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中文摘要  

 泥砂運輸與人類的生活息息相關，例如橋墩沖刷、水質估計等等，故泥砂運

輸的研究是一直以來都是一個很重要的議題。泥砂顆粒在水中除了隨著水流方向

運動之外，也會因為受到紊流的影響而向周圍不規則擴散，此外，其運動的行為

可以馬可夫鏈(Markov chain)來近似，因此本研究將泥砂顆粒的運動視為一個隨機

過程。本文以力學原理結合序率方法(Stochastic method)來模擬泥砂顆粒在水中的

運動軌跡，亦即增強隨機微分方程中的物理性質，使之更貼近自然情形。 

    為模擬泥砂顆粒的運動行為，本文以朗之萬方程(Langevin equation)為原型所

推導出的隨機擴散粒子追蹤模型(Stochastic Diffusion Particle Tracking Model)呈現

顆粒運動因紊流而造成的不確定性。其中，隨機擴散粒子追蹤模型主要包含兩種

基本元素：平均漂移項(Mean drift term)，即為顆粒隨著水流方向運動；紊流項

(Turbulence term)，即顆粒受到紊流作用而有不規則的運動，也稱為布朗運動

(Brownian motion)，係利用維納過程(Wiener process)來模擬。 

    本研究利用隨機擴散粒子追蹤模型來模擬在一般流況下泥砂顆粒的運動軌跡， 

分別使用兩種隨機擴散粒子追蹤模型: 單顆粒粒子追蹤模型(One-particle Particle 

Tracking Model)和雙顆粒粒子追蹤模型(Two-particle Particle Tracking Model)去模

擬。其中，雙顆粒粒子追蹤模型比單顆粒粒子追蹤模型多考慮了顆粒在距離相近

時候的變化，因為大尺度的渦流(Large scale turbulence)的關係可能使彼此相近的顆

粒具有相似的隨機運動。另外，以巨觀的角度去觀察顆粒整體的運動，可以計算

出水中的泥砂濃度，且因為泥砂顆粒受到紊流擾動的影響，使得泥砂的濃度也具

有不確定的變化。因此本文呈現顆粒軌跡和泥砂濃度的平均值和標準差來表示泥

砂顆粒在水中的不確定性。本研究首先和實驗資料比對單顆粒和雙顆粒粒子模型

所估計的濃度以驗證模型的可行性，最後使用此模型分別探討層流流場中和紊流

流場中顆粒隨機運動的情形，結果顯示在紊流流場中顆粒的隨機運動比較明顯，

因此在高雷諾數(Reynolds number)的流場中估計泥砂濃度時，應考慮漩渦對泥砂顆

粒所造成的隨機變化，並給予濃度變動範圍較為恰當。此外，泥砂顆粒運動具有

馬可夫特性也在本文中證實。然而，如本文結果所顯示，泥沙顆粒的移動距離卻

不是和時間呈線性的正比關係，並不符合菲克擴散(Fickian diffusion)。泥砂顆粒具
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有再懸浮的現象可能導致泥砂擴散為反常擴散(non Fickian diffusion or anomalous 

diffusion)。 

     

關鍵字：隨機微分方程、序率模式、顆粒軌跡模型、泥砂運動、雙顆粒模型、馬

可夫特性、反常擴散 
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ABSTRACT 

 Sediment transport is an important issue for human. It is closely related to human 

society, such as bridge scour and water quality. A sediment particle in flow not only 

follows the flow direction, but also diffuses through the surrounding water due to 

turbulence. Markov chain is used to approach the movement of sediment particles. 

From this perspective, particle movement is regarded as a stochastic process in our 

study; moreover, the proposed models simulate particle trajectories based on stochastic 

methodologies and physical mechanisms, underscoring mechanics in the stochastic 

differential equation. 

To simulate sediment particle movement, the stochastic diffusion particle tracking 

model (SD-PTM) has been derived from the Langevin equation, which is able to show 

the random characteristics of sediment movement. SD-PTM has two basic elements, the 

mean drift term and the turbulence term. One of the particle characteristics, the mean 

drift term, is that particles follow the flow direction; another one is called the turbulence 

term that describes random behaviors caused by turbulence diffusion. This movement is 

known as Brownian motion. In general, the diffusion movement is modeled by the 

Wiener process. 

The aim of this study is to simulate sediment particle trajectories under the normal 

flow condition by the SD-PTMs, one-particle PTM and two-particle PTM. The 

difference between the single particle model and the paired particle model is that the 

paired particle model accounts for large eddy turbulence. In other words, the paired 

particles may have similar random movement if the locations of particles are in the 

immediate vicinity of each other. Besides, to observe assemblage of particles’ motion in 

the macroscopic manner, the sediment concentrations can be estimated. Moreover, 
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sediment concentrations involve the property of uncertainty on account of sediment 

particles’ stochastic trajectories. Therefore, to demonstrate such uncertainty of sediment 

particles, the ensemble means and ensemble standard deviations of sediment trajectory 

as well as concentrations are presented in the study respectively. The proposed models 

are validated against experimental data by ensemble mean velocity and sediment 

concentrations. Moreover, this study also discussed the random movement of sediment 

particles under various flow conditions, laminar cavity flow and fully developed 

turbulent open channel flow. Results show that the random movement of sediment 

particles is significant in turbulent flow. Thus, it is appropriate to consider the 

fluctuation of sediment concentrations under high Reynolds number flow conditions. 

Besides, the Markovian property of the PTMs is validated in our study. However, the 

variance of particle displacement and time are not a linear proportion as the result. 

Resuspension of sediment particles may cause particle movement to be anomalous 

diffusion. 

 

Keyword: stochastic differential equation, stochastic model, particle tracking 

model, sediment transport, two-particle model, Markovian property, anomalous 

diffusion. 
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Chapter 1 Introduction 

Equation Chapter 1 Section 1 

     Irregular movement of particles owing to turbulence has been studied for many 

years. The drag force of turbulence fluid is a main factor that causes a particle to move 

randomly. For instance, hydraulic and environmental engineers have been highly 

concerned with sediment transport caused by turbulence. This is important for designing 

flow structure, water quality management and ecological environment. According to the 

particle properties, sediment particles can be classified into suspended load and bed load 

in flow. In general, a particle floating in the water column is classified as suspended 

load; bed load is defined as a particle moving near the bed. To study sediment transport, 

researchers and engineers used to concentrate on deterministic methods. There are many 

kinds of modeling approaches, such as the sediment-transport balance method and the 

sediment-divided method. Sediment-transport balance method is a method that offers 

the sediment balance equation derived from the sediment transport formula. In 

sediment-divided method, different particle movement is considered in order to decide 

whether a suspended load model or bed load model needs to be applied. The 

aforementioned models are mainly focused on particle concentration, i.e. particles in the 

Eulerian model seem to be presented by concentrations. However, more detailed 

information on trajectories of particles is preferred. Consequently, simulating sediment 

transport by Lagrangian models became more and more popular recently and were 

promoted in various fields such as hydraulics, marine, environment, economics, physics 

etc.( Man et al., 2007; Spivakovskaya et al., 2007; Oh and Tsai, 2010; Shah et al., 2011) 

 

     In order to study bed-load transport, Einstein (1942) established the foundation of 
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the applicability of probabilistic concepts. The entrainment probability function is 

innovated in sediment entrainment to bed load. In other words, stochastic properties 

have been suggested for the transport of sediment particles. A new viewpoint for 

stochastic models for sediment transport has been implemented ever since. 

 

   One category of the stochastic models is particle tracking models (PTM), also 

known as “Random walk models’’. This type of model can be treated as the transport of 

a constituent of large number of moving particles which can be simulated as discrete 

particles. Because of discrete particle characteristics, this stochastic process might be 

regarded as a Markov-process theory, meaning that particle position only depends on 

the present state instead of all past history. The PTM normally employs two terms: the 

mean drift term and random term. This stochastic transport model based on physical 

mechanisms are called the stochastic diffusion particle tracking model (SD-PTM), 

which is built on stochastic differential equations (SDE). Since SD-PTM, a type of 

Langevin equation is equivalent to the Fokker-Planck equation (FPE) derived from the 

advection-diffusion (ADE) equation for suspended sediment transport. The detail of 

model development will be introduced in chapter 4.  In addition to this, turbulence 

flow plays an essential role because we are focused on the sediment transport in open 

channel flows. Unfortunately, turbulence in the open channel flows is not completely 

understood even in recently. Because of insufficient knowledge about turbulence, there 

exists uncertainty when attempting to modeling particle movement in flows. As such, 

the stochastic method is an appropriate way to describe the movement of sediment 

particles in this study. 
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1.1 Problem statement 

    The problem of sediment transport is closely related to the environment such as 

water quality, estuary improvement, environmental protection and estuary surrounding 

construction. In order to reach the above objectives, it is important to study the law of 

natural environment. With an enhanced understanding of sediment transport 

mechanisms, hydraulics constructions or engineering management can operate more 

effectively based on this scientific information. However, the natural environment is too 

difficult to simulate, as it involves multiple interacting factors. In other words, it is 

impossible to have complete information on all the factors in the natural process. 

Moreover, sediment motion in the flow and eddies are a complex process, which can be 

regarded as a stochastic process. Most sediment transport models such as ADE or the 

Exner equation are deterministic models, meaning that if a model with the same input(s) 

will yield the same results. These deterministic models simplify the uncertain variables 

(e.g. sediment properties, and flow discharge) to deterministic values and neglect the 

irregular eddy effect. Stochastic models for complicated and random natural process are 

thus developed. These stochastic methods such as uncertainty analysis that considers 

uncertainties incurred in data by considering their probability of occurrences. Yen (2002) 

discussed the hydraulic problems with stochastic perspectives, which can be briefly 

summarized as follows.  
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Input System Output 

Deterministic Deterministic Deterministic 

Deterministic Stochastic Stochastic 

Stochastic Deterministic Stochastic 

Stochastic Stochastic Stochastic 

Table 1.1 Different types of model (modified from Yen, 2002) 

 

In this study, we consider the stochastic model-- SD-PTM to describe sediment particle 

movement in the open channel flows. A different concept of SD-PTM, two-particle 

PTM, is proposed by Spivakovskaya and Heemink (2006). Unlike traditional SD-PTM, 

the two-particle PTM suggested that the behavior of sediment particles caused by 

turbulence flow is correlated in space. Therefore, to more comprehensively model 

sediment particles, it is desirable to develop the two-particle PTM considering the effect 

of spatial correlation of particle behavior. 

 

 

1.2 Research Hypotheses 

Motion of sediment particles caused by turbulence is an irregular motion, which is 

difficult to describe exactly. This study raises two main hypotheses in the PTMs. 

Markovian property 

    Sediment particles in open channel flows are poorly understood because of its 

random motion. Therefore, sediment particle motions are regarded as a memoryless 

stochastic process. The memoryless behavior is called as Markovian property. Based on 
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this, the FPE is used to describe particles’ movement. In the other words, sediment 

particles relates to the present state rather than the previous state.  

Fickian law 

    Turbulent diffusivity plays an important role in the high Reynolds number flow. 

For instance, in turbulent flow, the effect of turbulence is more significant than that of 

the molecular diffusion. As will be introduced in chapter 4, turbulent diffusion is also 

considered as some form of random motion. The behavior of turbulence flow is 

analogous to Fickian diffusion. In Fickian law, the variance of particles displacement is 

defined to be linearly proportional to time. Figure 1.1 presents the flow chart of the 

PTMs. The difference between one-particle and two-particle PTMs is in the stochastic 

diffusion process. The two-particle PTM emphasizes the inter-particle relationship.  
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Figure 1.1 Flow chart of two-particle PTM 
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1.3 Objectives of Study 

    This study is intended to develop a refined stochastic diffusion particle tracking 

model for sediment transport in open channel flows to estimate sediment concentrations. 

The main objectives are 

i. to incorporate a more sophisticated turbulent diffusivity formula and a recently 

developed mechanism of re-suspension into the proposed stochastic particle 

tracking model; 

ii. to simulate the movement of sediment particles under various flow conditions;  

iii. to verify the proposed model by comparing the quantified sediment concentrations 

and velocity with experimental data; 

iv. to compare and discuss the difference of the concentration fluctuations by 

proposed one-particle and two-particle models. 

 

1.4 Overview of Thesis 

    This thesis includes two main hypotheses which are previously defined. Chapter 2 

is a literature review about different opinions of quantitative sediment particles, and the 

important hydraulics parameters to the proposed models. In chapter 3, the foundation of 

stochastic theories and numerical schemes are presented. Chapter 4 is the development 

of the SD-PTM, including the derivation of SD-PTM from ADE and the equivalent 

equation, FPE, as well as the definition of hydraulics parameters. Chapter 5 

demonstrates three applications by the proposed models with comparison of 

experimental data and the various flow field data, respectively. Lastly, Chapter 6 

supplies a summary of the findings, contributions, and recommendations for future 

studies in this field. 
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Chapter 2 Literature Review 

Equation Chapter (Next) Section 1 

2.1 Stochastic Methods 

Sediment transport model can be basically divided into two categories, the 

Lagrangian methods and the Eulerian methods. These kinds of methods are used to 

quantify particles in the flow. However, the erratic movement of particles which caused 

by flow eddies brings challenge for hydraulic engineers. In 1827, Brown first found that 

this phenomenon on microscopic scale, and named it “Brownian motion”. In 1905, 

Albert Einstein explained the physical mechanisms of Brownian motion and then 

Wiener built up the mathematical theory for such motion. Particle movement with 

Brownian motion can be regarded as a stochastic process. A stochastic process includes 

a group of random variables, which represents the evolution of a random variable over 

time (i.e.  ,tX t T and 1 ... nt t T   ). Despite the results of deterministic models, 

the outcomes of the stochastic models are random, though the same initial and boundary 

conditions are used. It indicates that stochastic models are more realistic in many cases, 

especially for “large numbers” problems. However, it is generally easier to analyze the 

problem by deterministic models rather than stochastic ones. This study focuses on 

implementing stochastic models to sediment transport 

 

In 1980, Durbin proposed a new definition of concentration in turbulent flows with 

a stochastic two-particle model. It demonstrates the difference of the predictions of 

concentration fluctuation by the two-particle model and those by one-particle model. 

The difference between one-particle model and two-particle model such as the 

production of fluctuations is related to dispersion of the blob’s mass center by large 
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scale turbulence. Durbin indicates that the process of blob mixing is with uncertainty. In 

other words, whether the behavior of turbulent eddies mixing two blobs together would 

occur depended on the probability. Therefore, the blobs’ dispersion is relative to each 

other. With this new concept, Spivakovskaya et al. (2007) predicted the probable 

concentrations of the contaminant in order to reduce the possible environmental damage. 

In addition, the multiple particle model is constructed and the forward-reverse estimator 

is used to estimate the ensemble mean and standard deviation of the concentration of 

contaminant with the given number of critical locations. The following sections will 

describe the common methods to quantify particles in the flow. 

 

2.1.1 The Eulerian model 

    In the Eulerian model, particles are treated as a continuum. In order to quantify 

particles, concentration is defined as the particles average spacing. The mathematical 

formulation of Eulerian model is governed by the advection-diffusion equation: 

     0
c

Uc D c
t


   


. (2.1) 

Where c is the ensemble mean of sediment particle concentration;  is the divergence 

operator  / , / , /x y z      ; D indicates the diffusion coefficient in the streamwise

 , ,x y zD D D ; and c is the gradient vector of sediment concentration. For 

incompressible fluids, u =0, equation(2.1) becomes: 

  U 0
c

c D c
t


    


. (2.2) 

In general, this partial differential equation can be solved by numerical techniques such 

as finite differences, finite elements or finite volumes. 
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2.1.2 The Lagrangian model 

Unlike the Eulerian model, the Lagrangian model focused on the movement of 

individual particles, easily applying stochastic concept to each other (i.e. the collision of 

inter-particle). The basic ideas of Lagrangian models are from the random-walk particle 

tracking models. The random-walk model accurately simulates the turbulent dispersion 

with mathematical expression described by stochastic diffusion equations (Gardiner, 

1985). In this model, the diffusion processes affect particle trajectories and is regarded 

as stochastic processes (i.e. the governing equation is stochastic). To avoid the 

inaccurate result by advection-diffusion equation in regions where the gradient of 

concentration tends to be high, the stochastic differential equations can be applied to 

such transport problems so the concentration with the probability function can be 

generated. The Fokker-Plank equation, known as the forward Kolmogorov equation 

(Tsai, 2012), is applied to develop the particle tracking models by defining the partial 

differential equation for the conditional probability density function 

 
2

,0 0

,

( )( , , ) ( , ) 1
.

2

T

i ji

i i ji i j

ff x t x t fu x t

t x x x

 
  

   
    (2.3) 

where 1,2,3i  ; 1,2,3j  ; 
0 0( , , )f x t x t  denotes the probability density function 

which initial position is 0x  at time 0t ; iu  is mean and T  is variance. To describe 

Brownian motion, there is a stochastic diffusion equation such as Langevin equation. 

The Fokker-Plank equation derivate from the Langevin equation in Ito scheme gives the 

form as equation(2.3) which has the property of Markovian chain. The numerical 

techniques for parabolic stochastic partial differential equation are suggested to tackle 

more sophisticated sediment transport problem. The detailed introduction about 

Langevin equation is presented in the following chapter 
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2.2 Pickup Probability 

    The incipient motion of a sediment particle on a stream bed may occur in a form or 

forms like rolling, sliding, and saltation, which depends on the characteristics of near 

bed load flow. Einstein (1905) took bed load particles as stochastic process and defined 

pickup probability in this issue, giving incipient problem a new concept. Although the 

methods of stochastic have been applied to model the hydraulics of open-channel flow 

and sediment transport for a long time, there still remains much space for advancement 

in stochastic modeling like the initial entrainment and particles motion near the bed. 

However, most Researchers have investigated the critical shear stress by experimental 

or theoretical methods. Lee and Balachandar (2011) proposed the theoretical prediction 

of the threshold for incipient motion which is based on a force or momentum balance 

(i.e. the force balance relations such as hydrodynamic drag, lift force gravitational and 

frictional forces are considered). On the other hand, Wu and Lin (2002) laid the 

foundation of the positive fluctuations of the streamwise velocity nearing the bed to 

decide pickup probability. Instead of previous assumption that velocity fluctuation 

obeys the normal distribution, the streamwise instantaneous velocity is based on 

lognormal distributions. In this foundation, the instantaneous velocity follows the 

lognormal distribution from zero to infinite. 

Different from previous studies that were based on the normal and the lognormal 

distribution, Bose and Dey (2010) suggested a probability function with the 

Gram-Charlier series expansion according to the two-sided exponential or the Laplace 

distribution. They indicated that the velocity fluctuations  ,u w   comply with Gram 

Charlier-based two-sided exponential or Laplace distributions. The streamwise velocity 

fluctuations can be expressed as a probability density function by assuming 1
ˆ /u u   
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and 2
ˆ /w w  , where 1 , 2  are root-mean square of u  and w , respectively, 

  





2

ˆ 0 10 20

0

2

30

1 1 1 1
ˆ ˆ ˆ ˆ ˆ( ) i ( ) 1 (1 )

2 2 2 8

1
ˆ ˆ ˆ ˆ(3 3 ) ... exp( )

48

j

u j j

j

p u C I u C u C u u

C u u u u







     

    


  (2.4) 

where the coefficients jkC is related to the jkm , 10 10C m ; 20 201 ( / 2)C m   ; 

30 10 302 ( / 6)C m m   . The probability density function ˆ
ˆ( )vp v of vertical velocity 

fluctuations is similarly given by an expression in which substituting û  for w , and 

10 20,C C  and 30C  by 01 02,C C  and 03C , respectively. The moments 0jm  and 0km  

related to the 0jC  and 0kC , respectively, can be shown as, 

 ˆ ˆ0 0
ˆ ˆ ˆ ˆ ˆ ˆ( )d ,     ( )dj k

j u k vm u p u u m v p v v
 

 
    ,  (2.5) 

Owing to experimental data, the coefficients 0jC  and 0kC  can be estimated. The 

integral in equation(2.4), one can write 

 
2 1

exp(-i )
( ) d

(1 )

j

j j

x
I x

 









 .  (2.6) 

Thanks to the smallness or dividing by a large number, the coefficients in 

equation(2.4) can be neglected and reduced to 

 
2

ˆ

1
ˆ ˆ ˆ ˆ( ) (17 )exp( )

32
up u u u u    .  (2.7) 

Bose and Dey (2013) raised the hypothesis that the sediment particles can be 

transported not only bedload motion by the velocity fluctuations in turbulent flows, but 

also as suspended load. Cheng and Chiew (1999) assumed that only the suspended 

particles are replaced with the bed load, and the wash load is egligible. It is said that the 

suspended particles at the top of the bed-load layer occur resuspension when the vertical 
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velocity fluctuations w  of the turbulent flow exceeds the settling velocity sw  of 

particles. Following this discussion, the vertical velocity fluctuations’ PDF, equation(2.4) 

obeyed the one-sided exponential-based Gram-Charlier series can be shown as 

 
 21

ˆ ˆ ˆ( 0) 17 exp( )
16

( 0) 0

v

v

P w w w w

P w





     

  

  (2.8) 

 Namely, they supposed that the instantaneous hydrodynamic force acting on a 

particle of the near bed velocity fluctuations is an important mechanism toward the 

sediment entrainment. In this assumption, the submerged weight of a particle is 

considered as a constant for a given particle size. Here, the probability of vertical 

velocity fluctuations contacts with the value of 2 , and the value of 2  is related to 

the bed layer. Table 2.1 shows the comparison of previous studies. They also obtained 

the following expression for the relationship between 2  and bed layer property. For 

the bed layer is very thin, the bed is regarded as rough (Grass, 1971), it is 

 2 *u  .  (2.9) 

On the contrary, the bed is considered as smooth for thicker bed layer by Grass (1971), 

one can be written as  

 

1.3

2 *

*

1 exp 0.093
u d

u





  
    

   
.  (2.10) 

where *u , d  and   are shear velocity, particle diameter and kinematic viscosity of 

fluid, respectively.
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Published 

year 
Authors PDF of turbulence fluctuations 

Entrainment 

type 
Thresholds for entrainment Bedload type 

1998 Cheng and Chiew 
Gaussian 

(streamwise velocity) 
Lifting   LF W   Rough bed 

1999 Cheng and Chiew 
Gaussian 

(vertical velocity) 

Suspended 

particles sw w    
Smooth bed             

and      

Rough bed 

2002 Wu and Lin 
Log-normal 

(streamwise velocity) 
Lifting   LF W  Rough bed 

2003 Wu and Chou 
Log-normal 

(streamwise velocity) 

Lifting 

and 

Rolling 
and

D D L L W

L

F L F L WL

F W

 



 

Smooth bed, 

transition bed             

and      

Rough bed 

2007 Wu and Jing 
Gram-Charlier joint probability 

(streamwise and vertical velocity) 

Lifting 

and 

Rolling 
and

D D L L W

L

F L F L WL

F W

 



 

Smooth bed, 

transition bed             

and      

Rough bed 

2013 Bose and Dey 

Gram-Charlier expansion based on 

the Laplace-type 

(streamwise and vertical velocity) 

Suspended 

particles sw w   

Rough bed   

and           

Smooth bed 

Table 2.1 Summary of previous study 
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2.3 Turbulent diffusion and dispersion 

There are two categories of mixing process in a flow, diffusion and dispersion (Chien 

and Wan, 1999; Elder, 1958; Fisher et al, 1979; French, 1985). Diffusion can be used to 

describe the random scattering of particles, which is caused by molecular motion or 

eddy fluctuations, in the laminar flow field and the turbulent flow field, respectively. In 

contrast to diffusion, the variation of velocity distribution over the cross section leads to 

dispersion. In other words, dispersion is the scattering of particles associated with shear 

and transverse turbulent diffusion. 

 

In this thesis, our focus is on the diffusion process. Following Roberts and Webster 

(2002) and Kirmse (1964), the velocity fluctuations of a turbulent flow have efficiently 

transport of momentum and heat. Comparing to molecular diffusion, the turbulent 

transport has more significant effect since the magnitude of eddy size is larger than 

molecular (i.e. turbulent energy is larger than molecular energy). The eddies are 

considered as continuous evaluation in time and its eddies range in size from Integral 

scales down to Batchelor scales. Pope (2000) indicated that even the flow with small 

length scale, the order of small length scale turbulence exceeds three or more orders of 

magnitude to the length scale of molecule. Figure 2.1 illustrates that the highest energy 

has the largest length scale, and also indicates that the Batchelor scale is much smaller 

than an order of magnitude than Kolmogorov scale.  

 

The behavior of suspended particles is related to turbulent flow structure. The 

important concept in sediment theory is that the vertical concentration distribution is 

related to the ratio of turbulent sediment diffusion to momentum diffusion coefficient 
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(Cellino, 1998; Rouse, 1937; Tsujimoto, 2010). The ratio is a value which represents the 

difference between the diffusion of sediment particles and the diffusion of fluid particles 

(e.g. the molecule of water) in a flow. In 1937, Rouse obtained the turbulent sediment 

diffusion coefficient under the assumption of the log law for open channel turbulent 

flow. Without the supposition of log law profile, Absi et al. (2011) used the accurate 

analytical formulation for turbulent kinetic energy and eddy viscosity which calibrated 

by DNS data to calculate the coefficient of turbulent diffusion.  

 

Figure 2.1 The classic turbulence energy spectrum versus to length scales for the open 

channel flow (Roberts and Webster, 2002). 
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2.4 Summary 

    In this chapter, different types of quantitative sediment transport methods are 

introduced (e.g. the Eulerian and the Lagrangian model). However, this study is focused 

on the Lagrangian model instead of the Eulerian model. Mechanisms such as sediment 

entrainment probability and diffusion coefficient are introduced in this section and more 

details will be mentioned in chapter 4. The aforementioned techniques will be applied to 

simulate sediment transport in chapter 5.  
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Chapter 3 Stochastic Theories 

Equation Chapter (Next) Section 1 

    The specific objective in this thesis is to explore sediment transport in regular flow 

through an analysis of stochastic methods. Particles’ erratic behavior in fluid can be 

considered as stochastic, which may be caused by flow turbulence or particle interaction. 

The Lagrangian model is used in this study in order to describe more details about 

particle motion. Moreover, different from the Eulerian model, the Langrangian model is 

more suitable and efficient to simulate the problem if the observer only concentrates on 

a particular region rather than the whole domain. Therefore, the particle tracking model 

based on the Lagrangian concept and the uncertainty characteristic is introduced. The 

abovementioned method is known as the stochastic diffusion process. Besides, there is 

another stochastic method called the stochastic jump diffusion process, which can be 

applied to condition of extreme flow events. This chapter introduces the simulation 

techniques of the stochastic theory such as the Markov process (or Markov chain) and 

the Wiener process (or Brownian motion) for particle tracking model. In addition, the 

numerical form for the stochastic differential process is also presented. 

 

 

3.1 Markov Process 

The Markov process is a stochastic process on a finite or countable number of 

possible values (Ross, 2007). In general, the possible value of the process is regarded as 

nonnegative integers (e.g. 0,1,2,... ). The Markov chain in mathematical form can be 

given as 
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  1 1 1 1 1 0 0, ,..., ,n n n n ijP X j X i X i X i X i P        .  (3.1) 

It indicates that in the process there is a sate i  which will correspond to a fixed 

probability ijP . In other words, the property of Markov chain can be said that the future 

state is independent of the past states and will be influenced only by the present state. In 

this point, movement of a particle in a water system is assumed to be followed by the 

Markov process. For assumptions of the stationary process and Markovian property, 

there is a random walk theory of stochastic processes available to describe the state of 

sediment transport.  

 

 

3.2 Brownian Motion 

    A pollen grain moved randomly in water is observed by Robert Brown in 1827, 

who named this phenomenon as Brownian motion. Regarding to molecular diffusion, a 

pollen grain has a stochastic trajectory. This phenomenon is based on the theory of 

random walk. Each particle moves left or right with the same probability 
1

2
, and obeys 

the well-known equation, Fick’s law. It can be noted that the motion of particle is 

independent because of the dynamic balance of retarding force and heat fluctuations. In 

spite of considering one-dimensional Fick’s law usually, the flux in an arbitrary 

direction is corresponding only to the concentration gradient in a specific direction, 

three-dimensional Fick’s law can be directly derived. For the concentration changing 

with time, the solution of unsteady state diffusion can be obtained as follows 

 

21
( ) exp

44

x
c x,t

DtDt

 
  

 
  (3.2) 

where ( , )c x t  is concentration; D  is diffusion coefficient; t  is observation time. 
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This distribution is the normal distribution with a zero mean and a variance of 2Dt . By 

means of the aforementioned concept, it can be easily assumed that the moving distance 

of a particle is the Gaussian distribution also with the same statistic properties (e.g. zero 

mean, standard divination, 2Dt ).  

 

Thanks to the contribution of Wiener and Levy, the mathematical expression of 

Brownian motion is also named the Wiener process or the Wiener-Levy process. The 

random walk theory is employed. Considering that the particle is released at origin, the 

position at time t can be shown as  

  1 [ ]( ) ... t / tX t x X X       (3.3) 

in which  /t t  is the largest integer less than or equal to /t t , and the iX  are 

assumed as independent values, obeying the same probability of moving left or right. It 

can be concluded that the Wiener process follows few conditions such as 

 

i) W(0) = 0 with probability 1. 

ii) If 0 < s < t < T, then the random variable ( ) ( )W W t W s    is the Gaussian 

distribution with mean and variance of 0 and (t - s) respectively, thus, the 

mathematical form can be written as ∆𝑊 = √𝑡 − 𝑠𝒩(0,1) 

iii) The property of stationary independent increments. If 0 < s < t < u < v < T, 

1 ( ) ( )W W t W s   and 2 ( ) ( )W W t W s   are independent. 

 

Figure 3.1 displays part of simple simulations of particle trajectory starting at 

1 0X   and predicting the possible scenarios. In this example, time step t  is given as 
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0.5 seconds, and the end of time is 1 second. The particles interaction is neglected, 

which means that particles have independently motions. We released 3000 particles at 

the origin, and the ensemble mean is calculated. The figure also shows that the 

trajectories’ variance is increasing with time.  

 

Figure 3.1 Simulation of 3000 samples of the Wiener process 

 

 

3.3 Stochastic Diffusion Process 

    The aim of differential equations is to describe the system of the time evolution. 

For instance, the variable which is the function of time ( )x t  within deterministic 

function is ordinary differential equations (ODE). In contrast, the system of the time 

evolution in the stochastic manner can be expressed by the stochastic differential 
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equation (SDE). The stochastic diffusion process is a type of stochastic differential 

equations, which can be expressed as follows.  

 ( , ) ( , )t
t t t

dX
f X t g X t W

dt
    (3.4) 

where ( )tX X t  is the realization of a stochastic process; ( , )tf X t  is the drift term, 

which is presented as the deterministic part of the SDE and has the meaning of local 

trend; ( , )tg X t  is the diffusion term, influencing the size of fluctuations in the SDE; 

tW  is the Gaussian White noise process, which represents /tdW dt . However, paths of 

the Wiener process are not differentiable. Depending on the choice of 
j  (i.e. the 

integral manner of “left-hand” sum or “midpoint” sum), leading to the stochastic 

process to different kinds of stochastic calculus: Ito and Stratonovich; where 
j is in the 

time interval 
1[ , ]j jt t 

 as shown in following sections. 

Ito calculus 

 
j jt    (3.5) 

Stratonovich calculus 

 
 1

2

j j

j

t t



   (3.6) 

Using the symbol “o” in the Stratonovich concept to distinguish between SDEs 

interpreted in Ito and Stratonovich opinions, one obtain 

 ( , ) ( , )t
t t t

dX
f X t g X t W

dt
    (3.7) 

The stochastic integral between the Ito and Stratonovich calculus can be obtained 

respectively, 

 
2 2

0

1
( )d ( ) ( ) (0)

2

T

W t W t W T W T       (3.8) 
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and 

 
2 2

0

1
( ) d ( ) ( ) (0)

2

T

W t W t W T W      (3.9) 

Since the Ito and Stratonovich interpretations do not converge to the identical form, 

using Ito’s formula to find a transformation from Ito to Stratonovich. The form 

equivalent to equation (3.4) can be given as 

 
1

( , ) ( , ) ( , ) ( , )
2

t
t t x t t t

dX
f X t g X t g X t dt g X t dW

dt

 
    
 

  (3.10) 

in which the modified drift term is called the noise-induced drift.  

    Although the Stratonovich interpretation is considered to be used within the 

physical property, the Ito interpretation is used in this study owing to the Markovian 

property (i.e. the future stat is only dependent on the present state).  

 

 

3.4 Numerical Approximation for Stochastic Differential 

Equations 

     The Ito integral was introduced in the previous section. The numerical methods 

are introduced for solving equation(3.4) since most SDEs are unsolvable analytically. 

Moreover, equation(3.4) can be rewritten in the differential form as 

 ( , ) ( , )t t t tdX f X t dt g X t dW    (3.11) 

Note that the initial position is 0(0) XX   and that the time region is between 0 and T. 

To apply the numerical methods such as the Euler-Maruyama (EM) method and 

Milstein method, first we need to discretize the interval. Assuming that the time 

increment /t T L   for some positive integers L  and 
j j t   , then we can have 
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the numerical form of the EM method and Milstein method.  

 

 

EM method 

  1 1 1 1( ) ( ) W( ) W( ) ,  1,2,...,j j j j j jX X f X t g X j L            (3.12) 

 

Milstein method 

 

 

  
1 1 1 1

2

1 1 1

( ) ( ) W( ) W( )

1
         ( ) ( ) W( ) W( ) ,   1,2,...,

2

j j j j j j

j j j j

X X f X t g X

g X g X t j L

 

 

   

  

    

   
  (3.13) 

Both of these methods are the results of the Ito stochastic Taylor expansion by using the 

Taylor approximation. Here, the EM approximation in the Ito sense is a one-step 

approximation method, and converges with order 0.5 and 1 in the strong and weak sense, 

respectively. By adding all the stochastic increments, both of Milstein’s methods 

converge with order 1. 

The strong and weak convergence definitions are as follows, and their convergence 

is equal to  . 

Strong convergence 

 ( )nX X C t      (3.14) 

in which C  is a constant;   is the expected value; nX  and ( )X   are random 

variables, respectively; t  is sufficiently small which fixs n t    in the region of 0 

to T. 

Weak convergence 

    ( )np X p X C t      (3.15) 



doi:10.6342/NTU201603194

 25 

where the functions p in equation(3.15) obeys the conditions of smoothness and 

polynomial growth; 

 

 

    The above convergence definitions measure the rate of decay as 0t  . As we 

can see, the convergence of strong measures the proportion of decay of “mean of error”. 

In contrast, the convergence of weak is to measure the proportion of decay of “error of 

means”. Therefore, it can be concluded that weak convergence only takes into account 

the mean of solution. For instance, if the increment is √△ 𝑡𝒩(0,1) it can be replaced 

by any random variable which obeyed the same mean and variance such as sign 

function “ sgn( )x ”, where x  is a random number. There is a simple example to show 

the difference between the strong and weak convergence (Higham, 2001). The EM 

method is applied to the following equation in the linear form, 

 Xt t t tdX X dW     (3.16) 

Equation(3.16) has an exact solution written as, 

 
2

0

1
exp

2
t tX X t W  

  
    

  
  (3.17) 

The initial conditions and parameters in equation(3.16) in this example are shown in 

Table 3.1. 

Parameter 
0X        T dt 

Value 1 2 0.1 1 9 8 7 6 52 ,2 ,2 ,2 ,2    
  

Table 3.1 Some parameters and initial conditions in the example 
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Figure 3.2 shows the comparison of one of scenarios with strong and weak solutions by 

using the time step 2
-9

. In this figure, it can be observed that the strong solution gives 

more information of paths than the weak solution. However, both of them have same 

statistic properties such as mean and variance. In Figure 3.3, the trajectories are almost 

the same if averaging the trajectories of both convergences. On the other hand, by using 

a least squares method, the convergence can be solved. In the strong solution, the 

convergence value is producing 0.5384 0.5  with a least squares value of 0.0266. The 

weak solution gives the convergence value 0.9858 1  with a least squares value 

0.0508. 

 

 

Figure 3.2 Comparing with Weak solution, strong solution emphases the information of 

path 
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Figure 3.3 Ensemble mean of strong solution and weak solution 

 

3.5 Summary 

The backgrounds of stochastic theories are introduced in this chapter. At first, the 

Markov theory is presented herein. The important mathematical form of the Wiener 

process (or Brownian motion) is also applied in the PTMs. With the aforementioned 

concepts, the stochastic differential equation can be constructed. Different types of 

mathematical interpretations such as the Ito scheme and Stratonovich scheme are 

appropriate in the respective problems. However, in this study, the Ito calculus is 

utilized since the hypothesis of Markovian property that the future state is only related 

to the present state. At the end of this chapter, different numerical schemes which 

enhance the numerical accuracy are also introduced. The EM method is ubiquitous and 

well-accepted. Therefore, the EM method is still the best candidate in our study.  
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Chapter 4 Development of Stochastic Particle 

Tracking Model of Suspended Sediment 

Transport  

Equation Chapter (Next) Section 1 

4.1 Introduction 

Sediment particle movement in turbulent flow is difficult to describe exactly 

because of a large number of molecules in the flow and small particles’ collision. It 

takes longer to solve the equations of motion for all the molecules in the flow and for 

small particles. Moreover, the unknown of initial values of all the molecules in the flow 

and different motion of the small particles also puzzle the problem. To treat this problem 

in a simple way, the stochastic force is employed to describe the effect caused by 

molecules in flow and small particles’ collision (Risken, 1989). In other words, 

sediment particles or fluid particles in turbulent flow can be considered as a stochastic 

process. Based on the Markovian theory, the Fokker-Planck equation describes the 

conditional probability density for the fluid particle’s velocity and position as the 

evolution of time (Risken, 1989; Sawford and Borgas, 1994; Sharma and Patel,2010).  

 

In general, the suspended sediment transport is simulated by the 

advection-diffusion equations by means of the deterministic solution of the Eulerian 

model. However, Dimou and Adams (1993) suggested that there are several reasons to 

use the Lagrangian model instead of the Eulerian model. Firstly, it is easier to represent 

sources in the Lagrangian model or the particle tracking model. The numerical problem 

of an Eulerian model is difficult to solve with a high gradient concentration. Secondly, it 
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is more obvious to represent the region where most particles are located in the 

Lagrangian model rather than in the Eulerian model where all regions of the 

computational domain are considered equally. Thirdly, it is more effective to represent 

properties of the individual particles (e.g. particle diameter, settling velocity) in the 

Lagrangian model. To combine the characteristic of stochastic and the Lagrangian 

model, the Fokker-Planck equation which derived from Langevin equation (Gadiner, 

1985) is used. Langevin equation describes the detail of individual particles in the 

Lagrangian framework instead of an assemblage of many particles. Since we cannot 

consider all the forces by molecules or particles collisions, by assuming these forces are 

random, the stochastic differential equation is constructed of deterministic forces. 

Random force is introduced. Furthermore, the Fokker-Planck equation in the concept of 

the Markovian property, and the large number of particles at a very small time step 

corresponds to the advection-diffusion equation. However, some researchers have 

shown that it is not enough for considering a single particle model (Durbin, 1980; 

Thomson, 1990; Borgas and Sawford, 1991; Borgas and Sawford, 1994).  Durbin 

(1980) suggested that the autocorrelation of concentrations is needed for a complete 

stochastic theory of concentration fluctuations. The development of a particle tracking 

model is introduced in this chapter. 
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4.2 Model Assumptions 

Assumptions regarding the particle tracking models are described as follows: 

One-particle PTM 

The SD-PTM is constructed based on the foundation of the random walk model. 

The assumption is that particles are moved by the collision against adjacent fluid 

particles under a stochastic process, which is independent of the original position. 

Random motion of sediment particles is described by the Wiener process. More details 

of the Wiener process are introduced in chapter 3.  

Two-particle PTM 

Different from one-particle PTM, this model tends to distinguish the effect by 

multiple scales of turbulence to describe more details of particle motion. The basic 

concept is that if their distance is close to zero, the motion of sediment particles is 

highly related to other particles caused by large scale turbulence. Particles can be 

separated by molecular diffusion if particles are in the immediate neighborhood. On the 

contrary, if their distance is large, sediment particles move independently. However, it is 

difficult to define how sediment particles move in response to various scales of eddies. 

For simplification, it is hypothesized that the spatial correlation of sediment particles 

can be primarily attributed to large scales of eddies. As such, dependent Brownian 

motion can be used to simulate spatial correlation of particles constrained by large 

eddies. On the other hand, movement of sediment particles caused by molecular 

diffusion or smaller scales of turbulence is modeled by the independent Brownian 

motion. 
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4.3 Model Development 

4.3.1 Stochastic Diffusion Model – One-Particle Particle Tracking Model 

    An aggregation of many particles is commonly employed instead of an individual 

particle. Fisher et al. (1979) applied an analysis of the concentration with no sources or 

sinks based on the deterministic continuity equation. Therefore, the equation with 

spatially varying coefficient in uniform flow can be written as 

 

      

( )   s x y z

change owing to advection change owing to diffusion

c c c c c c c
U V W w

t x y z x x y y z z
  

             
          

             
  (4.1) 

where c  is concentration changing with time and space; ,  ,  U V W  are the direction 

of x, y and z mean flow velocities, respectively, sw  is particle settling velocity, and 

,  ,  x y z    are the sediment diffusion which represent all of the mechanisms causing 

mixing in the respective directions. 

 

    In 1985, Gardiner proposed that the random walk model which describes the 

position of each particle in Langevin framework, can be shown as  

 ( , ) ( , ) t

deterministic forces
random forces

dBdx
A x t B x t

dt dt
    (4.2) 

where ( , )A x t  represents the deterministic forces, ( , )B x t  is the random forces; and 

/tdB dt  is a Gaussian White noise which represents the uncertainty nature of motion 

(Gardiner, 1985). Under the concept of Ito calculus, equation(4.2) can be rewritten as 

the form of a stochastic differential equation 

 ( , ) ( , ) tdx A x t dt B x t dB    (4.3) 

where tdB  is the Wiener process which can be simulated as √𝑑𝑡𝒩(0,1). The next 
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step is to determine ( , )A x t  and ( , )B x t , for a given turbulent flow field in Eulerian 

statistics. Wilson and Sawford (1995) pointed out that A and B represent drift and 

diffusion term, respectively.  

 

    Following the Strong Law of Large Numbers, when the time step is nearly zero, 

equation(4.1) is equivalent to the Fokker-Planck equation 

  
1

2
i ik jk

i i j

f
A f B B f

t x x x

    
   

    
  (4.4) 

where  0 0, ,f x t x t  denotes the conditional probability density function for x  at time 

t , from the initial position 0x  at time 0t . In order to compare with equation(4.4), 

noting that  

  
2

2

x
x x

c
c c

x x x x


 

   
  

    
  (4.5) 

and adding the flow continuity equation into equation(4.1) 

 0
U V W

x y z

  
  

  
  (4.6) 

 

Equation(4.1) can then be rewritten as  

 

     
2 2 2

2 2 2

( )
yx z

s

x y z

c
U c V c W w c

t x x y y z z

c c c
x y z

 

  

            
                        

  
  
  

  (4.7) 

It can be seen that equation(4.4) and equation(4.7) are equivalent if  
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 
   

  (4.8) 

Thus, the stochastic differential equation becomes (Heemink 1990; Dimou and Adams, 

1993; Man and Tsai, 2007; Oh and Tsai, 2010; Tsai et al., 2014) 

 

2

2

2

t

t

t

x
t x

y

t y

z
t s z

dX U dt dB
x

dY V dt dB
y

dZ W w dt dB
z










 
   

 

 
   

 

 
    

 

  (4.9) 

Equation(4.9) is also called a stochastic diffusion equation, which can be described as 

particle movement, for instance particles do random motion in the turbulent flow (Oh 

and Tsai, 2009). Thanks to a multitude of factors such as eddy diffusion and 

inter-particle collisions, sediment transport can be treated as a stochastic process in open 

channel flow (Yen , 2002). This equation is a governing equation of the particle tracking 

model in streamwise, transverse and vertical direction respectively, to delineate 

sediment particle trajectory. 

 

4.3.2 Stochastic Diffusion Model – Two-Particle Particle Tracking Model 

    A Lagrangian framework of the stochastic diffusion model for the trajectory by 

one-particle model was introduced in the previous section. However, one-particle model 

is good at estimating the ensemble mean of concentrations but not the ensemble 

variance of concentrations. Turbulent properties such as different size of eddies in a 

flow and mixing process (e.g. many turbulent eddies mix together) cause the 
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fluctuations of concentrations. Namely, the stochastic model that considers paired 

particle motion can give a more realistic description of the natural process, as 

concentration variance is associated with statistics of particle trajectories produced by 

the two-particle model. Based on this definition, Durbin (1980) proposed a two-particle 

model that contained multiple scales of turbulent eddies. After this idea was established, 

many authors have explored to develop the two-particle model (Thomson, 1990; Borgas 

and Sawford, 1994; Reynolds, 1998; Spivakovskaya and Heemink, 2006). In this 

section, the major concept of a two-particle model is built upon Spivakovskaya and 

Heemink (2006). The spatial correlation of particle behavior related to turbulence is 

applied in this section. The assumption of the two-particle model is that the 

inter-particle correlation is dependent on the distance between two particles. Thus, it can 

be observed that particles have very similar motion (i.e. highly correlated) if the 

location of particles is the immediate vicinity of each other. On the contrary, motion of 

particles becomes more independent when particles are away from each other. 

Spivakovskaya and Heemink (2006) agreed with the argument that the effect of 

molecular diffusion is important in a two-particle model. The difference between the 

single particle model and paired particle model is that one neglects molecular diffusion, 

as the order of molecular diffusion is much smaller than the turbulent diffusion. On the 

other hand, the effect of molecular diffusion is considered. The particles can be 

separated by the molecular diffusion if the particles are in the immediate neighborhood. 

 

    Based on the above theoretical considerations, the one-particle model can be 

modified and the two-particle model equations (equation(4.10)) in two-dimension 

uniform flow are given as 
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 
 

  
 

  (4.10) 

where ,  U W  is mean flow velocity; sw
 
is particle settling velocity dependent on the 

particle;   is diffusion coefficient of sediment particle;   is the diffusion effect 

which can be chosen between 0 to 1; B  is the standard Brownian motion simulated as 

a single particle model; B  is a correlated Brownian motion independent of B ; 

21 ( )B t
 
is the diffusion due to molecular diffusion and small scale turbulence and 

( )B t 
 is the diffusion due to large scale turbulence. 

In the two-particle model, large scale turbulence is to be simulated as the correlated 

Brownian motion. The Brownian motion are correlated with covariance matrix as 

follows 

  1 2 12 2( ) ( ) ( )E dB t dB t f r I     (4.11) 

where ( )f r  is a correlated coefficient related to distance between particles. Moreover, 

the covariance is assumed to obey several conditions, for instance, the function of 

correlated coefficients is adequately smooth (i.e. the second derivative is continuous and 

bounded); the covariance matrix is a positive matrix. If particle distance is very close 

( 0x  ), the correlated coefficient is defined as one (e.g.
0

lim ( ) 1
x

f x


 ). In contrast, if 

particle distance is very far ( x  ), the correlated coefficient is defined as zero (e.g.

lim ( ) 0
x

f x


 ). In this thesis, we follow the function proposed by Diamant et al., (2005).  
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1
( )f r

r
   (4.12) 

The following is the procedure for producing correlated Brownian motion (Bolin, 

2009). 

(1) Generating two independent Brownian motion dependent on the Integral scale, 

which represents the large turbulence scale. 

1

2

B
B

B

 
  
 

 

(2) Producing the covariance matrix according to the distance of particles.  

1 ( )

( ) 1

f r
cor

f r

 
  
 

 

(3) Applying the Cholesky factorization to decompose the correlation matrix. 

Tcor LL   

(4) Obtaining newly correlated Brownian motion based on particle distance. 

1

2

cor T

cor

cor

B
B L B

B

 
  
 

  

 

 

4.4 Determination of Hydraulic Parameters in Open 

Channel Flow 

4.4.1 Velocity Profile  

    Turbulent flow plays an important role in open channel flow, since the flow we 

investigated commonly has a large Reynolds number. Turbulent flow has the random 

property, which is difficult to measure. Based on Reynolds’ equation, the velocity field 

can be represented as follows 
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 u u u    (4.13) 

where u is mean velocity; u is velocity fluctuations caused by turbulent eddies. This 

equation can be used to describe the random process of turbulence. The velocity 

fluctuation properties can be predicted by the Gaussian statistical theory in general. 

Following Spurk (2008), the mean velocity profile has been driven by the assumption of 

Prandtl’s mixing length. The turbulent shear stress t  is connected with mixing length 

l  under Prandtl’s mixing length formula, which can be shown as 

 

2

2 2

t

du du du
u w l l

dz dz dz
   

 
     

 
  (4.14) 

Although the mixing length is considered as experimental investigation, herein the 

assumption of shear stress is constant. Thus, the mixing length is thought to be  

proportional to z  

 l z   (4.15) 

where   is the von Karman constant. Since the shear stress is equivalent to the wall 

shear stress  2

*w u  , combining equation(4.14) and equation (4.15), the shear 

velocity *u  can be written as 

 *

du
u z

dz
   (4.16) 

The velocity and water depth can be obtained by integrating equation(4.16), the velocity 

distribution in turbulent flow is  

 * ln
u

u z C


    (4.17) 

The mean velocity is zero at the location of 0z  in the turbulent flow, so the constant C

of integration in equation(4.17) can be shown as  
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 *
0ln

u
C z


    (4.18) 

Thus, it becomes 

 *

0

ln
u z

u
z

 
  

 
  (4.19) 

Flow velocity over the bed will be used to determine the roughness Reynolds number 

(
*Re /

sk sk u  ). In other words, it depends on the characteristic of hydrodynamic 

boundary (e.g. smooth boundary and rough boundary). Figure 4.1 and Figure 4.2 show 

the picture of smooth turbulent flow and rough turbulent flow, respectively. An 

expression for 0z  can be given,  

Smooth boundary            
*

0

*

,  5
9

su k
z

u




    (4.20) 

 

Rough boundary             *
0 ,  70

30

s sk u k
z


    (4.21) 

where   is kinematic viscosity, s  is the height of laminar sublayer, and sk  is 

roughnees height. 

 

 

Figure 4.1 Turbulent flow under the condition of the smooth bed boundary (modified by 

MIT note). 
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Figure 4.2 Turbulent flow under the condition of the rough bed boundary (modified by 

MIT note). 

 

 

4.4.2 Particle Settling Velocity 

    In the settling process, a particle settles quickly at beginning and reaches steady 

state under the force balance condition when its gravity force is equivalent to the drag 

force. However, compared to the observation time step, the time to reach steady velocity 

is very short. In general, the particle settling velocity can be treated as a constant in the 

modeling of sediment transport (Chen and Wang, 1999). Another important factor of 

sediment particles is particle geometric shape. The geometric shape will result in 

different degrees of drag force in the descending process in flow. Since the drag force is 

varying, a particle in flow might not retain its original orientation and fall steadily. 

Furthermore, the diameter of a particle is a significant factor by no means peculiar to the 

particle shape. Chien and Wan (1999) have given a suggestion about the effect of finer 

sediment diameter. Finer sediment particles move in flocs because of the 

physic-chemical effect on the particle surface. This process gathers the fine sediment 

particles into a floc and increases their effective diameter. According to previous 

experimental results, it can be suggested that sediment particle flocculation may not 

have a significant impact on the particle deposition process when their size is larger than 

0.01mm.  
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In addition to flocculation, sediment concentrations also have influences on the 

settling velocity. The fluid specific density increases when the sediment concentration 

increases. This phenomenon also increases buoyance, decreasing the settling velocity. 

The following equations which defined low and high sediment concentration 

respectively are arranged by Chen and Wang (1999). 

Low concentration (Sv<2.25%): 

 0

1

31 1.24
s

v

s

w
kS

w
    (4.22) 

in which 
0sw  is the settling velocity of sediment particle at zero concentration, sw  is 

the settling velocity of sediment particle at concentration vS ; k  is the coefficient of 

experimental investigation. Cai (1956) gives a value 0.75 for k  by considering the 

force conservation (Chien and Wan, 1999). 

 

High concentration (Sv>2.25%): 

  0 1
ms

v

s

w
S

w
    (4.23) 

in which m  is the parameter to be determined. 

 

On the other hand, Sadat et al. (2009) provided the settling velocity based on the 

previous study. Depending on different size of particles, the settling velocity has the 

relationship with the effective diameter 
grD .  

For the effective diameter 
grD  is less than or equal to 10, the settling velocity can be 

expressed as 
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For the effective diameter 
grD  larger than 10, the settling velocity can be expressed as 

follows 
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
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in which 
grD  is defined as 

 
1

3

2

1g S
d



 
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 

; d  is particle diameter; g  is gravity 

acceleration; and S  is specific gravity. 

4.4.3 Diffusion Coefficient 

Similar to the diffusion in air or the diffusion in turbulent flow, particle diffusion in 

fluid also can be described as Brownian motion. Particle diffusion in turbulent flow is 

related to the surrounding fluid so that the motion of particle diffusion can be also 

regarded as following eddy diffusion. The floc diffuses with surrounding fluid at the 

beginning and then mix with ambient flow after moving for a distance 3l .  Based on 

the definition of mixing length, if the momentum exchange coefficient m  is 

equivalent to diffusion coefficient 
z , the diffusion coefficient 

z  can be expressed  

 2

3z w l    (4.26) 

in which 2w  is the turbulent intensity. The coefficient of diffusion is associated with 

the length scale of turbulence in different directions. The relative magnitude of diffusion 

coefficient in longitudinal, transverse, vertical direction respectively, has an expression 

as follows 

 
x y z      (4.27) 
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Lateral diffusion 

It is difficult to quantify the lateral or longitudinal diffusion in natural flows, 

because of the complex terrain. Previously we focus more on the turbulent diffusion in 

simple channel flow such as straight and uniform channel flow. Herein, there is no 

transverse velocity profile on average available from laboratory experiment. Ficher et al. 

(1979) indicated that in the uniform straight channel the average transverse turbulent 

diffusion coefficient can be given as 

 *0.15y u h    (4.28) 

In natural streams, Fisher et al. (1979) suggested that transverse mixing in the uniform 

depth is, 

 *0.6y u h    (4.29) 

Longitudinal diffusion 

Following Socolofsky and Jirka (2005), by assuming no boundary effects in the 

transverse or longitudinal directions, one can demonstrate that the longitudinal turbulent 

diffusion can be equivalent to transverse diffusion. 

 x y    (4.30) 

Vertical diffusion 

Following Cellino (1998), the vertical concentration distribution is related to 

sediment turbulent diffusion. However, the sediment turbulent diffusion is to be 

described by the momentum diffusion, which means the diffusion of fluid particles in 

the flow. In previous studies, the momentum diffusion is determined by the log law 

velocity profile and has a relation with the sediment diffusion and the momentum 

diffusion as follows  

 s m    (4.31) 
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where   is the proportion of the sediment diffusion coefficient to the momentum 

diffusion coefficient; s  is the diffusion coefficient of sediment; m , the coefficient of 

momentum diffusion is given by 

 
* 1m

z
u z

H
 

 
  

 
  (4.32) 

     

In open channel flow, the momentum coefficient of turbulence and shear stress are 

zero as described by equation(4.33). Since suspended particles follow closely with 

turbulent motion, suspended particles may be subject to non-negligible transport on 

flow surface. In view of this, the turbulent diffusion coefficient of suspended particles 

s  is proposed Absi et al., 2011). It can be shown as    

 
1

s t

tSc
    (4.33) 

in which tSc  is Schmidt number; t  is the eddy viscosity or the diffusivity of 

momentum. The turbulent Schmidt number is given as 
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  (4.34) 

The Stokes number St  is defined as  

 
  01 /

p s

t tf s

w k
St

g



   
 


  (4.35) 

where 
p  is the particle timescale; t  is the integral turbulence timescale or large 

eddy’s turnover time; 
f  and s  are the density of fluid and solid, respectively; g  

is acceleration of gravity; 0  is a coefficient for two-equation (𝑘 − ε model), which is 

defined as / C .  In this study,   and C
 are given as o( 100 ) (empirical 
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coefficient) and 0.09 (Toorman, 2008), respectively; k  and t  are the turbulent 

kinetic energy (TKE) and the eddy viscosity respectively, defined by analytical 

formulations and calibrated by direct numerical simulation (DNS) data. 

The turbulent kinetic energy (TKE) 

 

2

,   40

k

k

y a

Au
k e for y

C

 






    (4.36) 

in which the dimensionless distance from the channel bed 
* /y yu   ; 

2 0.58Re 17kA   for Re 650  ; 0.3Re 100ka 

    for Re 700  ; and Re  is the 

friction Reynolds number. 

The eddy viscosity 
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A
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
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 
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


     (4.37) 

in which 0.46Re 5.98A 

   ; 0.34Re 11.5a 

   . 

Figure 4.3 shows the comparison of the Rouse model governed by equation(4.31) 

and the experimental data presented by Coleman (1970). Figure 4.4 illustrates that Absi 

et al. (2011) method agreed with the experimental data well on the region of near 

surface instead of the Rouse method. In this study, the Absi et al. (2011) method is 

employed in the particle tracking model. 
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Figure 4.3 Comparison between vertical distribution of suspended sediment diffusion 

coefficient and experimental data (Tsujimoto, 2010). 

 

 

Figure 4.4 Comparison of different sediment suspended diffusion model. 
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4.4.4 Re-suspension Mechanism 

Sediment transport can be divided into two categories, bed load and suspended 

load transport. Cheng and Chiew (1998, 1999) proposed the pick-up probability for 

sediment entrainment to bed load and the probability for threshold a condition of 

sediment particles remaining in suspension, respectively. Figure 4.5 displays the first 

proposition considering the motion of individual particles in bed load. The incipient 

motion of sediment particles is determined by the criteria whether the instantaneous lift 

force acting on the particle exceeds the submerged weight force of the particle. However, 

as Bose and Dey (2013) said, “the mechanism of the particle motion from the bed layer 

to the suspension state is not yet well understood”. The near-bed characteristic of 

turbulence is a one of the factors that makes the process complicated. 

This study focuses primarily on suspended sediment transport. As shown in Figure 

4.6, following Cheng and Chew (1999), sediment particles will remain in suspension 

except if the vertical velocity fluctuations w  exceed the settling velocity sw  of 

particles. Herein, the thickness of bed load layer is given as two times the particle 

diameter 2d , and the theoretical bed level is defined as lower than the top of the bed 

particles of 0.25d . Therefore, the lowest center of a sediment particle in suspension 

(i.e. the top center of sediment particles of bed load layer) can be determined as a 

distance 2.75d  above the bed level. 

Following Bose and Dey (2013), the fluctuations of vertical velocity can be written 

as the following PDF, 

 
 21

ˆ ˆ ˆ( 0) 17 exp( )
16

( 0) 0

v

v

P w w w w

P w





     

  

  (4.38) 

The derivation of equation(4.38) has been mentioned in the previous section, which is a 
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theoretical analysis based on a simple one-sided exponential probability function. 

Moreover, the threshold of sediment suspension is determined by vertical velocity 

fluctuations w  and settling velocity sw . Once sw w  , the surrounding fluid brings 

sediment particles into suspension. 

 

Figure 4.5 The conservation of forces acting on individual sediment particles in bed 

load (Wu and Chou, 2003).  

 

Figure 4.6 The condition for incipient motion of sediment particles is that the upward 

velocity of turbulent eddies w  exceeds particles’ settling velocity sw
 
(modified from 

Chen and Chew, 1999 and Bose and Dey, 2013). 
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4.5 Simulation Results 

    This section attempts to distinguish the difference between one-particle PTM and 

two-particle-PTM by using a simple test. The objective is to observe movement of 

sediment particles with turbulent diffusion that considers spatial correlation versus that 

with primarily independent turbulent diffusion. Table 4.1 shows the environmental 

conditions of this test. In this case study, it is assumed that flow is stationary and 

isotropic.  The gravity effect is neglected. Sediment particles are released from the 

origin. In this case, the time step is 0.05 and total time is 15s. Equation(4.9) and 

equation(4.10) are the governing equations of the one-particle PTM and two-particle 

PTM respectively, and equation(4.39) and equation(4.40) are the discretized equations 

by using the EM method. 
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  (4.40) 

 

where tB  is the independent Gaussian distribution; 
tB   is the dependent Gaussian 

distribution. 1nX   is the particle position in the x-direction at time 1nt  . nX  is the 

particle position in the x-direction at time nt . 1nY   is the particle position in the 

y-direction at time 1nt  . nY  is the particle position in the y-direction at time nt . x   

and y  are the turbulent diffusion coefficient in x and y direction, respectively; j is 1 

and 2 distinguishing the number of paired particles in the two-particle PTM. Figure 4.7 
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is the averaged correlation of paired particles in the two-particle PTM, which shows that 

sediment particles correlation decrease very soon. Equation(4.12) is the correlation 

function of sediment particles. In other words, spatially correlated eddies have a 

significant effect only in the initial time period. In this case, 2,000 particles are released 

at the origin 1,000 times. Figure 4.8 shows 1,000 and 500 realizations of the 

one-particle PTM and two-particle PTM, respectively.  However, the spatial 

correlation of sediment particles cannot be observed explicitly. Thus, to characterize the 

spatial correlation of sediment particles, the principal axis transformation of paired 

particles (e.g. particle 1’s x-axis versus particle 2’s x-axis) as in Figure 4.9 and Figure 

4.10 needs to be done. It can be obviously seen that sediment particles have high 

correlation at 0.1s but the correlation decreases very quickly.  
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Table 4.1 Environment conditions in simple test and parameters in model  

 

 

 

Figure 4.7 The averaged particle correlation versus relative time 

Environmental condition Value 

Diffusivity coefficient(m
2
/s) 0.001 

Particle specific gravity 1.025 

Particle diameter(m) 0.00025 
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Figure 4.8 Sediment particles released from original by the one-particle PTM and two-particle PTM at time 0.1, 0.5, 1s, respectively 
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Figure 4.9 The correlation with x direction of different two sediment particles by the one-particle PTM and two-particle PTM 
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Figure 4.10 The correlation with z direction of different two sediment particles by the one-particle PTM and two-particle PTM
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4.6 Summary and Conclusions 

    This chapter documents the development of the PTMs. The assumption of 

dependent Brownian motion in the two-particle PTM is presented before the description 

about the spatial turbulence correlation. The PTM is derived from the ADE, which is 

equivalent to the FPE in the Langevin equation. The details of model development are 

introduced in this chapter. After that, hydraulic parameters are defined for given flow 

conditions.  

First, the vertical diffusion coefficient proposed by Absi et al. (2011), instead of 

Rouse’ diffusion coefficient formula, is employed in the PTMs. This can be attributed to 

the fact that Absi’s method is able to describe the smaller scale turbulent diffusion on 

the water surface while Rouse’s formula is not.  

Second, the settling velocity as a function of sediment concentration is used in this 

model, as sediment particles will be affected by other particles. To illustrate in details, 

settling particles squeeze surrounding fluid particles and water around sediment 

particles and subsequently lift them up. This will impede particle’s settling process and 

the settling velocity will decrease.  

Last but not least, the mechanism of re-suspension is taken into consideration in 

this model. Sediment particles near the bed will be brought up by turbulent fluctuations. 

This model is inherently used to describe the movement of suspended sediment particles. 

Consequently, the threshold of suspended load, rather than that of bed load, is employed 

in this study. According to Chen and Chew (1999), suspended particles mostly 

interchange with bed load.  

In addition to the hydraulic parameters, a simple test is introduced in this section to 

display the difference between the one-particle and two-particle PTM. The apparent 
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difference only exists at the beginning in the simulation, which might be caused by the 

correlation function. The aim of this example is to test the effect of dependent Brownian 

motion. It is expected that the correlation function decays with time with an infinite 

boundary in this example. Sediment particles will diffuse and then become independent 

eventually. Dependent Brownian motion in the two-particle PTM will be applied in the 

next chapter. 
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Chapter 5 Application of The Stochastic Particle 

Tracking Model  

Equation Chapter (Next) Section 1 

5.1 Introduction 

    In this chapter, the stochastic particle tracking model is applied. To ensure both the 

one-particle PTM and two-particle PTM are acceptable models, the first case study 

presents the model validation with experimental data such as velocity and sediment 

concentrations. The Markovian property and Fickian law are demonstrated. The PTMs 

are not only used in turbulence flows. There is an example of laminar flow filed in the 

next case study. To model a more realistic flow field, the last case study is to simulate 

the movement of sediment particles by the PTMs under a more complicated flow 

condition simulated by computational fluid dynamics (CFD). Equation(5.1) and 

equation(5.2) show the numerical discretization of PTMs using the Euler Maruyama 

method (EM method), 
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  (5.2) 

 

where U  and W  are mean flow velocities; sw is particle settling velocity; tB  is 
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independent Gaussian distribution; 
tB   is the dependent Gaussian distribution. 1nX   

is the particle position in the x-direction at time 1nt  . nX  is the particle position in the 

x-direction at time nt . 1nZ   is the particle position in the z-direction at time 1nt  . nZ  

is the particle position in the z-direction at time nt . x   and z  are the turbulent 

diffusion coefficient in the x, z direction, respectively; j is 1 and 2 for distinguishing the 

paired particles in two-particle PTM. Argall et al. (2004) suggested that the time step 

can be roughly constrained by / 0.01sw t h   for numerical stability. 

 

 

5.2 Case study of validating with experimental data 

Muste et al. (2009) 

    Muste et al. (2009) presented the velocity of dilute particle suspensions by means 

of image velocimetry enabling simultaneous. Two kinds of particles are examined in the 

experiment, natural sand (NS) and naturally-buoyant sand (NBS). Their specific gravity 

is 2.65 and 1.025 for natural sand and crushed Nylon (NBS), respectively. In this section, 

only the NBS is used for validation, as this study primarily focuses on suspended 

particles (Rouse number < 0.5). Table 5.1 shows the flow and particles characteristic in 

the NBS flows.  

    Figure 5.1 presents the mean longitudinal velocity of 2,000 times with normalized 

depth. It can be seen that the estimated ensemble mean NBS particles velocities agree 

well with the measured particle velocity. In this case,   is 0.9 . 
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Environmental conditions Value 

Flow depth (m) 0.021 

Reynolds number 16317 

Shear velocity (m/s) 0.041 

Karman coefficient 0.405 

Particle specific gravity 1.025 

Settling velocity (m/s) 0.0006 

Particle diameter (m) 0.00023 

Table 5.1 The environmental conditions in the NBS flows 

 

 

Figure 5.1 Comparison of mean particle velocities with NBS particle 
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Coleman (1986) 

    The sediment particle trajectory is related to sediment concentration. With the 

position of sediment particles, sediment concentration can be estimated. In this study, 

the suspended load is not concerned with the effect of bed forms (e.g. no wash bed). 

This experiment is established under a uniform flow at a constant discharge, depth and 

energy gradient. The particle diameter in this experiment is 0.105, 0.210, and 0.420mm, 

respectively. In this section, finer particles are selected for comparison. Results from 

PTMs are compared with both the Rouse profile and Coleman run C02 data as shown in 

Table 5.2. Figure 5.2 displays the comparison between the Rouse profile, the 

one-particle PTM and two-particle PTM. 400 particles are simulated by one-particle 

PTM based on 500 simulation times, and 200 particles are simulated by two-particle 

PTM based on 500 simulation times. The PTMs are shown to compare well with the 

Rouse profile. It should be noted that the reference height is not needed as Rouse profile 

in PTM. It shows that ensemble mean concentrations of the one-particle PTM and 

two-particle PTM are similar. The difference between two PTMs lies in the 

concentration fluctuations such as the ensemble variance of concentrations. As in Table 

5.3, the variances of concentration of two-particle PTM are slightly higher than those of 

one-particle PTM, especially for the region below the middle height. The effect of 

dependent Brownian and independent Brownian motion might give more uncertainty. In 

other words, the two-particle PTM with consideration of multiple scaled eddies are 

more uncertain than the one-particle PTM that considers merely a specific scale of 

eddies.  
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Environmental conditions Value 

Flow depth (m) 0.171 

Reynolds number 179775 

Shear velocity (m/s) 0.041 

Mean von Karman coefficient 0.433 

Particle specific gravity 2.65 

Particle diameter (m) 0.00015 

Mean concentration along the depth 0.0305% 

Table 5.2 Flow and sediment characteristics in Coleman (1986) 

 

Normalize Depth Variance (one-particle) Variance (two-particle) 

0.05 0.68 0.70 

0.15 0.43 0.46 

0.25 0.27 0.32 

0.35 0.22 0.24 

0.45 0.19 0.20 

0.55 0.16 0.14 

0.65 0.11 0.12 

0.75 0.09 0.09 

0.85 0.07 0.07 

0.95 0.06 0.05 

Table 5.3 The variance of sediment concentration by one-particle PTM and two-particle 

PTM 
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Figure 5.2 Comparison of sediment concentration with Coleman measured data ( with 

diameter 0.105mm) 

 

Figure 5.3 Sediment concentrations with on standard deviation by PTMs 
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Markovian property 

    It is hypothesized that movement of sediment particles exhibits the Markovian 

property. A stochastic process is defined as Markovian as its future state depends 

primarily on the currently state, not on the previous states. Herein it is proved that the 

simulation result of concentrations becomes stationary regardless of the initial released 

location of the sediment particles. Figure 5.4 displays similar results regardless of the 

initial position of released particles. As such, the particle movement is Markovian. It 

should be noted that although the initial position is not significant, the particles arrival 

time to reach a stationary state may be different. 

 

Figure 5.4 Comparison of sediment concentration based on different released locations 

 

Fickian law 

    After being released for a long time, turbulent eddies are independent of each other 
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(i.e. there is no autocorrelation) so that sediment particles diffuse as random process. In 

our study, turbulent diffusion in analogy to molecular diffusion is based on Fickian law. 

Particle diffusion can be further classified into subdiffusion, normal diffusion and 

super-diffusion according to the variance of particle displacement with respect to time 

based on equation(5.3).  

 
2 ~R t   (5.3) 

where 1   leads to normal diffusion, 1   leads to subdiffusion and  1   leads 

to superdiffusion. In this case study, we would like to know whether particle movement 

is Fickian or not. As shown in Figure 5.5, it can be observed that the variance of particle 

displacement ( 2 2x z   ) simulated by the PTMs changes with respect to time. 

However, the variance of particle distance is not linearly proportional to time. Such 

particle movement is called anomalous or non-Fickian diffusion. Consequently, 

sediment particles movement modeled by the PTMs is not the Fickian diffusion. 

Particles have normal diffusion at the beginning, however, as time increases particles 

are changed to superdiffusion. The phenomena of re-suspension may lead to anomalous 

diffusion of particles. 

 

Figure 5.5 The variance of particle distance versus simulation time 

~  
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5.3 Case study of particle movement under 

two-dimensional laminar flow conditions 

  The aim of this section is to employ the PTM under the laminar flow field. Herein, 

the particle movement in the lid-driven cavity flow is simulated by PTMs. This flow is 

the motion of a fluid inside a rectangular cavity flow effect by a constant velocity of one 

side while the other sides remain at rest. As Figure 5.6, the schematic of cavity is 

moving with velocity 1 m/s on the upper lid, and the other boundaries remains static 

because of the no slip condition. The flow is assumed to be incompressible, and the 

gravity effect is neglected. The governing equation is Navier-Stokes equations which 

include the continuity equation and momentum equation in x, y direction, as shown 

below. 
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Table 5.4 presents the conditions in the example. In the initial condition, velocities 

and averaged pressure are zero. To verify the accuracy of computed flow field, the 

simulated velocity is compared with Ghia et al. (1982) in the middle of cavity as shown 

in Figure 5.7. This example aims to simulate particle trajectory and shows that the effect 

of advection is more significant than diffusion. Since there is no turbulent diffusion but 

the molecular diffusion in the laminar flow (i.e. there is no difference between the 

one-particle PTM and two-particle PTM), sediment particles follow the fluid motion 

almost exactly because of the insignificant degree of molecular diffusion. To model  

particle trajectory, the PTM as equation(5.1) is utilized based on 2,000 simulations. In 

particular, the turbulent diffusivity is replaced with molecular diffusivity which can be 

determined by the Stokes-Einstein equation.  

 
6

s

KT
D

r
   (5.6) 

where K is Boltzmann constant, 1.381 × 10−23𝐽/𝐾; T is absolute temperature;   is 

kinematic viscosity; and r is radius of a sediment particle. 

 

Environmental conditions Value 

Reynolds number 100 

Particle diameter (m) 0.00023 

Dynamic viscosity (m
2
/s) 0.01 

Fluid density (kg/m
3
) 1 

Temperature (
o
C) 27 

Table 5.4 The environmental conditions under laminar flow 
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Figure 5.6 The initial conditions of cavity problem 

 

Figure 5.7 Validating flow field to Ghia et al. (1982) data 
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Figure 5.8 One of realizations of sediment particle released from original at time 0.02, 0.82, 1.6, 2.4, 3.2, 4, 4.8, 6s, respectively
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5.4 Case study of particle movement under fully developed 

uniform channel flow 

    In this section, particle movement under fully developed turbulent flow condition 

is simulated. Detailed channel flow field with large eddy simulation (LES) was 

provided by Chou (in press). In order to model the turbulent flow, there are two main 

issues. Firstly, the governing equation is a nonlinear equation. And secondly, it is 

difficult to simulate multiple scaled eddies due to numerical constraints. The basic 

concept of LES is that simulating the large scale turbulence with numerical analysis 

directly but modeling the effect of small scale turbulence on large scale turbulence by a 

sub-grid scale model such as the Smagorinsky model. In other words, the LES simulates 

turbulence by dividing turbulence into large scale and small scale eddies by means of 

low-pass filtering. Figure 5.9 presents the data of mean flow velocity, turbulent 

kinematic energy and turbulent viscosity via LES. With these data, the sediment 

diffusion coefficient with the Schmidt number proposed by Adsi et al. (2011) can be 

quantified. 

   Table 5.5 presents the CFD simulated flow conditions and sediment particle 

properties. The Rouse number is 0.465 and thus the particle is considered to be 

suspended particle. Based on equation(4.34) by Absi et al. (2011) via the proposed 

Schmidt number, the sediment diffusivity can be determined as Figure 5.10, as the TKE 

and turbulent viscosity are supplied. As in Figure 5.10, unlike the Rouse diffusion 

formula, it can be observed that sediment particles have diffusion near the water surface 

based on Absi et al. (2011). In this case study, 1,000 particles are presented and released 

at the top of surface. Figure 5.11 is the ensemble mean trajectory of sediment particles 

based on 5,000 simulations. As Figure 5.12, ensemble mean of longitudinal and vertical 
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velocity with respect to time is presented. It can be observed that the ensemble mean 

position of the particles in the vertical direction is very near the bed at the end of time.  

 

 

 

 

Figure 5.9 The flow conditions of mean velocity (m/s), turbulent viscosity (m
2
/s) and 

TKE (turbulent kinetic energy (m
2
/s

2
)) 
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Environmental conditions Value 

Flow depth (m) 0.1 

Friction Reynolds number 820 

Reynolds number 16110 

Karman coefficient 0.41 

Shear velocity (m/s) 0.0082 

Particle specific gravity 1.025 

Particle diameter (m) 0.00023 

particle volume concentration 0.046% 

Table 5.5 The CFD and sediment environmental conditions 

 

 

 

Figure 5.10 Comparison of Rouse model, Absi et al.(2011) model and the computed 

turbulent diffusivity 
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Figure 5.11 Ensemble mean of sediment particle trajectories (bold dot line) in 2-D flow 

 

Figure 5.12 Ensemble mean of sediment particles position in x, z-direction versus 

simulation time 
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Particle entrainment is subject to flow intensity and the mean flow velocity is 

shown in Figure 5.9. Based on the re-suspension criteria equation(4.38), whether a 

particle will be entrained or not is determined by the turbulent perturbations. Apparently, 

the fluctuating velocity in the vertical direction is not strong enough to bring the 

sediment up. In Figure 5.13, the ensemble variance of particle position in the 

longitudinal direction is increasing with respect to time; the behavior of diffusion may 

cause this phenomenon. By the trajectory of sediment particles, the sediment 

concentration can be estimated. In this case, to examine the sediment concentration 

along the vertical direction, the water depth is divided into 10 segments. The sediment 

concentration can be regarded as the number of sediment particles in the grid. Figure 

5.14 shows the sediment concentration profile and concentration fluctuations in this 

case study. The uncertainty of sediment particles movement may cause concentration 

fluctuations. In Figure 5.15, it shows one of the realizations of sediment clouds. As we 

can see, sediment particles may re-suspend owing to turbulent eddies.  

 

 



doi:10.6342/NTU201603194

 73 

 

Figure 5.13 Ensemble variance of sediment particles position in x, z-direction versus 

simulation time 

 

Figure 5.14 Ensemble sediment concentration 
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Figure 5.15 Sediment particle cloud in this channel flow 

 

5.5 Summary and Conclusions 

    This chapter presents simulation results of particle trajectories under three different 

flow conditions. The first case study is to examine results from the PTMs’ against the 

experimental data. In the first case study, the sediment particles’ ensemble means of 

velocities and concentrations are validated against the suspended sediment particles. 

The PTMs are suggested to employ suspended particles because the ADE is the 

prototype of the PTMs. Thus, the PTMs are usually used to describe suspended 
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particles.  

The Markovian property of the PTMs is validated in the first case study. In this 

hypothesis, the initial position of particles is not significant, but may be affected by the 

arrival time of sediment particles. The other hypothesis is that particle movement is 

demonstrated to be Fickian, which is referred to when the variance of particle 

displacement is linearly proportional to time. However, the variance of particles 

displacement and time are not a linear proportion as the result. Re-suspended sediment 

particles may cause particle movement to be anomalous diffusion. In this case study, 

particles diffuse in superdiffusion as a result of re-suspension. Turbulent flow exhibits 

multiple scales, particles may be brought by any scales of turbulences. This behavior is 

called Levy flight (Shlesinger et al., 1987).  

Besides, there is a comparison of the two-particle and one-particle PTMs under 

Coleman experimental conditions. First, it can be seen that the difference between these 

two models lies in concentration fluctuations, as described in the ensemble variance of 

concentrations. One of the reasons may be attributed to large eddies. Multiple scaled 

eddies exist in turbulent flows; as such, sediment particles may be in the influence 

region of large eddies. Hence, sediment particles would have similar random motion 

behaviors. To describe the impact of large eddies, parameter   is introduced to the 

two-particle PTM in equation(4.10). According to Spivakovskaya and Heemink (2006), 

the parameter   lies in the region between 0 and 1. Herein, the parameter   is 

assumed to be a constant.  

In addition to validate against experimental data, the purpose of the first case study 

is to demonstrate the diverse concentration fluctuations. In the two-particle PTM, which 

takes the space correlation of the turbulence into account, the variance of sediment 

concentrations is higher than that of one-particle PTM. This may be resulted from the 
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concern about spatial correlations of the turbulence which variegates the trajectories of 

sediment particles. Moreover, the closer to the bed, the higher the variation of sediment 

particle trajectories. This phenomenon is on account of the mechanism of re-suspension 

and gravity forces. Gravity forces lead particles to settling at the bed while the 

re-suspension mechanism affects particle motions near the bed; therefore, the 

trajectories near the bed are uncertain. 

In the second case study under laminar flow conditions, the molecular diffusion 

instead of the turbulent diffusion plays a significant role. Main flow dominates the 

motions of particles; namely, a sediment particle almost follows flow direction in the 

laminar flow with a minor diffusion effect.  

Our last case study is to simulate particle movement in turbulent flows. Sediment 

transport becomes more unpredictable due to the complex behavior of turbulence. In 

this thesis, forces exerted on sediment particle movement can be categorized into 

deterministic forces and stochastic force (e.g. turbulent fluctuations). This is described 

as the well-known Langevin equation. By means of Dr. Chou’s turbulent flow data, we 

can simulate the movement of sediment particles and sediment concentrations using 

PTMs. 
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Chapter 6 Summary and Recommendations 

6.1 Summary and Conclusions 

    Transport of sediment particles has been of environmental significance recently 

especially for suspended sediment. Water quality is one of the significant issues for 

sediment transport, as it is related to sediment concentrations. There are many 

approaches available to estimate sediment concentrations such as the 

advection-diffusion equation or empirical formulas. In this thesis, a state-of-the-art 

method, the SD-PTM, is employed. This research focuses on the characteristics of 

individual sediment particles such as the settling velocity and spatially correlated 

turbulent effect instead of assemblage of sediment particles. Random movement of 

sediment particles caused by turbulence is considered as well. In chapter 3, some basic 

stochastic theories are introduced. With the assumption of Random Walk, turbulent 

diffusion is analogous to molecular diffusion. In mathematics, the Wiener process that 

describes the stochastic characteristics of Brownian motion is defined. Development of 

PTMs is detailed in chapter 4. The Markovian property and the Fickian law are also 

presented in chapter 5. The hypotheses proposed in chapter 1 is verified using the 

SD-PTMs. Critical hydraulic parameters are defined in chapter 4, and example 

simulations are presented. In our models, we do not employ the diffusion formula 

proposed by Rouse, as turbulent diffusivity on the water surface is not exactly zero in 

reality. Rather, the formula suggested by Absi et al. (2011) is applied here. To examine 

the model, the proposed PTMs are also validated against experimental data such as data 

of Muste et al. (2009) and Coleman (1986) for particle velocity and sediment 

concentrations, respectively. After validation, the PTMs are applied to various flow 

conditions such as cavity problem and fully developed uniform turbulent channel flows. 
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6.2 Recommendations for Future Research 

In order to address particle random movement attributed to spatial turbulent 

correlation in turbulent flows, the two-particle PTM is employed. However, the 

parameter   is not easy to be determined. The parameter   might need an 

experimental investigation or CFD validation. Moreover, for the suspended particles, 

the lag time between sediment particles and fluid particles caused by the drag force may 

exist. As to the mechanism of re-suspension, if we can consider the bed load motion, a 

better criterion of re-suspension should be obtained.  More effort to refine the PTMs 

for sediment transport in open channel flows is desirable. 
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APPENDIX 

NOTATION 

The following symbols are used in this study: 

 

Chapter 3 

( , )c x t  = concentration 

D  = diffusion coefficient 

( , )tf X t  = the function of drift term 

( , )tg X t  = the function of diffusion term 

tW  = Gaussian White noise process 

[ ]  = expected value 

nX , ( )X  = random variable 

𝒩(0,1) = standard normal distribution with a zero mean and a unit standard deviation 

  = mean drift term 

  = diffusion coefficient 

Chapter 4 

c  = concentration changing with time and space 

,  ,  U V W  = the direction of x, y and z mean flow velocities, respectively 

sw  = particle settling velocity 

,  ,  x y z    = the sediment diffusion coefficient in x, y and z direction 

( , )A x t  = the deterministic forces 

( , )B x t  = the random forces 



doi:10.6342/NTU201603194

 86 

/tdB dt  = Gaussian White noise 

tdB  = the Wiener process 

 0 0, ,f x t x t  = the conditional probability density function for x  at time t , from the 

initial position 0x  at time 0t  


 = the diffusion effect which can be chosen between 0 to 1; 

B  = the standard Brownian motion as same as single particle model 

B  = a correlated Brownian motion independent of B  

21 ( )B t
 
= the diffusion due to molecular diffusion and small scale turbulence 

( )B t 
 = the diffusion due to large scale turbulence 

( )f r  = a correlated coefficient related to distance between particles 

2I  = identity matrix  

u  = mean velocity 

u  = velocity fluctuations caused by turbulent eddies 

  = von Karman constant 

l  = Prandtl’s mixing length 

  = kinematic viscosity 

s  = the high of laminar sublayer 

sk  = roughnees high 

0sw  = the settling velocity of sediment particle at zero concentration 

sw  = the settling velocity of sediment particle at concentration vS  

k  = the coefficient of experimental investigation, Cai (1956) gives a value 0.75 for k  

by considering the force conservation 
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grD
 
= the effective sediment particle diameter which is defined as 

 
1

3

2

1g S
d



 
 
   

d  = sediment particle diameter 

g  = gravity acceleration 

S  = specific gravity 

m  
= the momentum exchange coefficient 

z  
= the diffusion coefficient 

2w  = turbulent intensity 

d  = the proportion of the sediment diffusion coefficient to the momentum diffusion 

coefficient 

tSc  = Schmidt number 

t  = eddy viscosity or the diffusivity of momentum 

St  = Stokes number 

p  = the particle timescale 

t  = the integral turbulence timescale or large eddy’s turnover time 

f  and s  = the density of fluid and solid, respectively 

0  = a coefficient for two-equation (𝑘 − ε model) which is defined as / C  

Chapter 5 

U  and W  = mean flow velocities in longitudinal and vertical direction 

sw
 
= particle settling velocity 

tB  = independent Gaussian distribution 

tB   = the dependent Gaussian distribution 
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1nX   = the particle position in the x-direction at time 1nt   

nX  = the particle position in the x-direction at time nt  

1nZ   = the particle position in the z-direction at time 1nt   

nZ  = the particle position in the z-direction at time nt  

x   and z  = the turbulent diffusion coefficient in the x, z direction, respectively 

j = 1, 2 for distinguishing the paired particles in two-particle PTM 

h = water depth 

2R
 
= the variance of particle displacement 

K = Boltzmann constant, 1.381 × 10−23𝐽/𝐾 

T = absolute temperature 

  = kinematic viscosity 

r = radius of a sediment particle 

 

 

 

 




