal distribution with a zero mean and a variance of 2Dt. By
means of the aforementioned concept, it can be easily assumed that the moving distance

of a particle is the Gaussian distribution also with the same statistic properties (e.g. zero

mean, standard divination, /2Dt ).

Thanks to the contribution of Wiener and Levy, the mathematical expression of
Brownian motion is also named the Wiener process or the Wiener-Levy process. The
random walk theory is employed. Considering that the particle is released at origin, the

position at time t can be shown as

X (t) = AX( X+t Xy ag) (3.3)

in which [t/At] is the largest integer less than or equal to t/At, and the X, are

assumed as independent values, obeying the same probability of moving left or right. It

can be concluded that the Wiener process follows few conditions such as

i)  W(0) =0 with probability 1.

ii) If 0 <s<t<T, then the random variable AW =W ((t)-W(s) is the Gaussian
distribution with mean and variance of 0 and (t - s) respectively, thus, the
mathematical form can be written as AW = vt — sNV'(0,1)

iii) The property of stationary independent increments. If 0 < s <t<u<v<T,

AW, =W (t)-W(s) and AW, =W (t) —W (S) are independent.

Figure 3.1 displays part of simple simulations of particle trajectory starting at

X, =0 and predicting the possible scenarios. In this example, time step At is given as
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0.5 seconds, and the end of time is 1 second. The particles interaction is neglected,
which means that particles have independently motions. We released 3000 particles at
the origin, and the ensemble mean is calculated. The figure also shows that the

trajectories’ variance is increasing with time.

Brownian Path Simulation
3 I I I 1 I I T
scenario's trajectories

mean trajectory
25- ) R

15+ __ Ao

X(t)(m)

-0.5

1.5 . . B ) s

|
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(s)

Figure 3.1 Simulation of 3000 samples of the Wiener process

3.3  Stochastic Diffusion Process
The aim of differential equations is to describe the system of the time evolution.
For instance, the variable which is the function of time x(t) within deterministic

function is ordinary differential equations (ODE). In contrast, the system of the time

evolution in the stochastic manner can be expressed by the stochastic differential
21
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equation (SDE). The stochastic diffusion process is a type of stochastic differential
equations, which can be expressed as follows.

dX,

dt = f(Xt,t)+g(Xt,t)Wt (3-4)

where X, = X(t) is the realization of a stochastic process; f(X,,t) is the drift term,
which is presented as the deterministic part of the SDE and has the meaning of local
trend; g(X,,t) is the diffusion term, influencing the size of fluctuations in the SDE;
W, is the Gaussian White noise process, which represents dW, / dt . However, paths of

the Wiener process are not differentiable. Depending on the choice of z; (i.e. the

integral manner of “left-hand” sum or “midpoint” sum), leading to the stochastic

process to different kinds of stochastic calculus: Ito and Stratonovich; where 7, is in the

time interval [t;,t, ;] asshown in following sections.

Ito calculus
T, =t (3.5)
Stratonovich calculus
t+t,
7, :—( ’ 2‘ ) (3.6)

Using the symbol “0” in the Stratonovich concept to distinguish between SDEs
interpreted in Ito and Stratonovich opinions, one obtain

dXx .
tt = f(Xt,t)—i-g(Xt,t)OWt (3.7)

The stochastic integral between the Ito and Stratonovich calculus can be obtained
respectively,

joTW(t)dW(t) :%[w (T)? -W(0)*~T] (3.8)
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and

IOTW(t)odW(t) =%[w (T)’ -W(0)’] (3.9)

Since the Ito and Stratonovich interpretations do not converge to the identical form,
using Ito’s formula to find a transformation from Ito to Stratonovich. The form
equivalent to equation (3.4) can be given as

%{f(xt,t)—%g(xt,t)axg(xt,t)jdwg(xwt)odwt (3.10)

in which the modified drift term is called the noise-induced drift.
Although the Stratonovich interpretation is considered to be used within the
physical property, the Ito interpretation is used in this study owing to the Markovian

property (i.e. the future stat is only dependent on the present state).

3.4 Numerical Approximation for Stochastic Differential

Equations

The Ito integral was introduced in the previous section. The numerical methods
are introduced for solving equation(3.4) since most SDEs are unsolvable analytically.

Moreover, equation(3.4) can be rewritten in the differential form as
dX, = f(X,,t)dt+g(X,,t)dW, (3.12)
Note that the initial position is X (0) =X, and that the time region is between 0 and T.

To apply the numerical methods such as the Euler-Maruyama (EM) method and

Milstein method, first we need to discretize the interval. Assuming that the time

increment At=T /L for some positive integers L and z; = jAt, then we can have
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the numerical form of the EM method and Milstein method.

EM method

X, =X+ F (X )At+g(X, ) (W(r)-W(z ), j=12...L (3.12)

Milstein method

X; =X+ F(X,)At+g(X ) (W(r) -W(z )
1 2 i (3.13)
+§g(xj_l)g'(xj_l)((W(rj)—W(rj_l)) —At), j=12,..,L

Both of these methods are the results of the Ito stochastic Taylor expansion by using the
Taylor approximation. Here, the EM approximation in the Ito sense is a one-step
approximation method, and converges with order 0.5 and 1 in the strong and weak sense,
respectively. By adding all the stochastic increments, both of Milstein’s methods
converge with order 1.

The strong and weak convergence definitions are as follows, and their convergence
isequalto .
Strong convergence

E|X, —X(7)|<CAt (3.14)
in which C is a constant; E is the expected value; X, and X(r) are random

variables, respectively; At is sufficiently small which fixs 7z =nAt in the region of 0
toT.

Weak convergence
[Ep(X,)—Ep(X(r))|<CAt” (3.15)
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where the functions p in equation(3.15) obeys the conditions of smoothness and

polynomial growth;

The above convergence definitions measure the rate of decay as At —0. As we
can see, the convergence of strong measures the proportion of decay of “mean of error”.
In contrast, the convergence of weak is to measure the proportion of decay of “error of

means”. Therefore, it can be concluded that weak convergence only takes into account

the mean of solution. For instance, if the increment is v A tV'(0,1) it can be replaced
by any random variable which obeyed the same mean and variance such as sign

function “sgn(x) ”, where X is a random number. There is a simple example to show
the difference between the strong and weak convergence (Higham, 2001). The EM
method is applied to the following equation in the linear form,

dX, =AX, +u X, dW, (3.16)

Equation(3.16) has an exact solution written as,
1,
X, =X, exp /1—E,u t+ 4w, (3.17)

The initial conditions and parameters in equation(3.16) in this example are shown in

Table 3.1.

-----

Table 3.1 Some parameters and initial conditions in the example
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Figure 3.2 shows the comparison of one of scenarios with strong and weak solutions by
using the time step 2°°. In this figure, it can be observed that the strong solution gives
more information of paths than the weak solution. However, both of them have same
statistic properties such as mean and variance. In Figure 3.3, the trajectories are almost
the same if averaging the trajectories of both convergences. On the other hand, by using
a least squares method, the convergence can be solved. In the strong solution, the
convergence value is producing 0.5384~0.5 with a least squares value of 0.0266. The
weak solution gives the convergence value 0.9858~1 with a least squares value

0.0508.

Comparison of strong solution and weak solution

12 T T T T T 1
Strong solution
Weak solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.2 Comparing with Weak solution, strong solution emphases the information of

path

26

doi:10.6342/NTU201603194



Comparison of the ensemble mean of strong solution and weak solution
8 1

Strong solution
Weak solution

1 1 L 1 1 1 1 1 l
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

Figure 3.3 Ensemble mean of strong solution and weak solution

3.5 Summary

The backgrounds of stochastic theories are introduced in this chapter. At first, the
Markov theory is presented herein. The important mathematical form of the Wiener
process (or Brownian motion) is also applied in the PTMs. With the aforementioned
concepts, the stochastic differential equation can be constructed. Different types of
mathematical interpretations such as the Ito scheme and Stratonovich scheme are
appropriate in the respective problems. However, in this study, the Ito calculus is
utilized since the hypothesis of Markovian property that the future state is only related
to the present state. At the end of this chapter, different numerical schemes which
enhance the numerical accuracy are also introduced. The EM method is ubiquitous and

well-accepted. Therefore, the EM method is still the best candidate in our study.
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Chapter 4 Development of Stochastic Particle
Tracking Model of Suspended Sediment

Transport

4.1 Introduction

Sediment particle movement in turbulent flow is difficult to describe exactly
because of a large number of molecules in the flow and small particles’ collision. It
takes longer to solve the equations of motion for all the molecules in the flow and for
small particles. Moreover, the unknown of initial values of all the molecules in the flow
and different motion of the small particles also puzzle the problem. To treat this problem
in a simple way, the stochastic force is employed to describe the effect caused by
molecules in flow and small particles’ collision (Risken, 1989). In other words,
sediment particles or fluid particles in turbulent flow can be considered as a stochastic
process. Based on the Markovian theory, the Fokker-Planck equation describes the
conditional probability density for the fluid particle’s velocity and position as the

evolution of time (Risken, 1989; Sawford and Borgas, 1994; Sharma and Patel,2010).

In general, the suspended sediment transport is simulated by the
advection-diffusion equations by means of the deterministic solution of the Eulerian
model. However, Dimou and Adams (1993) suggested that there are several reasons to
use the Lagrangian model instead of the Eulerian model. Firstly, it is easier to represent
sources in the Lagrangian model or the particle tracking model. The numerical problem
of an Eulerian model is difficult to solve with a high gradient concentration. Secondly;, it
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is more obvious to represent the region where most particles are located in the
Lagrangian model rather than in the Eulerian model where all regions of the
computational domain are considered equally. Thirdly, it is more effective to represent
properties of the individual particles (e.g. particle diameter, settling velocity) in the
Lagrangian model. To combine the characteristic of stochastic and the Lagrangian
model, the Fokker-Planck equation which derived from Langevin equation (Gadiner,
1985) is used. Langevin equation describes the detail of individual particles in the
Lagrangian framework instead of an assemblage of many particles. Since we cannot
consider all the forces by molecules or particles collisions, by assuming these forces are
random, the stochastic differential equation is constructed of deterministic forces.
Random force is introduced. Furthermore, the Fokker-Planck equation in the concept of
the Markovian property, and the large number of particles at a very small time step
corresponds to the advection-diffusion equation. However, some researchers have
shown that it is not enough for considering a single particle model (Durbin, 1980;
Thomson, 1990; Borgas and Sawford, 1991; Borgas and Sawford, 1994). Durbin
(1980) suggested that the autocorrelation of concentrations is needed for a complete
stochastic theory of concentration fluctuations. The development of a particle tracking

model is introduced in this chapter.

29

doi:10.6342/NTU201603194



4.2  Model Assumptions

Assumptions regarding the particle tracking models are described as follows:
One-particle PTM

The SD-PTM is constructed based on the foundation of the random walk model.
The assumption is that particles are moved by the collision against adjacent fluid
particles under a stochastic process, which is independent of the original position.
Random motion of sediment particles is described by the Wiener process. More details
of the Wiener process are introduced in chapter 3.
Two-particle PTM

Different from one-particle PTM, this model tends to distinguish the effect by
multiple scales of turbulence to describe more details of particle motion. The basic
concept is that if their distance is close to zero, the motion of sediment particles is
highly related to other particles caused by large scale turbulence. Particles can be
separated by molecular diffusion if particles are in the immediate neighborhood. On the
contrary, if their distance is large, sediment particles move independently. However, it is
difficult to define how sediment particles move in response to various scales of eddies.
For simplification, it is hypothesized that the spatial correlation of sediment particles
can be primarily attributed to large scales of eddies. As such, dependent Brownian
motion can be used to simulate spatial correlation of particles constrained by large
eddies. On the other hand, movement of sediment particles caused by molecular
diffusion or smaller scales of turbulence is modeled by the independent Brownian

motion.
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4.3  Model Development

4.3.1 Stochastic Diffusion Model — One-Particle Particle Tracking Model

An aggregation of many particles is commonly employed instead of an individual
particle. Fisher et al. (1979) applied an analysis of the concentration with no sources or
sinks based on the deterministic continuity equation. Therefore, the equation with

spatially varying coefficient in uniform flow can be written as

@+U@+\7@+(\N—WS)@ = Q(Q@}g 5y@ +2(52@J (4.1)
ot OX oy 0z ox\_ "ox) oy oy) oz 0z

change owing to advection change owing to diffusion

where C is concentration changing with time and space; U, V, W are the direction

of x, y and z mean flow velocities, respectively, W, is particle settling velocity, and

S

& &, &, are the sediment diffusion which represent all of the mechanisms causing

mixing in the respective directions.

In 1985, Gardiner proposed that the random walk model which describes the
position of each particle in Langevin framework, can be shown as

dx dB
— = A(xt B(x,t)— 4.2
ot (x,t)  +B(x1) pm (4.2)

deterministic forces
random forces

where A(x,t) represents the deterministic forces, B(x,t) is the random forces; and
dB, /dt is a Gaussian White noise which represents the uncertainty nature of motion

(Gardiner, 1985). Under the concept of Ito calculus, equation(4.2) can be rewritten as

the form of a stochastic differential equation

dx = A(x,t)dt + B(x,t)dB, 4.3)

where dB, is the Wiener process which can be simulated as VdtN'(0,1). The next
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step is to determine A(x,t) and B(x,t), for a given turbulent flow field in Eulerian

statistics. Wilson and Sawford (1995) pointed out that A and B represent drift and

diffusion term, respectively.

Following the Strong Law of Large Numbers, when the time step is nearly zero,

equation(4.1) is equivalent to the Fokker-Planck equation

of 0

o (1
EE+5g(Af)—-———(—Bmbfj (4.4)

OX:X. \ 2

i
where f(X,t|X0,t0) denotes the conditional probability density function for X at time

t, from the initial position X, at time t,. In order to compare with equation(4.4),

noting that

o 0 oc Oe,
E(SXC):&(ffX&'FC ox j (45)
and adding the flow continuity equation into equation(4.1)

ou

—+ﬁ+%=0 (4.6)
ox oy oz

Equation(4.1) can then be rewritten as

@+£KU+ angc}ﬁﬂmﬂjc}ﬁw—wﬁ 4 % )c}
ot ox OX oy oy 0z 0z

o? o° o°
= y(&XC)ﬁ‘y(SyC)ﬁ‘?(é‘ZC)

4.7)

It can be seen that equation(4.4) and equation(4.7) are equivalent if
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L_J+88X
OX
— O¢ 1 &
A=| V+—2 . =BB" = &, ,f=c (4.8)
oy 2
_ 0 &
W —w, + &
L o7 |

Thus, the stochastic differential equation becomes (Heemink 1990; Dimou and Adams,

1993; Man and Tsai, 2007; Oh and Tsai, 2010; Tsai et al., 2014)

dX, =(U+ 68det+ 2¢,0B
OX ‘
— O¢
dy, :(V +—yjdt+ 2¢,0dB (4.9)
ay t
— os
dz, :(W —W, + 3 z jdt+ 2¢,dB
Z t

Equation(4.9) is also called a stochastic diffusion equation, which can be described as
particle movement, for instance particles do random motion in the turbulent flow (Oh
and Tsai, 2009). Thanks to a multitude of factors such as eddy diffusion and
inter-particle collisions, sediment transport can be treated as a stochastic process in open
channel flow (Yen , 2002). This equation is a governing equation of the particle tracking
model in streamwise, transverse and vertical direction respectively, to delineate

sediment particle trajectory.

4.3.2 Stochastic Diffusion Model — Two-Particle Particle Tracking Model

A Lagrangian framework of the stochastic diffusion model for the trajectory by
one-particle model was introduced in the previous section. However, one-particle model
is good at estimating the ensemble mean of concentrations but not the ensemble
variance of concentrations. Turbulent properties such as different size of eddies in a
flow and mixing process (e.g. many turbulent eddies mix together) cause the
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fluctuations of concentrations. Namely, the stochastic model that considers paired
particle motion can give a more realistic description of the natural process, as
concentration variance is associated with statistics of particle trajectories produced by
the two-particle model. Based on this definition, Durbin (1980) proposed a two-particle
model that contained multiple scales of turbulent eddies. After this idea was established,
many authors have explored to develop the two-particle model (Thomson, 1990; Borgas
and Sawford, 1994; Reynolds, 1998; Spivakovskaya and Heemink, 2006). In this
section, the major concept of a two-particle model is built upon Spivakovskaya and
Heemink (2006). The spatial correlation of particle behavior related to turbulence is
applied in this section. The assumption of the two-particle model is that the
inter-particle correlation is dependent on the distance between two particles. Thus, it can
be observed that particles have very similar motion (i.e. highly correlated) if the
location of particles is the immediate vicinity of each other. On the contrary, motion of
particles becomes more independent when particles are away from each other.
Spivakovskaya and Heemink (2006) agreed with the argument that the effect of
molecular diffusion is important in a two-particle model. The difference between the
single particle model and paired particle model is that one neglects molecular diffusion,
as the order of molecular diffusion is much smaller than the turbulent diffusion. On the
other hand, the effect of molecular diffusion is considered. The particles can be

separated by the molecular diffusion if the particles are in the immediate neighborhood.

Based on the above theoretical considerations, the one-particle model can be
modified and the two-particle model equations (equation(4.10)) in two-dimension

uniform flow are given as
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o0s,,

{dxl(t)} Uy + ox, «/E( 1—ﬂ2de1(t)+ﬂdel'(t))

= dt +
O] |G, P || 2z, (Vi 5B, () + 0B, )
0X, (4.10)
W —w, + % 2 '
dz,(t) W, - w, L 981 /2522( 1—ﬂ2d822(t)+ﬂdez'(t))

where U, W is mean flow velocity; W, is particle settling velocity dependent on the
particle; & is diffusion coefficient of sediment particle; g is the diffusion effect
which can be chosen between 0 to 1; B is the standard Brownian motion simulated as
a single particle model; B’ is a correlated Brownian motion independent of B ;

a/l—ﬂzB(t) is the diffusion due to molecular diffusion and small scale turbulence and

BB’ (t) is the diffusion due to large scale turbulence.

In the two-particle model, large scale turbulence is to be simulated as the correlated
Brownian motion. The Brownian motion are correlated with covariance matrix as

follows
E[dB{(t) dB;(t)] = f (1)1, (4.12)
where f(r) is a correlated coefficient related to distance between particles. Moreover,

the covariance is assumed to obey several conditions, for instance, the function of
correlated coefficients is adequately smooth (i.e. the second derivative is continuous and

bounded); the covariance matrix is a positive matrix. If particle distance is very close

(Ax —0), the correlated coefficient is defined as one (e.g. lego] f(x)=1). In contrast, if

particle distance is very far (Ax — o), the correlated coefficient is defined as zero (e.g.

lim f (x) =0). In this thesis, we follow the function proposed by Diamant et al., (2005).
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f(r)=—

1
r2

(4.12)

The following is the procedure for producing correlated Brownian motion (Bolin,

2009).

(1) Generating two independent Brownian motion dependent on the Integral scale,

@)

3)

(4)

4.4

which represents the large turbulence scale.

|2

Producing the covariance matrix according to the distance of particles.

corz[1 f(r)}
f(r) 1

Applying the Cholesky factorization to decompose the correlation matrix.
cor = LL'

Obtaining newly correlated Brownian motion based on particle distance.

B
Bcor =|: cor1j| — LT B
B

cor 2

Determination of Hydraulic Parameters in

Channel Flow

4.4.1 \elocity Profile

Open

Turbulent flow plays an important role in open channel flow, since the flow we

investigated commonly has a large Reynolds number. Turbulent flow has the random

property, which is difficult to measure. Based on Reynolds’ equation, the velocity field

can be represented as follows
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u=uo-+u’ (4.13)
where T is mean velocity; u’is velocity fluctuations caused by turbulent eddies. This
equation can be used to describe the random process of turbulence. The velocity
fluctuation properties can be predicted by the Gaussian statistical theory in general.
Following Spurk (2008), the mean velocity profile has been driven by the assumption of
Prandtl’s mixing length. The turbulent shear stress 7, is connected with mixing length

I under Prandtl’s mixing length formula, which can be shown as

du
dz

du
— 4.14
™ (4.14)

—\2
T, :—pu’W’:plz(?j—l;] = pl?

Although the mixing length is considered as experimental investigation, herein the
assumption of shear stress is constant. Thus, the mixing length is thought to be
proportional to Z

| =xz (4.15)

where K is the von Karman constant. Since the shear stress is equivalent to the wall

shear stress (TW:,OU*Z), combining equation(4.14) and equation (4.15), the shear

velocity U. can be written as

u =z 38 (4.16)
dz

The velocity and water depth can be obtained by integrating equation(4.16), the velocity

distribution in turbulent flow is

T="Inz+C (4.17)
K

The mean velocity is zero at the location of Z, in the turbulent flow, so the constant C

of integration in equation(4.17) can be shown as
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C=——Ingz, (4.18)
K
Thus, it becomes
g="%1n [ij (4.19)
K z,

Flow velocity over the bed will be used to determine the roughness Reynolds number

(Re, =k.u./v). In other words, it depends on the characteristic of hydrodynamic

boundary (e.g. smooth boundary and rough boundary). Figure 4.1 and Figure 4.2 show

the picture of smooth turbulent flow and rough turbulent flow, respectively. An

expression for z, can be given,

voouk
Smooth boundary Z,=—, <5 (4.20)
qu. v
Rough boundary Z, :ﬁ, UK, >70 (4.21)
30 v

where v is kinematic viscosity, J, is the height of laminar sublayer, and k is

S

roughnees height.

Figure 4.1 Turbulent flow under the condition of the smooth bed boundary (modified by

MIT note).
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Figure 4.2 Turbulent flow under the condition of the rough bed boundary (modified by

MIT note).

4.4.2 Particle Settling Velocity

In the settling process, a particle settles quickly at beginning and reaches steady
state under the force balance condition when its gravity force is equivalent to the drag
force. However, compared to the observation time step, the time to reach steady velocity
is very short. In general, the particle settling velocity can be treated as a constant in the
modeling of sediment transport (Chen and Wang, 1999). Another important factor of
sediment particles is particle geometric shape. The geometric shape will result in
different degrees of drag force in the descending process in flow. Since the drag force is
varying, a particle in flow might not retain its original orientation and fall steadily.
Furthermore, the diameter of a particle is a significant factor by no means peculiar to the
particle shape. Chien and Wan (1999) have given a suggestion about the effect of finer
sediment diameter. Finer sediment particles move in flocs because of the
physic-chemical effect on the particle surface. This process gathers the fine sediment
particles into a floc and increases their effective diameter. According to previous
experimental results, it can be suggested that sediment particle flocculation may not
have a significant impact on the particle deposition process when their size is larger than

0.01mm.
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In addition to flocculation, sediment concentrations also have influences on the
settling velocity. The fluid specific density increases when the sediment concentration
increases. This phenomenon also increases buoyance, decreasing the settling velocity.
The following equations which defined low and high sediment concentration
respectively are arranged by Chen and Wang (1999).

Low concentration (S,<2.25%):

w 1
WS° =1+1.24kS 3 (4.22)

S

in which w, is the settling velocity of sediment particle at zero concentration, W, is

the settling velocity of sediment particle at concentration S,; K is the coefficient of

experimental investigation. Cai (1956) gives a value 0.75 for k by considering the

force conservation (Chien and Wan, 1999).

High concentration (S,>2.25%):

o _(1-s,)" (4.23)

S

in which m is the parameter to be determined.

On the other hand, Sadat et al. (2009) provided the settling velocity based on the
previous study. Depending on different size of particles, the settling velocity has the

relationship with the effective diameter D, .
For the effective diameter D, is less than or equal to 10, the settling velocity can be

expressed as
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2
|4

d 3 S _1 0.963
w, = 0.335(L] (4.24)

For the effective diameter D, larger than 10, the settling velocity can be expressed as

follows

So VZ

d3 S _1 0.553
w, = 0.515£M] (4.25)

“1))3
in which D, is defined as d(&zl)J ; d is particle diameter; g is gravity
|4

acceleration; and s is specific gravity.
4.4.3 Diffusion Coefficient

Similar to the diffusion in air or the diffusion in turbulent flow, particle diffusion in
fluid also can be described as Brownian motion. Particle diffusion in turbulent flow is
related to the surrounding fluid so that the motion of particle diffusion can be also

regarded as following eddy diffusion. The floc diffuses with surrounding fluid at the

beginning and then mix with ambient flow after moving for a distance l,. Based on

the definition of mixing length, if the momentum exchange coefficient &, is

equivalent to diffusion coefficient ¢, the diffusion coefficient ¢, can be expressed

£, =W, (4.26)

in which «/w? is the turbulent intensity. The coefficient of diffusion is associated with
the length scale of turbulence in different directions. The relative magnitude of diffusion
coefficient in longitudinal, transverse, vertical direction respectively, has an expression
as follows
& >, >¢, (4.27)
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Lateral diffusion

It is difficult to quantify the lateral or longitudinal diffusion in natural flows,
because of the complex terrain. Previously we focus more on the turbulent diffusion in
simple channel flow such as straight and uniform channel flow. Herein, there is no
transverse velocity profile on average available from laboratory experiment. Ficher et al.
(1979) indicated that in the uniform straight channel the average transverse turbulent
diffusion coefficient can be given as

¢, =0.15uh (4.28)

In natural streams, Fisher et al. (1979) suggested that transverse mixing in the uniform
depth is,

g, =0.6uh (4.29)

Longitudinal diffusion
Following Socolofsky and Jirka (2005), by assuming no boundary effects in the
transverse or longitudinal directions, one can demonstrate that the longitudinal turbulent

diffusion can be equivalent to transverse diffusion.

—¢ (4.30)

x y

Vertical diffusion
Following Cellino (1998), the vertical concentration distribution is related to
sediment turbulent diffusion. However, the sediment turbulent diffusion is to be
described by the momentum diffusion, which means the diffusion of fluid particles in
the flow. In previous studies, the momentum diffusion is determined by the log law
velocity profile and has a relation with the sediment diffusion and the momentum

diffusion as follows

& = pe, (4.31)
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where g is the proportion of the sediment diffusion coefficient to the momentum

diffusion coefficient; &, is the diffusion coefficient of sediment; ¢, , the coefficient of

momentum diffusion is given by

VA
=xu,z|1—-— 4.32
o =71~ (432

In open channel flow, the momentum coefficient of turbulence and shear stress are
zero as described by equation(4.33). Since suspended particles follow closely with
turbulent motion, suspended particles may be subject to non-negligible transport on

flow surface. In view of this, the turbulent diffusion coefficient of suspended particles
&, s proposed Absi et al., 2011). It can be shown as

1
- 4.33
& Sc, " ( )

in which Sc, is Schmidt number; v, is the eddy viscosity or the diffusivity of

momentum. The turbulent Schmidt number is given as

St 1
Sc, = + 4.34
t {(1,0f /ps) l+StJ (4.34)

The Stokes number st is defined as

st—p___ W K (4.35)

T (1_pf /ps)g GVt

where 7, is the particle timescale; 7, is the integral turbulence timescale or large
eddy’s turnover time; p, and p, are the density of fluid and solid, respectively; g

is acceleration of gravity; «, is a coefficient for two-equation (k — € model), which is

defined as «/C,. In this study, « and C, are given as 0(10°) (empirical
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coefficient) and 0.09 (Toorman, 2008), respectively; k and v, are the turbulent
kinetic energy (TKE) and the eddy viscosity respectively, defined by analytical
formulations and calibrated by direct numerical simulation (DNS) data.

The turbulent kinetic energy (TKE)

k=—2—e A  fory">40 (4.36)

in which the dimensionless distance from the channel bed y"=yu./v ;

A’ =0.58Re,-17 for Re, >2650; a =0.3Re,—100 for Re,>700; and Re, is the
friction Reynolds number.
The eddy viscosity

Yy

vo=vy'e &  fory'>40 (4.37)
inwhich A" =0.46Re_—5.98; a’ =0.34Re_—115.

Figure 4.3 shows the comparison of the Rouse model governed by equation(4.31)
and the experimental data presented by Coleman (1970). Figure 4.4 illustrates that Absi
et al. (2011) method agreed with the experimental data well on the region of near
surface instead of the Rouse method. In this study, the Absi et al. (2011) method is

employed in the particle tracking model.
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Figure 4.3 Comparison between vertical distribution of suspended sediment diffusion

coefficient and experimental data (Tsujimoto, 2010).

, Comparison of suspended sediment diffusion coefficient
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Figure 4.4 Comparison of different sediment suspended diffusion model.
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4.4.4 Re-suspension Mechanism

Sediment transport can be divided into two categories, bed load and suspended
load transport. Cheng and Chiew (1998, 1999) proposed the pick-up probability for
sediment entrainment to bed load and the probability for threshold a condition of
sediment particles remaining in suspension, respectively. Figure 4.5 displays the first
proposition considering the motion of individual particles in bed load. The incipient
motion of sediment particles is determined by the criteria whether the instantaneous lift
force acting on the particle exceeds the submerged weight force of the particle. However,
as Bose and Dey (2013) said, “the mechanism of the particle motion from the bed layer
to the suspension state is not yet well understood”. The near-bed characteristic of
turbulence is a one of the factors that makes the process complicated.

This study focuses primarily on suspended sediment transport. As shown in Figure

4.6, following Cheng and Chew (1999), sediment particles will remain in suspension
except if the vertical velocity fluctuations w' exceed the settling velocity W, of

particles. Herein, the thickness of bed load layer is given as two times the particle

diameter 2d  and the theoretical bed level is defined as lower than the top of the bed

particles of 0.25d . Therefore, the lowest center of a sediment particle in suspension
(i.e. the top center of sediment particles of bed load layer) can be determined as a
distance 2.75d above the bed level.

Following Bose and Dey (2013), the fluctuations of vertical velocity can be written

as the following PDF,

1
P, (W >0)=—(17+W—W* )exp(—W
o ) 16( ) PCW) (4.38)
P.(w<0)=0
The derivation of equation(4.38) has been mentioned in the previous section, which is a
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theoretical analysis based on a simple one-sided exponential probability function.

Moreover, the threshold of sediment suspension is determined by vertical velocity
fluctuations W' and settling velocity w,. Once W >Ww,, the surrounding fluid brings

sediment particles into suspension.

Flow velocity @

Sphere 1

_____________________________ . 0.25d
VAV il

Sphere 3

|
!
I
)
|
I
1
]
|
1
|
|
|
[
i
|

Lilw)

Figure 4.5 The conservation of forces acting on individual sediment particles in bed

load (Wu and Chou, 2003).

Figure 4.6 The condition for incipient motion of sediment particles is that the upward
velocity of turbulent eddies w' exceeds particles’ settling velocity W, (modified from

Chen and Chew, 1999 and Bose and Dey, 2013).
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4.5 Simulation Results

This section attempts to distinguish the difference between one-particle PTM and
two-particle-PTM by using a simple test. The objective is to observe movement of
sediment particles with turbulent diffusion that considers spatial correlation versus that
with primarily independent turbulent diffusion. Table 4.1 shows the environmental
conditions of this test. In this case study, it is assumed that flow is stationary and
isotropic. The gravity effect is neglected. Sediment particles are released from the
origin. In this case, the time step is 0.05 and total time is 15s. Equation(4.9) and
equation(4.10) are the governing equations of the one-particle PTM and two-particle
PTM respectively, and equation(4.39) and equation(4.40) are the discretized equations

by using the EM method.

. X, .. =X, +.2¢,AB,
One-particle PTM (4.39)
Yo =Y, +4/2¢,AB,

X1 =x1 + J2e, (Jl—ﬁZABt +ﬂABt')
Two-particle PTM (4.40)

Y=Y+ [2e (afl—,b’zABt +ﬂABt')

where AB, is the independent Gaussian distribution; AB," is the dependent Gaussian
distribution. X, is the particle position in the x-direction at time t ;. X, is the
particle position in the x-direction at time t . Y, is the particle position in the
y-direction at time t ;. Y, is the particle position in the y-direction at time t . &,
and &, are the turbulent diffusion coefficient in x and y direction, respectively; j is 1

and 2 distinguishing the number of paired particles in the two-particle PTM. Figure 4.7
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is the averaged correlation of paired particles in the two-particle PTM, which shows that
sediment particles correlation decrease very soon. Equation(4.12) is the correlation
function of sediment particles. In other words, spatially correlated eddies have a
significant effect only in the initial time period. In this case, 2,000 particles are released
at the origin 1,000 times. Figure 4.8 shows 1,000 and 500 realizations of the
one-particle PTM and two-particle PTM, respectively.  However, the spatial
correlation of sediment particles cannot be observed explicitly. Thus, to characterize the
spatial correlation of sediment particles, the principal axis transformation of paired
particles (e.g. particle 1°s x-axis versus particle 2’s x-axis) as in Figure 4.9 and Figure
4.10 needs to be done. It can be obviously seen that sediment particles have high

correlation at 0.1s but the correlation decreases very quickly.
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Environmental condition Value

Diffusivity coefficient(m?/s) 0.001
Particle specific gravity 1.025
Particle diameter(m) 0.00025

Table 4.1 Environment conditions in simple test and parameters in model

Averaged correlation coefficient

0.9

0.8

0.7 1

0.6¢

0.57

correlation f

0.4}

0.3¢

0.2

0.1}

relative time(s)

Figure 4.7 The averaged particle correlation versus relative time
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Figure 4.8 Sediment particles released from original by the one-particle PTM and two-particle PTM at time 0.1, 0.5, 1s, respectively
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Figure 4.9 The correlation with x direction of different two sediment particles by the one-particle PTM and two-particle PTM
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Figure 4.10 The correlation with z direction of different two sediment particles by the one-particle PTM and two-particle PTM
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4.6  Summary and Conclusions

This chapter documents the development of the PTMs. The assumption of
dependent Brownian motion in the two-particle PTM is presented before the description
about the spatial turbulence correlation. The PTM is derived from the ADE, which is
equivalent to the FPE in the Langevin equation. The details of model development are
introduced in this chapter. After that, hydraulic parameters are defined for given flow
conditions.

First, the vertical diffusion coefficient proposed by Absi et al. (2011), instead of
Rouse’ diffusion coefficient formula, is employed in the PTMs. This can be attributed to
the fact that Absi’s method is able to describe the smaller scale turbulent diffusion on
the water surface while Rouse’s formula is not.

Second, the settling velocity as a function of sediment concentration is used in this
model, as sediment particles will be affected by other particles. To illustrate in details,
settling particles squeeze surrounding fluid particles and water around sediment
particles and subsequently lift them up. This will impede particle’s settling process and
the settling velocity will decrease.

Last but not least, the mechanism of re-suspension is taken into consideration in
this model. Sediment particles near the bed will be brought up by turbulent fluctuations.
This model is inherently used to describe the movement of suspended sediment particles.
Consequently, the threshold of suspended load, rather than that of bed load, is employed
in this study. According to Chen and Chew (1999), suspended particles mostly
interchange with bed load.

In addition to the hydraulic parameters, a simple test is introduced in this section to

display the difference between the one-particle and two-particle PTM. The apparent
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difference only exists at the beginning in the simulation, which might be caused by the
correlation function. The aim of this example is to test the effect of dependent Brownian
motion. It is expected that the correlation function decays with time with an infinite
boundary in this example. Sediment particles will diffuse and then become independent
eventually. Dependent Brownian motion in the two-particle PTM will be applied in the

next chapter.
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Chapter 5 Application of The Stochastic Particle

Tracking Model

5.1 Introduction

In this chapter, the stochastic particle tracking model is applied. To ensure both the
one-particle PTM and two-particle PTM are acceptable models, the first case study
presents the model validation with experimental data such as velocity and sediment
concentrations. The Markovian property and Fickian law are demonstrated. The PTMs
are not only used in turbulence flows. There is an example of laminar flow filed in the
next case study. To model a more realistic flow field, the last case study is to simulate
the movement of sediment particles by the PTMs under a more complicated flow
condition simulated by computational fluid dynamics (CFD). Equation(5.1) and
equation(5.2) show the numerical discretization of PTMs using the Euler Maruyama

method (EM method),

Xn+l=Xn+(U+a;Xj+ 2¢, AB,
One-particle PTM ); (5.1)
Zn+1:Zn+(VV—WS+ gz)+ 2¢,AB,
674
X, =X, +(J+ 6;: ]+ngx (V- 5788, + 18
Two-particle PTM 5 (5.2)
z,,=2, +[ V-w,+ j 22, (\i- 5" 28, + a8/

where U and W are mean flow velocities; W;is particle settling velocity; AB, is
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independent Gaussian distribution; AB, is the dependent Gaussian distribution. X,
is the particle position in the x-direction at time t,,,. X, is the particle position in the
x-direction at time t . Z ., is the particle position in the z-direction at time t ... Z,

is the particle position in the z-direction at time t . ¢ and ¢, are the turbulent

diffusion coefficient in the x, z direction, respectively; j is 1 and 2 for distinguishing the

paired particles in two-particle PTM. Argall et al. (2004) suggested that the time step

can be roughly constrained by W,At/h<0.01 for numerical stability.

5.2  Case study of validating with experimental data

Muste et al. (2009)

Muste et al. (2009) presented the velocity of dilute particle suspensions by means
of image velocimetry enabling simultaneous. Two kinds of particles are examined in the
experiment, natural sand (NS) and naturally-buoyant sand (NBS). Their specific gravity
is 2.65 and 1.025 for natural sand and crushed Nylon (NBS), respectively. In this section,
only the NBS is used for validation, as this study primarily focuses on suspended
particles (Rouse number < 0.5). Table 5.1 shows the flow and particles characteristic in
the NBS flows.

Figure 5.1 presents the mean longitudinal velocity of 2,000 times with normalized

depth. It can be seen that the estimated ensemble mean NBS particles velocities agree

well with the measured particle velocity. In this case, g is J0.9.
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Environmental conditions Value

Flow depth (m) 0.021
Reynolds number 16317
Shear velocity (m/s) 0.041
Karman coefficient 0.405
Particle specific gravity 1.025
Settling velocity (m/s) 0.0006
Particle diameter (m) 0.00023

Table 5.1 The environmental conditions in the NBS flows

Conparison of sediment particle and fluid velocity
1 I I I
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O Muste et al.(2009) experimental measured data|

0.9

0.8

0.6

0.5

ZI/H

0.4
0.3

0.2

&
o (S‘*;‘@S
e
L

pefeLy

()

’ a0 0
0 1 L O O 1
0 0.2 0.4 0.6 0.8 1 1.2

U (m/s)

Figure 5.1 Comparison of mean particle velocities with NBS particle
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Coleman (1986)

The sediment particle trajectory is related to sediment concentration. With the
position of sediment particles, sediment concentration can be estimated. In this study,
the suspended load is not concerned with the effect of bed forms (e.g. no wash bed).
This experiment is established under a uniform flow at a constant discharge, depth and
energy gradient. The particle diameter in this experiment is 0.105, 0.210, and 0.420mm,
respectively. In this section, finer particles are selected for comparison. Results from
PTMs are compared with both the Rouse profile and Coleman run C02 data as shown in
Table 5.2. Figure 5.2 displays the comparison between the Rouse profile, the
one-particle PTM and two-particle PTM. 400 particles are simulated by one-particle
PTM based on 500 simulation times, and 200 particles are simulated by two-particle
PTM based on 500 simulation times. The PTMs are shown to compare well with the
Rouse profile. It should be noted that the reference height is not needed as Rouse profile
in PTM. It shows that ensemble mean concentrations of the one-particle PTM and
two-particle PTM are similar. The difference between two PTMs lies in the
concentration fluctuations such as the ensemble variance of concentrations. As in Table
5.3, the variances of concentration of two-particle PTM are slightly higher than those of
one-particle PTM, especially for the region below the middle height. The effect of
dependent Brownian and independent Brownian motion might give more uncertainty. In
other words, the two-particle PTM with consideration of multiple scaled eddies are
more uncertain than the one-particle PTM that considers merely a specific scale of

eddies.
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Environmental conditions Value

Flow depth (m) 0.171
Reynolds number 179775
Shear velocity (m/s) 0.041
Mean von Karman coefficient 0.433
Particle specific gravity 2.65
Particle diameter (m) 0.00015
Mean concentration along the depth 0.0305%

Table 5.2 Flow and sediment characteristics in Coleman (1986)

Normalize Depth Variance (one-particle) Variance (two-particle)
0.05 0.68 0.70
0.15 0.43 0.46
0.25 0.27 0.32
0.35 0.22 0.24
0.45 0.19 0.20
0.55 0.16 0.14
0.65 0.11 0.12
0.75 0.09 0.09
0.85 0.07 0.07
0.95 0.06 0.05

Table 5.3 The variance of sediment concentration by one-particle PTM and two-particle

PTM
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Validating against Coleman data
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Figure 5.2 Comparison of sediment concentration with Coleman measured data ( with

diameter 0.105mm)
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Figure 5.3 Sediment concentrations with on standard deviation by PTMs
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Markovian property

It is hypothesized that movement of sediment particles exhibits the Markovian
property. A stochastic process is defined as Markovian as its future state depends
primarily on the currently state, not on the previous states. Herein it is proved that the
simulation result of concentrations becomes stationary regardless of the initial released
location of the sediment particles. Figure 5.4 displays similar results regardless of the
initial position of released particles. As such, the particle movement is Markovian. It
should be noted that although the initial position is not significant, the particles arrival

time to reach a stationary state may be different.

Comparison of particle released from different position
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Figure 5.4 Comparison of sediment concentration based on different released locations

Fickian law

After being released for a long time, turbulent eddies are independent of each other
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(i.e. there is no autocorrelation) so that sediment particles diffuse as random process. In
our study, turbulent diffusion in analogy to molecular diffusion is based on Fickian law.
Particle diffusion can be further classified into subdiffusion, normal diffusion and
super-diffusion according to the variance of particle displacement with respect to time

based on equation(5.3).

(R?)~t (5.3)
where a =1 leads to normal diffusion, a <1 leads to subdiffusion and « >1 leads
to superdiffusion. In this case study, we would like to know whether particle movement
is Fickian or not. As shown in Figure 5.5, it can be observed that the variance of particle
displacement (< x*+z?>) simulated by the PTMs changes with respect to time.
However, the variance of particle distance is not linearly proportional to time. Such
particle movement is called anomalous or non-Fickian diffusion. Consequently,
sediment particles movement modeled by the PTMs is not the Fickian diffusion.
Particles have normal diffusion at the beginning, however, as time increases particles

are changed to superdiffusion. The phenomena of re-suspension may lead to anomalous

diffusion of particles.

PTM in 2-D case

T ——TT T —— 1T
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Mean Valrue of VSD l
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10" — ' R 5 e
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Figure 5.5 The variance of particle distance versus simulation time
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53 Case study of particle movement  under

two-dimensional laminar flow conditions

The aim of this section is to employ the PTM under the laminar flow field. Herein,
the particle movement in the lid-driven cavity flow is simulated by PTMs. This flow is
the motion of a fluid inside a rectangular cavity flow effect by a constant velocity of one
side while the other sides remain at rest. As Figure 5.6, the schematic of cavity is
moving with velocity 1 m/s on the upper lid, and the other boundaries remains static
because of the no slip condition. The flow is assumed to be incompressible, and the
gravity effect is neglected. The governing equation is Navier-Stokes equations which
include the continuity equation and momentum equation in X, y direction, as shown

below.

Continuity Equation

“+Z -0 (5.4)

Momentum Equation

ou  éu __1@+V(azu @]

U—+V— —
ox oy  pox ox* oy’ 55)
N o 1ép (N A '
V—+V—=—"""14V| —S+—
ox oy poy ox™ oy
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Table 5.4 presents the conditions in the example. In the initial condition, velocities
and averaged pressure are zero. To verify the accuracy of computed flow field, the
simulated velocity is compared with Ghia et al. (1982) in the middle of cavity as shown
in Figure 5.7. This example aims to simulate particle trajectory and shows that the effect
of advection is more significant than diffusion. Since there is no turbulent diffusion but
the molecular diffusion in the laminar flow (i.e. there is no difference between the
one-particle PTM and two-particle PTM), sediment particles follow the fluid motion
almost exactly because of the insignificant degree of molecular diffusion. To model
particle trajectory, the PTM as equation(5.1) is utilized based on 2,000 simulations. In
particular, the turbulent diffusivity is replaced with molecular diffusivity which can be
determined by the Stokes-Einstein equation.

5 _ KT

- 5.6
) 6ur (56)

where K is Boltzmann constant, 1.381 x 10723J/K; T is absolute temperature; 4 is

kinematic viscosity; and r is radius of a sediment particle.

Environmental conditions Value
Reynolds number 100
Particle diameter (m) 0.00023
Dynamic viscosity (m?/s) 0.01
Fluid density (kg/m®) 1
Temperature (°C) 27

Table 5.4 The environmental conditions under laminar flow
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Figure 5.6 The initial conditions of cavity problem
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5.4  Case study of particle movement under fully developed

uniform channel flow

In this section, particle movement under fully developed turbulent flow condition
is simulated. Detailed channel flow field with large eddy simulation (LES) was
provided by Chou (in press). In order to model the turbulent flow, there are two main
issues. Firstly, the governing equation is a nonlinear equation. And secondly, it is
difficult to simulate multiple scaled eddies due to numerical constraints. The basic
concept of LES is that simulating the large scale turbulence with numerical analysis
directly but modeling the effect of small scale turbulence on large scale turbulence by a
sub-grid scale model such as the Smagorinsky model. In other words, the LES simulates
turbulence by dividing turbulence into large scale and small scale eddies by means of
low-pass filtering. Figure 5.9 presents the data of mean flow velocity, turbulent
kinematic energy and turbulent viscosity via LES. With these data, the sediment
diffusion coefficient with the Schmidt number proposed by Adsi et al. (2011) can be
quantified.

Table 5.5 presents the CFD simulated flow conditions and sediment particle
properties. The Rouse number is 0.465 and thus the particle is considered to be
suspended particle. Based on equation(4.34) by Absi et al. (2011) via the proposed
Schmidt number, the sediment diffusivity can be determined as Figure 5.10, as the TKE
and turbulent viscosity are supplied. As in Figure 5.10, unlike the Rouse diffusion
formula, it can be observed that sediment particles have diffusion near the water surface
based on Absi et al. (2011). In this case study, 1,000 particles are presented and released
at the top of surface. Figure 5.11 is the ensemble mean trajectory of sediment particles

based on 5,000 simulations. As Figure 5.12, ensemble mean of longitudinal and vertical
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velocity with respect to time is presented. It can be observed that the ensemble mean

position of the particles in the vertical direction is very near the bed at the end of time.

z versus U

Z versus v, z versus TKE

turbulence kinetic energy

09f 09

08f 08
o7} 07
06 06

05

z/H

04 04

0.3} 0.3

02p 02

0.1 0.1

25 3 o

Figure 5.9 The flow conditions of mean velocity (m/s), turbulent viscosity (m?/s) and

TKE (turbulent kinetic energy (m?/s))
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Environmental conditions Value

Flow depth (m) 0.1

Friction Reynolds number 820

Reynolds number 16110
Karman coefficient 0.41

Shear velocity (m/s) 0.0082
Particle specific gravity 1.025
Particle diameter (m) 0.00023
particle volume concentration 0.046%

Table 5.5 The CFD and sediment environmental conditions

T T ) Comparison of suspended sediment diffusion coefficient
- 10° )
Rouse model (B =1) ] A — Chou's DATA

Absi et al model
Rouse model i =1

" I 1
03 04 05 08 07 08 0.9 1
z/H

Figure 5.10 Comparison of Rouse model, Absi et al.(2011) model and the computed

turbulent diffusivity
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Particle Position Z(m)

Figure 5.11 Ensemble mean of sediment particle trajectories (bold dot line) in 2-D flow
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Figure 5.12 Ensemble mean of sediment particles position in x, z-direction versus

simulation time
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Particle entrainment is subject to flow intensity and the mean flow velocity is
shown in Figure 5.9. Based on the re-suspension criteria equation(4.38), whether a
particle will be entrained or not is determined by the turbulent perturbations. Apparently,
the fluctuating velocity in the vertical direction is not strong enough to bring the
sediment up. In Figure 5.13, the ensemble variance of particle position in the
longitudinal direction is increasing with respect to time; the behavior of diffusion may
cause this phenomenon. By the trajectory of sediment particles, the sediment
concentration can be estimated. In this case, to examine the sediment concentration
along the vertical direction, the water depth is divided into 10 segments. The sediment
concentration can be regarded as the number of sediment particles in the grid. Figure
5.14 shows the sediment concentration profile and concentration fluctuations in this
case study. The uncertainty of sediment particles movement may cause concentration
fluctuations. In Figure 5.15, it shows one of the realizations of sediment clouds. As we

can see, sediment particles may re-suspend owing to turbulent eddies.
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Figure 5.14 Ensemble sediment concentration
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Figure 5.15 Sediment particle cloud in this channel flow

5.5 Summary and Conclusions

This chapter presents simulation results of particle trajectories under three different
flow conditions. The first case study is to examine results from the PTMs’ against the
experimental data. In the first case study, the sediment particles’ ensemble means of
velocities and concentrations are validated against the suspended sediment particles.
The PTMs are suggested to employ suspended particles because the ADE is the
prototype of the PTMs. Thus, the PTMs are usually used to describe suspended
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particles.

The Markovian property of the PTMs is validated in the first case study. In this
hypothesis, the initial position of particles is not significant, but may be affected by the
arrival time of sediment particles. The other hypothesis is that particle movement is
demonstrated to be Fickian, which is referred to when the variance of particle
displacement is linearly proportional to time. However, the variance of particles
displacement and time are not a linear proportion as the result. Re-suspended sediment
particles may cause particle movement to be anomalous diffusion. In this case study,
particles diffuse in superdiffusion as a result of re-suspension. Turbulent flow exhibits
multiple scales, particles may be brought by any scales of turbulences. This behavior is
called Levy flight (Shlesinger et al., 1987).

Besides, there is a comparison of the two-particle and one-particle PTMs under
Coleman experimental conditions. First, it can be seen that the difference between these
two models lies in concentration fluctuations, as described in the ensemble variance of
concentrations. One of the reasons may be attributed to large eddies. Multiple scaled
eddies exist in turbulent flows; as such, sediment particles may be in the influence
region of large eddies. Hence, sediment particles would have similar random motion
behaviors. To describe the impact of large eddies, parameter g is introduced to the
two-particle PTM in equation(4.10). According to Spivakovskaya and Heemink (2006),

the parameter g lies in the region between 0 and 1. Herein, the parameter g is

assumed to be a constant.

In addition to validate against experimental data, the purpose of the first case study
is to demonstrate the diverse concentration fluctuations. In the two-particle PTM, which
takes the space correlation of the turbulence into account, the variance of sediment

concentrations is higher than that of one-particle PTM. This may be resulted from the
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concern about spatial correlations of the turbulence which variegates the trajectories of
sediment particles. Moreover, the closer to the bed, the higher the variation of sediment
particle trajectories. This phenomenon is on account of the mechanism of re-suspension
and gravity forces. Gravity forces lead particles to settling at the bed while the
re-suspension mechanism affects particle motions near the bed; therefore, the
trajectories near the bed are uncertain.

In the second case study under laminar flow conditions, the molecular diffusion
instead of the turbulent diffusion plays a significant role. Main flow dominates the
motions of particles; namely, a sediment particle almost follows flow direction in the
laminar flow with a minor diffusion effect.

Our last case study is to simulate particle movement in turbulent flows. Sediment
transport becomes more unpredictable due to the complex behavior of turbulence. In
this thesis, forces exerted on sediment particle movement can be categorized into
deterministic forces and stochastic force (e.g. turbulent fluctuations). This is described
as the well-known Langevin equation. By means of Dr. Chou’s turbulent flow data, we
can simulate the movement of sediment particles and sediment concentrations using

PTMs.
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Chapter 6 Summary and Recommendations

6.1 Summary and Conclusions

Transport of sediment particles has been of environmental significance recently
especially for suspended sediment. Water quality is one of the significant issues for
sediment transport, as it is related to sediment concentrations. There are many
approaches available to estimate sediment concentrations such as the
advection-diffusion equation or empirical formulas. In this thesis, a state-of-the-art
method, the SD-PTM, is employed. This research focuses on the characteristics of
individual sediment particles such as the settling velocity and spatially correlated
turbulent effect instead of assemblage of sediment particles. Random movement of
sediment particles caused by turbulence is considered as well. In chapter 3, some basic
stochastic theories are introduced. With the assumption of Random Walk, turbulent
diffusion is analogous to molecular diffusion. In mathematics, the Wiener process that
describes the stochastic characteristics of Brownian motion is defined. Development of
PTMs is detailed in chapter 4. The Markovian property and the Fickian law are also
presented in chapter 5. The hypotheses proposed in chapter 1 is verified using the
SD-PTMs. Critical hydraulic parameters are defined in chapter 4, and example
simulations are presented. In our models, we do not employ the diffusion formula
proposed by Rouse, as turbulent diffusivity on the water surface is not exactly zero in
reality. Rather, the formula suggested by Absi et al. (2011) is applied here. To examine
the model, the proposed PTMs are also validated against experimental data such as data
of Muste et al. (2009) and Coleman (1986) for particle velocity and sediment
concentrations, respectively. After validation, the PTMs are applied to various flow
conditions such as cavity problem and fully developed uniform turbulent channel flows.
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6.2 Recommendations for Future Research

In order to address particle random movement attributed to spatial turbulent
correlation in turbulent flows, the two-particle PTM is employed. However, the
parameter S is not easy to be determined. The parameter B might need an
experimental investigation or CFD validation. Moreover, for the suspended particles,
the lag time between sediment particles and fluid particles caused by the drag force may
exist. As to the mechanism of re-suspension, if we can consider the bed load motion, a
better criterion of re-suspension should be obtained. More effort to refine the PTMs

for sediment transport in open channel flows is desirable.
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APPENDIX

NOTATION

The following symbols are used in this study:

Chapter 3
c(x,t) = concentration

D = diffusion coefficient

f(X,,t) = the function of drift term
g(X,,t) =the function of diffusion term

W, = Gaussian White noise process
E[ ] =expected value

X,, X(zr)=random variable

N'(0,1) = standard normal distribution with a zero mean and a unit standard deviation

A =mean drift term
u = diffusion coefficient
Chapter 4

C = concentration changing with time and space

U, V, W = the direction of X, y and z mean flow velocities, respectively

W, = particle settling velocity

& €,y & = the sediment diffusion coefficient in x, y and z direction

A(x,t) = the deterministic forces

B(x,t) = the random forces
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dB, /dt = Gaussian White noise

dB, = the Wiener process

f(x,t|x0,t0) = the conditional probability density function for X attime t, from the
initial position X, attime t;

[ =the diffusion effect which can be chosen between 0 to 1;

B = the standard Brownian motion as same as single particle model

B’ =a correlated Brownian motion independent of B
«fl—ﬂz B(t) = the diffusion due to molecular diffusion and small scale turbulence

BB’ (t) =the diffusion due to large scale turbulence

f (r) =acorrelated coefficient related to distance between particles
I, =identity matrix

o = mean velocity

u’ = velocity fluctuations caused by turbulent eddies

K =von Karman constant

= Prandtl’s mixing length

v = kinematic viscosity

= the high of laminar sublayer
. = roughnees high

W,

., = the settling velocity of sediment particle at zero concentration
w, = the settling velocity of sediment particle at concentration S,

k = the coefficient of experimental investigation, Cai (1956) gives a value 0.75 for Kk

by considering the force conservation
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1
. . . . L . ~1) )3
D, = the effective sediment particle diameter which is defined as d [&2)}

|4

d =sediment particle diameter

g = gravity acceleration

S = specific gravity

&, = the momentum exchange coefficient

¢. = the diffusion coefficient

z

w2 = turbulent intensity
B, = the proportion of the sediment diffusion coefficient to the momentum diffusion
coefficient

Sc, = Schmidt number

= eddy viscosity or the diffusivity of momentum

—

st = Stokes number

r, =the particle timescale

h=]

7, = the integral turbulence timescale or large eddy’s turnover time
p; and p, =the density of fluid and solid, respectively

o, = a coefficient for two-equation (k — ¢ model) which is definedas «/C,

Chapter 5

U and W =mean flow velocities in longitudinal and vertical direction

W, = particle settling velocity

AB, = independent Gaussian distribution

AB, = the dependent Gaussian distribution
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X, = the particle position in the x-direction at time t_,;
X, = the particle position in the x-direction at time t,
Z.., = the particle position in the z-direction at time t,,;
Z, =the particle position in the z-direction at time t,

¢, and ¢, =the turbulent diffusion coefficient in the X, z direction, respectively

X

j =1, 2 for distinguishing the paired particles in two-particle PTM

h = water depth

(R*) = the variance of particle displacement
K = Boltzmann constant, 1.381 x 10723J /K
T = absolute temperature

u = kinematic viscosity

r = radius of a sediment particle
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