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Abstract

In this paper, we try to understand the oW energy effective theory of Dp-brane in large

Mb5-brane theory in large Gcﬂ
3-dimensional volume f({r}n in
described as a Nambuq? 1'%0

Thls theory has both the usual
e_VE'-D two-form gauge potential

'_ form gauge field in the D4-

brane theory. This theory' Tﬁés :
gauge field at the same tlﬁl@"‘“« T'ﬁg’é’e res ,r_r-_be%énerlanflzed to Dp-branes cases. In the
last part of thesis, we study t’ﬁ'e,ﬁrbpefsyrﬂmel?y .ﬁUSY ) algebra in this theory. We can

- @US‘Yjalgebra in this theory, then we can know

the possible topological quantities in this system. This interesting system may help us

calculate the central charges from't}fg
to understand M-theory, the models with volume-preserving diffeomorphism, the suit-

able low energy description of Dp-branes in different field backgrounds, some new soliton

solutions, and so on.
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Chapter 1

Introduction

W
,1’f "f.,
l‘ .ﬂ"

In this chapter, we will rewest 1 releva enté of effective theory in a certain
background. First of a;li Wq

understand the strmg”’*theor ]

c'q"' ive aetlon of D-brane theory. To

the ~calculat10n of perturbative string

scattering amphtudes On t onpe urbatlve effect of string theory is
i
described by soliton Solutlon ! mﬂ ggé;y}.igy theory. These solitons are

the Dp-branes, which a:ne tﬂe exte °t Wi I Idimensions. The open string
ends on these Dp- branes" he]hoe ! erg Iﬁ(‘—ﬂd theory of Dp-brane can be
obtained from the calculatl_@n (}f—mhero‘p*rmg '%attqrmg amplitudes. The Dp-branes

theories have two main descrlptl.ons '@ne is the.Dlra& Born-Infeld action [4]. Another is

the Yang-Mills gauge theory [5]. They sﬁaré part of the original brane theory in different
limits, which are the slowly varying limit or zero slope limit of string theory. There are
several good reviews of D-brane theory. For example, the review articles [6-8] are useful.

On the other hand, we want to introduce the well-known case of Dp-branes in constant
NS-NS field background [9-12]. We will show noncommutative Yang-Mills theory as
the effective field theory of the Dp-branes theory in the low energy limit. The first-
order expansion of noncommutative algebra is described by Poisson bracket, which is
the generator of Area-Preserving Diffeomorphism (APD). The noncommutative effect
depends on the inverse of NS-NS B-field. Hence, the field theory of Poisson-bracket is
relevant to Dp-branes in large NS-NS B-field background.

When we want to study the effective field theory in large n-form field background, we
can focus on the symmetry in this theory. While the n-form field defines the n-dimensional
volume form in the theory, we expect that the effective theory may have n-dimensional
volume-preserving diffeomorphism (VPD) symmetry. We will give more detail description

of the VPD symmetry, where the symmetry generator is Nambu-Poisson bracket.



In the last part of this chapter, we will review M theory, where similar phenomena
can be found. The M5-brane worldvolume theory has their own action with C field,
which is called PST action [25]. Recently, people [1,2] found another action for M5 in
large C field background. It is similar to the story of Dp-branes in the NS-NS B-field

background. We will give more details of this theory in next chapter.

1.1 Dp-Branes with Different Field Backgrounds

The low energy effective theories of Dp-branes are called Dirac-Born-Infeld (DBI) action.
People also study the modification of D’Blfac"{‘,lo:n in NS-NS and R-R field backgrounds.
For the theory to be gauge: ﬂlvarlar}t and a@omaly ‘frg_e, we need to replace U(1) field
strength F' by B + F and'add We umino is-i1ito the original DBI action. In fact,
the NS-NS and R-R ﬁ@ldsarlasiskmfﬁgg close string spectrum. They
are the background fields of open string scaftering arflfﬂ'ifudés just like the gravitational
background. When we use
theories of D-brane in NS-N
pretations for these ba?:;ké-rf‘_f)-u

absorbed into the field s@énéfh
then we get different effectlve th,eorl

hds We may have different inter-
e NS NS background fields can be
1 atl()n mode or the open-string metric,

.'-'j';"Fo¥ these effective theories, we call
all of them to be D-brane in 'ﬁeld background% HoWever this terminology is confusing
in this thesis. The effective theory, which Werant to talk in this thesis, is the effective
theory without manifest background fields. In this case, the effects of background fields
hide in the geometry and the symmetry algebra of effective theory. We try to distinguish

them in next subsection.

1.1.1 Terminology Explanation

When we want to talk about a theory in some field backgrounds, we need to know what
it really means.

Firstly, the meaning of background field is that we neglect the dynamic behavior of this
background field. The simple case is that we study the matter field in electric-magnetic
fields background, in this case, we neglect the dynamic contribution of EM gauge fields.
So the background fields what we means are constant fields. The terminology “theory in
constant field background” is the same as the terminology “theory in field background”.

Secondly, when we talk about the effective field theory in field background, the ef-

fective theory usually does not include the manifest background fields dependence. The



effect of background field can appear in effective mass, effective coupling or new geometry.
Hence we will have a new field theory, then we can study the equivalent phenomena in the
two theories. We do not have a simple example in field theory. However, the phenomena
appear frequently in string theory. For example, the effective description of Dp-brane is
not unique, we have more than one effective description. The first example is the com-
mutative and noncommutative gauge theory for Dp-brane in NS-NS B field background.
People [12] understand this phenomena as the result of different regularization method
of open string scattering amplitude analysis. The effective field theory will be different
in the different regularization method, they can be related by changing variables. In this
case, this change of variables is Cq,lldd the Se‘ibﬁrg—Wltten map [12]. However, the two
different effective field theoriés léLre noi reaLX "ghe same after Seiberg-Witten map, they
a,Lgerlva;tlve terms. Hence, they stand

for ir tofdistingu §h‘ i‘hese two situations from other
GERSRY! .
“in” fields background does TIe:rs-}

¢ Lerfiino
&
Finally, we study the the | 'kg&_;ound\ in the most part of this thesis.
In this limit, the effective ﬁelds-.theory 156(;011183, sunpl@r ‘and easier to analyze.
Bogspeie®”
1.1.2 Dirac-Born-Infeld Action and Yang-Mills Gauge Theory

e
are different by higher denvai?ﬁve
for the different parts of'”t;hg. ful
ing limit (Appendix Q) He}l e, in
l
of 1

cases, we use the terminolo
e

well known DBI action. We

“background” for the gé;s'éw

In this subsection, we want to write down the explicit action form of effective field theory
of D-brane. It is called the Dirac-Born-Infeld(DBI) action [4]. Roughly speaking, the
DBI action comes from the calculation of open string scattering amplitude. When we
calculate the [-function of open string scattering amplitude, because the theory has
conformal invariance, the f-function must vanish. From these constraints, we can find
the constraints of fields. These fields are the oscillation mode of open string. These
constraints of fields can be understood as the equations of motion which are derived
from corresponding effective field theory action. The effective action (DBI action) is
described by p+1 coordinates £€%,a = 0,1,...,p. The DBI action is written as' [4]:

L / e\ /Aot(Gup + 27 Fu), (1.1)

In this chapter, we use the review paper of Dp-brane [6]



here T}, is defined by w which is the tension of Dp-brane. It is the generalization

of the string tension Tp; = The p labels the number of spatial dimensions for

2ral
Dp-brane. The g; is string coupling and ¢, = v/o/ is identified as string length. The Gy,
is the induced metric in Dp-brane, it is usually complex in the fermionic part. Here, we

give the bosonic part of the induce metric:
Gap = nun0. XM 0,XY, (1.2)

where M is from 0 to p. We can choose gauge to let X* = £%. So, the remaining scalars
in DBI action are the transverse coordmates in target spacetime, and we label them with
2ra/ X" I =p+1,...,9. Heregwe {1se the f‘é@(@rﬂwa to make the mass dimension of

X' equal to one. Hence, Wq e1'etn rewmte act-ﬁm as:

Spsr _,f;, 4[ & (1.3)
The F is the field strength If one forz otentlal A Ht.hat is F' = dA in Maxwell

theory. We can regard::_—the i ; i gy Ve‘-IS10n of Maxwell action. To
take the low energy liﬁit“a“ ! 3

(a')). (1.4)

g "
The low energy limit makes the@ i,br‘%ne tlrjleary ,,tolbecome simpler.
IJ [

1.1.3 Dp-Branes with NS-NS and R-R Fields

The dynamics of Dp-Brane will be affected by background fields, which come from the
closed string NS-NS and R-R sector. In NS-NS sector, we have graviton g,y which is
symmetry rank-2 field, and NS-NS B-field 27a/Bjy;y which is antisymmetry two-form
field. We also have dilaton field ®, which is a scalar. All of them will modify the form of
DBI action. For simplicity, here we only consider the effect of NS-NS B-field. The action
of Dp-brane in NS-NS B field background can be written as:

SDBI = Tp / dp+1§\/det(nab + 27ro/8aXf<9aXf + 27TO(’(Fab + Bab)); (15)
which can be realized by modification of G, the induce metric, in following way:

Gab = (UMN + 27ro/BMN)8aXM8,)XN, (16)



the mixed terms of B and X will vanish for the antisymmetry of B field. The action
form can have the gauge symmetry of two form field B with additional shift of one form
field A:

B — B +dA, A—A—A, (1.7)

such that B 4+ F' term do not transform.

The R-R sectors of close string are some higher ranks form. For example, the Dp-
brane can have R-R (p+1)-form,(p-1)-form,...,1-form (or O-form for odd p), we label
them by Cp11,Cp_1,...,C; (or Cy for odd p).

The action of Dp-brane in R-R ﬁeld background can be written as [13,14]:
gl CHLoT

zqiif e
SDBI "T“J dpj&lg\/de%ab —|— 2‘/5'0( Fab) —+ SWZ7 (18)
ath
"" = " - '\'d
here the new term is written by e
& & A
N ,

Swz
L L ]

5
= Ecn (1.9)

The notation (--- )p+1';.':ijs'""po ef ‘-l;,henparentheses The p, is the
electric charge of Dp- bFane I "fa t; the calculatio @f fopq'n string scattering amplitude

in R-R background is Very- QJWQ% known how to quantize the nonlinear
sigma model in curved spacetnné E{Q‘wve\ger 'Lv.ize can Q{AOW the field contents, the gauge

symmetry, and the supersymmetry' from the flat slpace calculation. Hence, we can use
these informations to analyze the effective worldvolume theory of Dp-brane with R-R
fields. For example, the Wess-Zumino term (Syz) is introduced to cancel the gauge
anomaly in superstring theory.

While the DBI-like action of multiple Dp-branes is incomplete and unclear (the rel-
evant papers [15,16]), we can still use non-abelian Yang-Mills action to describe them.
Yang-Mills action is the leading term of multiple Dp-branes action after taking zero slope
limit (o — 0).

1.2 Large Field Background Effects

From effective theory viewpoint, the high derivative terms can be omitted in the low
energy limit. However, when the system is embedded in large field background, this
approximation is not true. The large field background can couple to these high derivative
terms, which are still leading in low energy limit. Large field background will be have

more differently from original case. Those new effects worth further investigation.

5



The well-known example is the Dp-branes in constant NS-NS B field background. In
this case, the effective field theory is not conventional Yang-Mills field theory, we should
use the noncommutative Yang-Mills field theory to suitably describe the effective field
theory of Dp-branes in constant NS-NS B field background [9-12]. The noncommutative
field theory is a better description of D-brane in NS-NS B field background than orig-
inal DBI action or Yang-Mills field theory. The reason is the noncommutative theory
includes nonlocal behavior, which encodes the information of the higher derivative terms
in original theory. As what we mentioned before, the large NS-NS B field coupled to
higher derivative terms will remain after taking low energy limit, and noncommutativity

emerges. el SIEEE ,-".

.n -5 l.' f
. = =
1.2.1 Dp- Branes jn ‘S;:’B fi‘eld Background
When we calculate the"*se.qtt ng litudes=of op qt"rlrrg in constant NS-NS B field

background, we use amother egula i sses called pomt splitting regularization.

The different regularlzhtld'n ‘ ms ofﬁ function. After imposing

the vanishing - functhn,mwe or.yn-ofq.Dp branes in constant NS-

: pllf j _l‘:,“" aly
(Oé ) ab yed 1 n
W etGG G Fac * de. (110)

It is called noncommutative Yang-Mills field theory. The noncommutativity is defined
by the Moyal product “x”, such that

fla)gla) = H"FE @t ole+0)| - (1)
The field strength F'is defined by gauge potential a and Moyal product:
Fry = Oty — Oylig — idig * iy + idiy, * dig, (1.12)
while the gauge symmetry is :

OrQq = Og\ + I\ * Qg — 10g * . (1.13)



When the background B field is large, the noncommutative factor § becomes small. We

can expand the Moyal product to the first order. Hence we will get (in U(1) case) [12]:

@) g(x) = fg+56"0.f0g + O(6°), (114)
Fu = 0Oalty — Oyliq + 000004ty + O(6%), (1.15)
Oxta = Og\ — 00 \0qa, + O(6?). (1.16)

In this case, the main characteristic in large B field is appearance of the Poisson bracket
structure:

_ iﬁ,lg}!ib e eﬂ @zfabg (1.17)

ey

o {
We will discuss it more in nexf{ subseet'lon —-"—E_

a
Bracket :
‘ o
From previous subsectaon | ; gp\mrr@utative gauge fields theory
can be described by nga;rpr . e _e""f' rge NS-NS B field case, theory
is handled by Poisson brax;kqtﬂ, i r OﬂArha—Preservmg Diffeomorphism

(APD). In general. for hlgﬁé_:; ra‘n.gs
which is called Nambu-Poisson’ b_ra(;ket [17‘ 2
Diffeomorphism (VPD). “SleqEIe

To understand the reason why VPD emerges, we can think in following way. The

mur‘ﬂ:« 'th@y need a general Poisson bracket,

‘ol_ﬁe the generator of Volume-Preserving
e

original worldvolume theory has diffeomorphism symmetry:
= & = 1%(z?). (1.18)

When we consider the theory in large field background, the original diffeomorphism sym-
metry will be broken by background field, the remaining symmetry is volume-preserving
diffeomorphism. The n-dimensional volume-preserving diffeomorphism is the reduced
symmetry of n-dimensional general coordinate diffeomorphism, which is described by

(infinitesimal transformation):
z® — % = %(z®) = 2% + K%, Ouk” = 0. (1.19)

where a = 0,1,...,n — 1. The n-dimensional volume-preserving diffeomorphism can be

understood as that this transformation parameter * has additional constraint as shown



n (1.19). To see how this constraint gives rise to the volume-preserving, we can investi-
gate the Jacobian of coordinate transformation. For example, we can find the Jacobian

of coordinate transformation for n=2 reads
0,200yt = {1°,4'}. (1.20)

We consider the coordinate transformation in (1.19), after simple calculation, we can
find:
{£% 2"} = 1+ 0,5" + O(K?). (1.21)

Therefore we can see the constraint. pwrg, ?—1—9 makes area-preserving. Moreover, higher
ranked volume-preserving tra:qsﬁ-)rmaﬁ-bn cairbe géhg.rated by generalize Nambu-Poisson

= .
bracket, defined by

(1.22)

(1.23)

"" (SAZUQC {!‘\ .’Em!}pb = fgt (1.24)
1‘?_1\_.; j" f '

This is the simplest case in this kind of symmetry transformation. We can see the
Nambu-Poisson bracket is the generator of VPD.

Now we can ask the next question; what is the field theory with VPD? In fact, we
already saw the example of field theory with APD in previous subsection. We can find
the symmetry transformation is generated by Poisson bracket. We will see more examples

in next three chapters.

1.3 A Review of M Theory

In order to understand more nonperturbative effect of superstring theory, people start to
study the M theory. M theory is the complete picture of string theory. The five different
perturbative string theories and eleven dimensional supergravity theory can be under-
stood as the different descriptions of M theory. For example, M theory can be understood
as strong coupling limit of type Il A superstring theory in one higher dimension. Hence,

the low energy effective theory of M theory is eleven dimensional supergravity theory.



From the eleven-dimensional superalgebra analysis, there are two kind high-dimensional
central charges [22]. They are carried by M2-brane and M5-brane, which are the extended
objects 2-brane and 5-brane in eleven dimensions. Following the analysis of 2-brane and
5-brane soliton solutions in eleven-dimensional supergravity theory, we can know the field
contents of the effective worldvolume theory of M2-brane and M5-brane. The action of
effective field theory for single M2-brane and M5-brane is well known. The M2-brane ef-
fective action is the generalized Nambu-Goto action. The effective action of Mb5-brane is
more difficult because it involves the self-dual two-form gauge potential [23-28]. Recently,
there are several interesting papers about self-dual gauge theory [29,30].

The theory also have a back ro‘u.nd form ﬁ(f:lg.s as string does, and it is the three form
field background. The M2- brahﬂe couplé elecﬁx_éeally te‘the 3-form field. As the research of
D-brane in NS-NS B field, back,giéeu tq(\éenepahze the research into M theory.

because quantlzatlon pﬁocess s naturall i Struemure Moreover, people [32]
in lar‘ge C-field background which
.gaurge symmetry). It gives the

calculated the scattering :;m :
can be described by N’aﬂ]';bu-

b : '.;q;he; way to generahze Moyal product,
which gives the way to quant&e strmg Hen"cﬁ peogle try to apply these researches to
understand how to quantize meml‘frane;. oo $tddy M5 in large C-field background has
more interesting physic phenomena. This kind theory includes the self-dual two form,
the non-abelian gauge algebra and new action form which is different from PST M5

action [25]. We will discuss this topic in next chapter.



Chapter 2

M5 in Large C Fleld Background

J’ff

'I m\th'e“d;Lie 3 algebra into Basu-Harvey
‘r.anes [33-36]. It is called BLG

In t'hls articles, we will not give

F- .-
Recently, Bagger, Lambgtf’c‘and,' vsson i

BPS system to construet £he fheory.of multi

- LT3
model, which describes the multip e)mi)rl fﬂs
any more detail of BIGith . |Latterspeop

Poisson structure into the threesinternal ﬁmer BLG model, then they found the
¢ it/as Nambu-Poisson (NP) M5

started to impose the Nambu-

theory.

2.1 Nambu—Pmsson—*Mé ;[’heolry

The Nambu-Poisson algebra is an infinite dimensional Lie-3 algebra, which is used to de-
scribe the algebra in BLG model. People [1,2] consider the additional three internal space
dimensions (N') with 3-dimensional volume-preserving diffeomorphism, which define the
space of Nambu-Poisson bracket. Moreover, the worldvolume of multiple M2-branes (M)
and the 3 internal dimensions N together can be identified as the worldvolume of M5
theory (M x N).

These processes will divide the worldvolumes dimensions of M5 into two parts:
{a" "} = {22t 2%y Pyt (2.1)

Here, the coordinate x* label the direction on M, which are the longitudinal directions
of M2-branes. Another coordinates y# label the internal directions on N, which are
the space of the volume-preserving diffeomorphism. Roughly speaking, this effective M5

description have 3-dimensional VPD, which is the main characteristic of theory in large C

10



field background. Hence, the Nambu-Poisson structure in M5 theory is the first evidence
of M5 in large C field background.

The fields contents of NP M5 theory are self-dual two form (b, by ), five scalar fields
X!, and chiral Majorana fermion W. The two form gauge fields are self-dual, so the
degree of freedom (DOF) of two form fields are $ = 3 and we do not need by, in this
theory. The five scalar fields are the DOF of Mb5-brane on the transverse directions.
The Majorana fermion is reduction from 11 dimension which satisfies the 6-dimension
chirality condition I'"U = ¥. Hence the DOF of fermion are %2[%1 = 16. The one half
of fermion DOF! (1) are equal to the bosonic DOF (3 +5) in NP M5 theory, which is a
result of supersymmetry. il g [ T ey

In next section, we will gm‘e the‘fu’il act_]ﬁ_ﬁ to dQSQl"lbe the dynamics of these fields.

We will not give all the detaﬂﬁf-a oW @ng th.e actlon from the BLG theory

In this section, we want tb swﬁ rize the mai f sult @f actqon of NP M5 theory. The NP
M5 action is the effective E@scmpﬁ;{@ﬁ&{gé‘@ ﬁ%l&' background so the description
is well-defined in some suitable }.cahﬁrg hmltb ,pdit the discussion of suitable scaling

limit in Appendix. Loy o Sy Ly Lol

Following the result of the papers [1,2], the action of NP M5 theory is written as:

T
S = % (SX + S\IJ + Sgaugea ) ) Sgauge = S?—F + SCS? (22)

1Only one half of fermionic DOF is really equivalent to bosonic DOF, because the EOM of fermion
involves first derivative.
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where 2
3. 73 1 e 1 12
Sx = [ dad’y |—5(DuX")" - (DX
1 4
_Z —_ _{Xﬂ XI XJ}Q Q{XI,XJ,XK}Z] ’ (23)
Sy = / dBrddy Bﬁrﬂpﬂw+%ﬁr@p\p

@— v v _@— . iyl yvJ
+ 5 v, M {XH X w} 1 U Tyas{ X, X7, U}, (2.4)
Sip = /d3xd3y [ (2.5)
Scs = /d3xd3 @Ey)f 50,50 ﬂb-#ﬁnpd+adbkp(aAbuT_6T'bﬂ?\)] {2.6)
.,'f.i o T
In the above we use t}.@ notation =
X 0 (y), (27)
.#‘ . 4o ,5\
{A.5C) o (2.8)
7 A
Here, we can find the effeeﬁ;pjlt ﬁg,ld,ti

%ﬁ)lum{aof NP M5 theory are described
-"'3' A el =
by Nambu-Poisson bracket. 'L:'- iy L 2

"h s
The covariant derivative is dgﬁﬁe&@ﬁLﬁlﬂ‘ or U):

D,® = 9,9 — g{bu,y", 0}, (2.9)
2

9 voxh
’D‘[L(I) = ?Ew',p{X ,Xp,(I)}. (210)

We can find the covariant derivative is defined by two gauge fields: b,, and b;;. The
definition of the 3-form field strength reads

Hyw = Oxbus — Opbas + Osbag, (2.11)
Hyy = Osbjs + 0ubys + 0ibse (2.12)

which is no longer covariant under the non-Abelian gauge transformations. The covariant

?In original paper [2], they meet the unusually kinetic term of fermions, which has added I'j4; factor.
In order to solve the problem, they used the similar unitary transformation:¥ = \%(1 —I'j53)V’. Here,
we use the symbol ¥, which was denoted by ¥’ in [2].
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3-form field strengths H should be defined as

Houw MDAXA

= H)\,'W ge‘”p((‘? b)\T)a le? (2.13)
Hiyy = 92{X1,X2,X3}—§

— Hip+= (0 VO — D" 0,0") + g*{bt, b, b (2.14)

In fact, the deformations of field strengths come from the VPD symmetry. It is similar

to the theory with APD symmetry. We EIIH give the more details of VPD symmetry
||. "d'
f

transformations of fields in ne}gt[ se! thl

2.3 Symmetryﬁ{)f

In this section, we WllI\'hOW
NP M5 theory is the MQlu‘m
has also Supersymme’@_y ~wh
charges. ',f, r

HY .
-g-m .,\_#'J-l:
. T

2.3.1 Gauge Symmej.ﬂrf and VPD » P

5 thebry The gauge symmetry of
'Om..:che other hand, the theory
Lt 'ﬁle BPS states and central

Yy

The fundamental fields transform unéa;'tﬁ% gauge transformation as

WP = grP0,d (&= X"U), (2.15)
5/\()@\ 8,%/\/'\ — 8)'\/\,% + glipabbk)'\, (2.16)
Sabyxs = Oy — O5Ay + gr™O0;brs + g(Osk" )by, (2.17)
where
Y= MO N (2, y). (2.18)

The field strengths H transform like ®.
The gauge transformations can be
variables b, B,/

. |
o= 56’“”\6 ~
B#ll = 6"‘1")‘(91-,()”)'\

13

more concisely expressed in terms of the new

(2.19)

(2.20)



for the gauge fields as

Sab" = KM 4 gr OV, (2.21)
5ABM” = aulfﬂ + g/f"(%B,ﬂ — g(c?,,/@”)BM”. (2.22)

In terms of B,”, the covariant derivative D,, acts as
D,® =0, — gB,"9,9. (2.23)

Another feature of the gauge transformations is that, in terms of X!, U, b* and B,*,

all gauge transformations can be ;@s@e‘éﬂéﬂg} in terms of ', without referring to A,

as long as one keeps in mmdqtﬁ(i," comsﬁamt'% :.!-E,?

1=

V £73 xR

& 9 (2.24)

This gauge transform . 1y i " %&lume preserving diffeomor-
phism (VPD)

- (2.25)

The field b* is then inteﬁ;:);; le VPD in the 3-dimensional

space picked by the C- ﬁ%ﬂ’g ac

2.3.2 Supersymmetry ~a&' i _,Fﬁ.:_‘j.mrﬂ ok

The Mb-brane theory is also invariant under the supersymmetry transformations 4, and
d.. We have
50 = x, 5XXI = Oy bjy = Oy = 0, (2.26)

and 3
§XT = ey, (2.27)
6V = D,XTHTe+ D, X' TH e
1 o1
— 5 il Te — 7 (1+ gHiss) Disse
2 2 s

—%{X”, X1, XA e 4 %{X’, X, XEyrRTI®e (2.08)
by = —i(elp W), (2.29)
6cbuy = —i (14 gHis;) €0, L0 +ig(el, T T3 0)0, X (2.30)

3¢ here was denoted by € in [2].
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The SUSY transformation parameters y, € can be conveniently denoted as an 11D Ma-

jorana spinor satisfying the 6D chirality condition
I''y=—x, TI’e=—c (2.31)
They are both nonlinear SUSY transformations, but a superposition of the two,
0y + goe and =I5 (2.32)

defines a linear SUSY transformation.
e LT

2.4 Double Dlménsmﬁal B,eduﬁtlon

background. One can%stuﬂ:;) he etistring, thﬁorx This relation between M
theory and superstring theo ‘ imens onal reduction. There are several
actlfyone target space dimension
ns‘;pns will relate to D2-brane and
p&ctlfy one target space dimension
and one worldvolume spa,ee di ex], ea@t the'\same time. It is called Double
Dimensional Reduction (DDE} Afte:c DDR, 'L’_ﬁhe MQTbrane and Mb5-brane in eleven di-
mensions will relate to F1 strlng and Q.4—l_;préjhehnl ten dimensions. These objects (F1,

ways of dimensional re‘dfucmo
on circle, then M2- braﬁ"e "a;rId

NS5-brane in ten dlmensm

D2, D4, and NS5) are the main elements in Il A superstring theory in ten dimensions.
Similarly, if we compactify one target space dimension on S'/Z,, it will relate to the
Eg x Eg heterotic superstring theory. In this section, we will focus on the DDR method,
then we can study the relative D4-brane action of NP M5 theory.

2.4.1 Poisson D4 Description From Nambu-Poisson M5 Theory

In this subsection, we will re-derive the D4 in large NS-NS B field background from the
NP M5 theory. Firstly, we know theory D4-brane theory can be obtained from M5-brane
theory after double dimensional reduction on a circle. The double dimensional reduction
(DDR) means that we do the dimensional reduction on worldvolume and target space at
the same time. In original, people [1,2] want to show the evidence of the NP M5 theory
is the effective description of M5-brane in large C field background. Hence, they expect
to get the D4 in large NS-NS B field background after compactification the circle, which

live in the direction y3 and has radius R. There are several reasons for this choice. The
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first thing is the C field background field (s will be explained as Bjs after DDR on 3/°.

The relation between Cjs; and Bjs is written by:
S=2rR L o
/ ~ Cigdy'dy’dy’ = Bisdy'dy”. (2.33)
=0

The second thing is the Nambu-Poisson bracket will relate to Poisson bracket by this
way: {f,9,9°} = edﬁgﬁﬂf&;g = {f,g}ps. Here the indices & are {1,2}.

After integrating out the auxiliary field (b,s) and renaming some fields, we get*:

SpainB = /d3xdy
o, vl h_._'!' o 'C.":'._-,
A _‘iﬁ- \ ﬁ{-_‘_XI,\I//}>:| , (234)

where we use the um{ary‘:'{t*r' ati ' {:EﬂJé‘__J(F + 'MW’ to keep the
' \If’ Jhe gauge field b3 and by
ne thpory after DDR. The gauge

ﬂvé;_:'}md field strength:

chirality condition of gqlugm

are understood as theﬁone f

S i

hA Ay A37 (2.35)
9% qa‘hb}p b. (2'36)

This theory describes the D4-brane in large NS-NS B field background(Bjs).

In this chapter, we show the main characters of NP M5 theory. We give several evi-
dences of the M5-brane in large C field background. For example, the constant term exists
in action, the supersymmetry law is nonlinear, the two form gauge field has non-abelian
structure, and it reproduces D4-brane in NS-NS B field background, etc. However, we
find another possible D4-brane formalism, which can describe the D4-brane in large C
field background. It can be achieved by DDR on another circle 2. We will deal with it

in next chapter.

4Here the indices ‘a’ are {u; &}.
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Chapter 3

l”-“-—'r"[ "lf;‘,f'f
A i e ol ¥ ",

%Rfe"a%p_t;ion of D4-brane in the large
0 5"%.: _J o-ry, which describes the single
W@ doubl L-cllimléhsional reduction along the
i tion":éf D4-brane in large C field

three-form backgrounds THis i
Mb5-brane in large C ﬁf@ld -ll)';iqﬁkgro nd-
codimension of C field. We Wi e
background. B

. - o B
% 'l.‘ "-.?- L
. i i

3.1 D4-Brane i

e

::""-:‘ \‘I
mgciggraund via DDR
Vo e R
L = T |
To carry out the double dimensﬁopa{&redui:ti?n:’(.-DDR) for the M5-brane along the 2%
SR 0Ty o

direction, we set
2? ~ 2% + 27 R, (3.1)

and let all other fields to be independent of z2. As a result we can set 9y to zero when
it acts on any field. Here R is the radius of the circle of compactification and we should
take R < 1 such that the 6 dimensional field theory on M5 reduces to a 5 dimensional
field theory for D4. To keep zero mode of fields in 2 direction, we need to explain the
meaning of field with component 2. For example, the b,;, — {b2;, bau}, where a = 0,1

and the field by, is understood by one form field on D4-brane theory. Hence, we define
bﬂg = aﬂ. (32)

On the other hand, the Gamma matrix I'? is understood by ten dimensional chirality
matrix. It is used to define the chirality condition of fermion (gaugino) in D4-brane

theory.
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3.1.1 Gauge Transformation of Fields

As what we have mentioned, the fields after DDR are X7, U, by, by, and b, After DDR,

the gauge transformation of fields are:

AP = gr’0,® (@ = X1, W),
Sabas = Oal\s — OsMg + gi7 Osbas + g(05K" )bas,
Sabos = —05Ms + gr™0:bos + (05K )bas,

bt = KM grO,b.

We expect that the U(1) gaugq syfﬁ{-netry oﬁ‘ ﬁﬁe,Dél brane has its origin in the gauge
transformations (2.16), (2. ]"E)ﬁon th@—M5 branic. Ife,gauge transformation parameter

A5 shall be identified Wlﬂ;\t theé “mflatl()n parameter This is consistent
with the identification qf aH, i o méﬁry.parametrlzed by A, i.e., the
VPD, is also still pres@rt on ) e, we ¢in ha:ve the gauge transformation
=} =~
of a: - . &
=l v
" %ka s (3.7)
g, 20 el
The gauge symmetry coﬁ'l;biﬁes : (;l., tr *an.‘d volume-preserving diffeomor-

.-'

éﬁﬁeyﬁ;’_@,haracﬁe% ‘ ﬁ"ew D4 theory. The 3-dimensional
volume-preserving dlffeomorphls‘h} s }he evjld?nqe éf D4 in large C-field background. We

R i

phism symmetry. This is the

want to ask how to find the other DOF of one form fields (a,), and we also want to know

how to find the gauge transformation law of a,. We will deal with it in next section.

3.1.2 Action

After keeping the zero mode of fields in 22 direction, we get the effective description of
five dimensions worldvolume theory. The action is what we expect for the new D4-brane
action, which describe the effective action of D4-brane in large C-field background. The
complete action form can be represented in different parts. The result of DDR on Sjquge

is
S = d*xd® 1 Hs, — 17—[2 — H2
gauge ray 9 123 4 200 o

9eaBess euaf' AP Dsbs Dsb 53 Dyt } . (3.8)

+e°"36‘1’.’p(95ap8ﬂba,; + 5
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where we use the definition of €*#? = ¢*#. The result of DDR on Sy is

1 . 1 ;
Sy = / dQﬂcd?’y{_iD”XIDNXI_§8aX13aXI+gBa“8quaaXI

2 2

g L Do 14 g T o 17
~5 BB L0, X107 X! — ge“p oasFri FP0, X707 X7
1
—573 — —{X“ X1 X712~ 2{X1,XJ,XK}2}. (3.9)
g

The result of DDR on Sy is

s = / d2xd3y{ raaagz Hie}ﬁ“ﬂ'b ,;. fg xpr2 L T 95 Lgren S0,

+g° 2\IJF FI{X”’ X‘FZ- AP . (3.10)
In this chapter, we WllL?O(“,’tis“ haihderstand if the gauge part has
a well description of D.éL. in large C-fié teach..us how to deal with matter

fields part. After turnﬁqg off
Focus on the action offga‘t}age

od tcr:(:on&der the equation (3.8).

nif,;_z a; as components of the one-

N ot (3.11)
Y e p
we can rewrite Hopy, as o oy (S
Hojw = Fp + g W/-\e"’m'@&b’\FM, (3.12)

In the above we see that part of the two-form potential b on the M5-brane transforms
into part of the one-form potential a on D4. However, in order to interpret this action
as a D4-brane action, we still need to identify the rest of the components a, of the one-
form gauge potential, and to re-interpret b,; and b;; from the D4-brane viewpoint. We
also need to find all components of field strength or find all covariant variables in this
theory. On the other hand, we also need to understand the new D4 action in usually D4

viewpoint. We will deal with these problems in different sections.

3.2 Dual Transformation

In this section, we use the method which is called dual transformation to find the other
components of one form fields (a,). This one form component is not suddenly adding

into the theory. In fact, this method relates the degree of freedom of b, to this one
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form field a,. It also can be understood as the electric-magnetic duality in 3-dimensional
spaces (y”). This is the dual description between the one form (b,),, and the zero form

(as). We will see this fact in this section.

3.2.1 Equivalent Dual Action and Dual One Form Field

In order to understand the physical meaning of the action (3.8), we try to simplify the

action by integrating out the remaining components of the 2-form gauge field b as much as

possible, since there is no 2-form gauge potential in the usual description of a D4-brane.
First we note that the actlon SLS}Lple@Q?ds on b,y only through the variable B,”
(2.20). In terms of B,/ we he,yé. T i

A

2 B “‘"ﬁ -_

(3.13)

where

(3.14)

e “+ 2 By BIB, } (3.15)
F ,\: 1 :;i';-:-:-' L-j":L: .

It turns out that it is possible to extract the components a, on the D4-brane by
dualizing the field B . We can introduce the Lagrange multiplier f,, to rewrite the

action (3.15) as

. oo 1 1 1 . o
®) [b“; Qs ba[m B, fﬁp] = /d2$d3?J {——H%gg - _ngf/ - §<3ab“ - Vd'uBao>2
+ePDpa, Bl + 5eaﬁF sBlBy

—e*? foul B — Eﬂbpabba/)]} , (3.16)

where we used the notation B for a new variable independent of b,;. If we integrate out
the Lagrange multiplier fg;, we will get B i = B and the action above reduces back
to (3.15).
Instead, we can integrate out B,/ and bg,, to dualize the field B,/ First we integrate

out by, and find the constraint on f,,

Qs

0 fair = 0. (3.17)
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It implies that, locally
fop = Opaa (3.18)

for some potential a,. Hence, after integrating out by, we get
SOV, a,, a0, B = /d%cd?’ {—17{?.. —H3 . — 1(a b —V, "B 7)?
y Gy Aoy Dy Y o "ti23 2 — 5 \Ya s Pa
e 950, B, + geaﬁFﬂuBaﬂBﬁ” —eaﬁaﬂaﬁéaﬂ} . (3.19)
In order to find the final form of dual action, we should also need to integrate out the B.
We will get the complete form i in ?Wﬂﬂbgﬁgd% i

ﬂ" 1"? ':?-_
bﬂq%a = -

3.2.2 Action after

&
Since the action is at m ' gratlng out B # is the same
as replacing B_* by the solution to of motion, W&uch is a constraint
: /))E L (3.20)
iy, ,.."’.:.
The solution of B 1 is gi ey ‘\
Wi el
where Efﬁiﬂ’i’iﬁ‘]ﬁmﬂ'
M[“',aﬁ = Vﬂp"/[,’béaﬁ — gEaﬁFﬂ,'j, (322)
and M ! is defined by
(M_l)voz)\ﬂM;‘waﬁ = 5>\1‘/576- (3.23)
After integrating out B/, we get
. 1 1 i : 1 :
SOV, a5,a0] = / dzd’y {_5’”?23 — gt gGﬂvp€”573db“F5+)2 ~ 500"
1 fot 0 Qo - " ;
+5 (€ Py + V7 0%) (M Dag” (eﬁ‘ng,;—l—V,/\aﬂb)'\)}. (3.24)

At the quantum level, there is a one-loop contribution to the action when we integrate
out Bt Tt is
h
AS) _1oop = —§T7’(Log(Mﬂ,~,aﬁ)). (3.25)

The action (3.24) is only remotely resembling the familiar Maxwell action for a U(1)

gauge theory we expect on the D4-brane. We can find terms resembling F7, and F?2;,
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but the coefficients do not match. The term F?; is missing. We still have the field b*
which can not be easily integrated out because it has 2nd derivative terms in the action.
It appears that we need to keep the field ”, which continues to play the role of the gauge
potential for the gauge transformation parametrized by A, but we need to identify its
physical degrees of freedom in the D4-brane theory.

Having decided to keep the gauge transformations parametrized by A, as a new gauge
symmetry in the D4-brane theory, we need to define covariant field strengths suitable for

the gauge transformations.

3.3 Covariant Varua!b'les rf
P, = [\
In this section, we Want 1o s

First of all, we need to undgrs ‘ rm&tlo_p of all gauge fields, then we

uge transformatlon rule has to be

—

solved from the requlremeni. t at, 3.19). to be invariant. For a quick

derivation one needs to reafzgthat ﬁh‘e ChemiFSlrf}oqs \;erm must be gauge invariant by
itself. Plugging in the gauge transfé)gn%tl.(}n of IB 1 and b, the gauge transformation

of the CS term (after integration by part ) is
5A(6a58gaﬂéaﬂ + gﬁaﬁFﬂpéaﬂéﬁl} — EQ’Baﬂaﬁéaﬂ)
= 6,;1?0"‘60‘5[—85)\ — g(/fd8da5 + a(,@gfad) + (5@/3]. (326)

Hence we get
Snag = O\ + (k7 Osap + as0sk"). (3.27)

In our formulation of the self dual gauge field b, the components b,,, do not explicitly
show up in the action. Rather they appear when we solve the equations of motion for the
rest of the components by, and b,,;,. In [44,45], the components b, are used to explicitly
exhibit the self duality of the gauge field, and their gauge transformation laws are given
by

Sabuy = O\, — O, A, + g[KP(Opb,) + (0K )by — (0,uk")by ). (3.28)

IThe gauge transformation of B,/ should be the same as that of B/,
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Identifying bge with ag and setting d» = 0 for DDR, we get exactly the same gauge
transformation rule as (3.27) with Ay = .
We find that the gauge transformation of a, (3.7) and that of a, (3.27) are of the
same form
Saaa = Oa\ + g(K Opa, + azOsK"). (3.29)
For the convenience of the reader, let us also give here the gauge transformation of

Vi, Mp®® and B

SV = gr)os V“’+g(8 K )V (3.30)
oA M, " B LBk + (9pK7) M7, (3.31)

opB S (3.32)
d VPD Symmetry
covatiant ﬁ-gld strengths 2
r-..;
§:*+'a?{b1 b2, b}, (3.33)
@u@?Fky 0% Fys), (3.34)

.:F..‘_ﬁ‘ L] Ty
which survive the DDR. Herg;w% hévia also }.wéwr?'%tqpﬂ’?-lgw, which was given above in
(3.12), in a different but equwarén.ﬁ’fgrr‘r} JElE &
The covariant version of F,; can be defined as

1 .
éeﬂaewﬁﬂ”k. (3.35)

faﬂ =
This is motivated by the intuition that F,; corresponds to H,,2 in the Mb-brane theory,
and we used the self duality condition of H to write down the expression above. Replacing
B,/ by the solution B./, we can rewrite H* (3.13) as a function of Fip, d;b” and B,/
(That is, we avoided using d,b" directly. The dependence on d,b" only appears through

B./.) As a result, we have
Foip =V 1 (Fos + gF35B.°). (3.36)

This is also in agreement with the definition of H,,,, defined in [44,45].

2A field ® is covariant if its gauge transformation is G, ® = gmﬂaﬂ@.
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By inspection, we can guess the covariant form of F,3. Together with the rest of the

covariant field strengths of the U(1) gauge field, we have

fﬂl', = pr,‘i‘g[a'bd ﬂ,-,—abd C-,,-,—@,-,b"’FM]

= V,’Fuy + V" Fop + V, F, (3.37)
Foi = V71 :(Fw +gF,sBY), (3.38)
Fas = Fap+gl=FuuBJ' — FugBJ + gFu BB, (3.39)

where
FA,Z? :T&‘“? 8Ba,4 (3 40)

Unlike F,; and F,;, the coﬁu.ponentsJ aﬁ_‘%m not "be directly matched with the field
Hap2 in the Mb5-brane theory, m&olves—other fields that does not exist
in the D4-brane theory

3.3.3 Action thh ovari . "“
Remarkably, in terms -ef t,l}e the actlon is simply

S!,Jauge [b”,aA] = /d2$d&y {Lﬂ

_F'

The last term in the Lagrangl’él;. resembles théf We@s—'Zummo term for the C-field.
It appears that we are missing thé Kinetic term FopF” in the Lagrangian, and the
coefficient of the term F,;,F*" is wrong. However, in the next section we will see that

the missing kinetic term arises when we integrate out b#.

3.4 Order Expansion Analysis

In this section, we want to give the detail analysis of the action of D4-brane in large C field
background. We will expand the action in different g order. From these calculations, we
will see the behavior of the new action, and understand the meaning of b in this action.
We will find the degree of freedom of " is not really independent, it can be understood

as the electric-magnetic dual transformation of a, in worldvolume viewpoint.

3.4.1 Zeroth Order Expansion

In this subsection we show that at the lowest order of g, the D4-brane action (3.41) agrees

with the Maxwell action for a U(1) gauge field in the ordinary D4-brane action. First we
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expand everything to the 1st order

Hisy = Oub" + g%(&;byapb’j — 9,bP0:0") + O(g?), (3.42)

VLT = 87— gaub” + O(gP), (3.43)

(MY 5 = 0"6a5 — gl(O"V + 0"V")d0s — €apF™] + O(g?), (3.44)
B = 0" + eapFPP 4 [0V 00by — 0"bsenpF — D5 e,y P

+€a50°bs F' + Fos F*] 4+ O(g?). (3.45)

Fop = Fpu+g(0ub Fyp + 0" Fus + €5, Fus F77) + O(g?) (3.46)

Fag = Fop+ g[_ i ‘ Fﬂﬁ(aocbﬂ + EofyFWl)] + 0(92)(3'47)

To the lowest order Ofﬂ.
.,

2
T

1 ]

1 A - | .
56“555 = —c*Pl 5B (0al + €0, 7)) + O(g)
[} [ ] “-"-..
~ Byl B (3.48)
= B I

v

L

T o
up to total derivatives."'s"]_t-__‘q tlég ‘@pﬂ @Héll) can now be expressed as
l-:;j 5 b id :;l‘ﬁ‘l_ ]

1 1

Slg?z)uge[bﬂa a’A] = /d d - e, 4 123 - ZLF[LZ'/F'[W - §Fa[tFaﬂ}

(3.49)

where Hjs; = 00" and A, B = (i, ). Note that Hjs; is the only gauge invariant
degree of freedom in the gauge potential b* because there are two independent gauge
transformation parameters. * Furthermore there is no kinetic term for " and so we can
integrate it out and then (3.49) becomes exactly the Maxwell action. Integrating out b*

is a duality transformation which imposes the identification

The physical degrees of freedom in b” is transformed into that of a,. Although b* appears
as new gauge potentials in the D4-brane theory, they share the same physical degrees of
freedom with a,,.

3Since the 3 gauge transformation parameters x” are subject to the condition @mﬂ = 0, there are
only 2 functionally independent degrees of freedom in x*.
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3.4.2 First Order Expansion
The first order correction to the action (3.49) is
; 1 . .
S gaugelV' 0] = g/dedSy {( 2H1223 + 50u6"0s0") (Hiss + Fon)
1 iy . 1 o
+H123 <_§F/.),DFMV + GQIBFapaﬁbﬂ> — §€a5Fw}FO{’uFﬁy

P By 0 + Fog P00 — Fog b, 7} (3.51)

In order to integrate out Hjs;, note that we can impose the gauge fixing condition
1@!."'1[@5‘3 &

(3.52)
so that

(3.53)
for some function c. S§v1ng fro

(3.54)
we find -

T_% ,. > , (3.55)
where 972 is the inverse op%%:;-gor ofﬁf.%he Laﬁama 0" = 9,0". Denoting the Green’s
function of the Laplacian by G Smﬁﬁlﬁﬂrﬂ o

PGy —y) =0y —vy), (3.56)
where y and 3’ represent the coordinates in the directions yi, yi, y?’. We have
i%ol) = [ @y Gly - )6, (357

Plugging (3.55) into the action, we get an action as a functional of Hjss and as. To

the first order in g, we can integrate out Hjs; and the action becomes

Sqaugelaa] = / d*xd’y {—}lFABFAB +g { Fo:C — 1eaﬂF~,,FaﬂFw
—FI Ry 0,000 2 Fyy — Foy 0107072 Fyy + FaﬂF””E)O‘@,;(?‘QFm} } ,
(3.58)
where
C = —lFﬂ,,Fﬂ" — P, ,030M0 2 Fy,. (3.59)

2
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Apparently the action becomes nonlocal at order O(g).
In principle, using (3.55) to rewrite the action as a functional of a4 and Hjss, we can
integrate out Hjs; to an arbitrary order in g. The resulting action would be a functional

of Fup with higher derivatives and 92

3.4.3 Electric-Magnetic (EM) duality

In here, we need to emphasize the role of gauge potential of b*. The two form gauge
field can be seen as the dual description of one form gauge potential a,. From the order
expansion analyses, we can find the one, forg,n field a, encodes the information of b,
and b*. The original two forrnn, Hegr@e,rm NPd\fS fheory, after DDR on 22, the b;s can

be understood by a. Anobh%two' o :‘f one f@rnf ﬁeld in D4 theory (ao, a;) were

result be more mamfesﬂ* Tkt'er 1S a 1 e'E-]; fr’am and a, in the 3-dimensional

space (y”). This result can be un the ¢ lculatlon of dual transformation.

Moreover, when we w;lgte*d ; h Fgg, We gse the solution of equation
of motion of B,* (B ‘i). Th1 pg,!aitmn between b,,;, and a,. The

dual transformation always appear i i S5, 5 after DDR. For example, to

connect the D4-brane tﬁ'éorffh by DD\R they also need to do dual

ih S%* a
transformation to get normal D@brrane eog;%f_ 2?]

X
we still have the two form gaug‘e _ﬁekgi b" tlus fleld is also the dual description of one

F‘!lnally, after integrating out B,%,

form gauge field a, in the 5-dimensional worldvolume. This result can be understood
from many places. The zeroth order expansion analysis tell us the ;0" = —Fy;, hence
the d.o.f of b is relative to d.o.f of a®. From the relation, we also can know the correct
physics degree of freedom of one form gauge field a. It can be understood from the

E.OM of as and b*. In ¢° order, these equations are simpler:

O F"F 4+ 9 FPF = 0, (3.60)
€0y Opb" + O, F" = 0, (3.61)
|
8;@-,()” + §€a66pFa5 = 0. (362)
It is easy to simplify them in these two equations:
b = —e"P0,a, (3.63)
040%” = 00,0 (3.64)

There are three independent gauge parameters A and A%, We can choose A* to make

Pdub, = 0, and we know 90" = —e*Pd,a5, so we fix all degree of freedom of gauge
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field b*. Now we choose A to make d4a? — 9pa’ = 0, then from the second equation,
we get a’ = 0. Hence we find we only have 3 independent one form in this ¢° order.
For higher g order case, the equation of motion become more complicate, it hard to deal
with in this case. However, this result should keep in perturbation theory order by order.
Hence, we can fix all d.o.f of b field in our action, but this calculation break the VPD
gauge symmetry. The complete action of D4 in C field background should be described

by one-form gauge field a4 and two-form gauge field " at the same time.
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Chapter 4

Extension and Appllcatlon

A L
From the previous chap,:ﬂér‘, we ain part of D4-brane in large R-R
3-form field background. - Ju 6"’ mope extension of these results.
We focus on several t‘hmgs ' the p bra‘rie in large R-R (p-1)-form

background, the multlpleibr | D4-brane actllon with matter fields, the

supersymmetry transformatl [ 1 tj;qp,,énd the possible topological

o .} ; 1V
4.1 Dp- Branes in R—R ﬁelld Bapkground

= oY i ] ke
Slriar|a
In fact, the system of D-branes in NS-NS background can be understood from the effective

quantities in this theorga

sk .y
- s

theory, which describes the low energy effect of open string ending on D-branes. The
open string is a one-dimensional extended object which can couple to the 2-form NS-NS
B field, hence the effective theory is affected by NS-NS B field. On the other hand, the
system of D4-brane in R-R 3-form background, which can be understood as the system
of D2 ending on D4. The D2-brane can couple to the 3-form R-R C field, hence the
effective theory is affected by R-R C field. In general, we can study the Dp-brane in
R-R (p-1)-form background. The D(p-2)-brane can end on Dp-brane, which can couple
to R-R (p-1)-form field. We expect these theories still with (p-1) dimensions VPD. We
also study how to generalize our previous researches to multiple Dp-branes cases. In this
thesis, we only consider these extensions in gauge fields, because the gauge parts are

easily generalized to multiple Dp-branes from general VPD symmetry.
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4.1.1 Generalize VPD in R-R (p-1) Form Field Background

To generalize the story about a single D4-brane to a system of multiple Dp-branes, we

notice first that the VPD for a volume (p — 1)-form is generated by a (p — 1)-bracket

{fi.fo, o o1} = 20100 104, for e+ Op .y [t (4.1)
We define a (p — 2)-form gauge potential by,,...,,_, and its dual
A1 ePLh2 - fip—1 (4 2)
(p o 2) f2flp—1 :
..:;4"?‘"" - % )
and the field strength 2;4 Cany b ed as f“*":__
.:;,.:' i S .
Hoi-igh 5 o PRV - 0 Bow + 0(0) (4.4)
‘l'"n £ g r
- | =
In terms of b the gau'g;e t ‘ & ‘ oﬁthéhame form as (3.6), and the
parameter x” is still dlvej:genqe SS9 ) h,%t the range of the indices i, v
becomes 2,3, -, p. ,-g L | A

Dp-Branes Theory

While we do not intend to promote the VPD gauge potential b* to a matrix mostly
because we do not know how to modify its gauge transformation law, we shall replace
the U(1) potential by a U(N) potential a4, which is now an N x N anti-Hermitian matrix
of 1-forms. The U(N) gauge transformation of a4 should be defined by

das = [Da, A + g("0uan + a;0aK"), (4.5)

where Dy = 04 + aas. It modifies (3.29) only by replacing dsA by [Da, A]. The gauge
transformation parameter \ is an N x N anti-Hermitian matrix but x* is 1 x 1. The
range of the index A is now A = 0,1,2,--- ,p. Decomposing the potential a4 into the
U(1) part and the SU(N) part

ay = ag(l) + aflU(N), (4.6)

IThe indices 2,3, -- would be denoted as 1,2,--- in previous chapter.
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the gauge transformation of ag(l) is exactly the same as before (3.29).

We can define V;,” and B,* using the same expressions (3.14)-(3.21) as before

VR = 8+ gdsbt, (4.7)
« _ e’ o U(1l
M,'w P = VppVyp(S A — g€ BFM( )a (4-8)
A N & u
Bl = (M) as(V, 70 + T ELY), (4.9)

but with the field strength F}L]l,(l) being the U(1) part of the U(N) field strength, so that
their gauge transformations remain the same. The range of the indices «, 3 is still 0, 1.

The naive definition of field strength F up = [D 4, Dp| is not covariant. They transform
like Gl

6Fan = [FAB@H 91D F s aA@mB — (") Fiual. (4.10)
It turns out that exact;(%he i \“(3 37‘)4‘3‘(‘3 39) give the covariant field
strengths. For the COnY i .' i ﬁ%\%em here
Fw r‘j;fg: . o]
= (4.11)
-
Fuir & (4.12)
Fop :‘* Il Fy ' —\AAE ;"F BB (4.13)
They transform like ' ""3“.;__,‘,:.;'_‘ &0 ., e 4 |
PRl FamN L 0. (4.14)

From this expression it is easy to check that the gauge symmetry algebra is given by
[51, 52] = 03, (4~15)
where 9, is the gauge transformation with parameters \;, f{f and

A3 = [A,da] + g(KhON — kYD), (4.16)
k= g(RSOKY — KVOLKD). (4.17)

4.1.3 Ansatz of Action

In view of the D4-brane action (3.41), it is now natural to define the action for the gauge
fields on multiple Dp-branes in R-R (p — 1)-form field background as
. 1 1 — 1
D _ 2 -1 1fipe1 . — _aBU1)
Sﬂaﬁge%“? aA] = /d xd”"y {_ém%ﬂr“ﬂp—l}[“ ol 296 ‘Faﬁ
1

U(1 y SU N
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If we focus our attention on the U(1) part of the 1-form gauge potential a4 and the VPD

gauge potential b, everything is exactly the same as before. The VPD field strength H

is dual to only the U(1) part of Fy;. But since the SU(N) part of the field strength Fap

involves the VPD potential b*, the U(1) part of a couples to the SU(N) part indirectly

through v#. This is different from the usual Yang-Mills theory of U(N) gauge symmetry,

for which the U(1) part decouples, but similar to the noncommutative U(N) YM theory.
To the 0-th order in g, the action is

ST 0] = [ Erry {—%(Hzg...p + SO - TRV RS - gt (FES Rl b,
<yl SIEEET: - (4.19)

where Hag.., = (’3ﬂb” Agam}‘ "smcelggg - _&!the on-ly component of the field strength
i ou\énd _hhe action reduces to that of a

for the gauge potential b ﬁferﬂéan

65 uge fixing condition
' 0 = 0. (4.20)
sy
oy |
NI ko 4 (4.21)
T | ""Q*.il *ﬂ o

where 02 is the inverse of t thé Eapiac‘e qpef'aizor 82 »,,,_ 8 0", Like what we did in Sec.
3.4.2, we can continue to mtegra‘c'é out Has..p at 1gher orders of g using the relation
(4.21) for every term involving b in the action, although we would get a nonlocal action
in the end. In principle we can write down a nonlocal action of a4 without any trace of

b or Has..., as an expansion of g to an arbitrary order.

To end this section, we want to emphasize one important thing. The formulation in
this section applies to Dp-branes for all p > 2. For Dl1-branes, the gauge symmetry
introduced by the R-R 0-form (axion) background is the trivial group of diffeomorphism
on a single point. There is thus no deformation of the D1-brane theory due to the axion
background. Furthermore, as there is no R-R (-1)-form potential, DO-branes are also free

from analogous deformations due to R-R backgrounds.

4.2 Couple to Matter fields

In this section, we consider the complete action of NP M5 after DDR on z2. We use

same processes as previous pure gauge fields case. We also can do dual transformation,
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find covariant variables and solve two form field B with matter fields modification.
The new thing is the supersymmetry in this case. We should find the way to find the
supersymmetry transformation law of the dual field a,. We will deal with it in next

section.

4.2.1 D4 in C Field Background with Matter Fields

In the above we have ignored the matter fields in the NP Mb5-brane theory. It is straight-
forward to repeat the derivations above with the matter fields included. To consider the
complete action with matter ﬁelds (’_3 8)s ﬁ&p and (3.10). We do dual transformation
in this general case, as the reﬁulb of @(ﬂ;lon %i-lgg). ﬂ’l“gn we get

||.—'l'
e
i 5
N{f 58 X'0°X" + gB 9, X 0" X"
#,..a-'-
e et

(=

iK' — —-—e“’”% 5F,,TF"58 X' x?

L]
! X‘-“‘* X2 4 - \IJF”D 1

,E;’;pa-‘?‘.l/ — g§\IJFaB “a\IJ

3 ; ‘iﬁnﬂtﬁd == \I}Tﬁﬂ_gﬁ \IJFIJF123{XI XJ \IJ}

-"'u I_I . -*-_ |t-\.
_EE.{(I' Hisy)® — L]‘: iy 1(6(3 WV, B2
292 53 vp 4 prp\Ya & a

e By B+ geaﬂFwéaﬂéﬂ”} . (4.22)

With the matter fields included, the action is still no more than quadratic in B,/ and
so we can still integrate it out. This is equivalent to solving the equation of motion for

Baﬂ and plugging it back into the action. The new equation of motion for Bof‘ is

vﬂ”(6%—Vf';éap.)+eaﬁFﬁp+geaﬁFﬂﬂéﬁuga,leaaxf—g%\Tfraaﬂqf—g%%aﬂxfaﬂxf = 0.

(4.23)
Its solution is
BF = (MY (V50 + ¢ Fy + g0, X 0P XT — g%\ifI’B&;\I/)
= (M)" W) (4.24)
where
leaﬂ = (Vﬂle,p + 928ﬂXiapXi)6aﬁ — gEaBFm;, (425)
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and (M~ op 18 defined by
(MM M, =60 6.0 (4.26)
Finally, we get the action

. 1 . 1
SOb ay, X1, 0] = / dCad’y {—éDpXID“XI - 5aaxfaaxf

2
— L eiite, FL P70, X107 X!

€osd
%Ib’%"‘ﬂ% {XI XJ XK}2
P o T e

-(.{j? .'.?"-‘Jr ' ' -@%‘DPUPH:&{XI X7, vy
i o ey
_‘:1'5":1 S ads Wa(M s aBWI., (4.27)
Here the fields F are d A nefl. oy ‘but with the new definition
-h:‘! il i
of B. ) el
I'.;."l' by .‘ ‘::‘E"J |£.:f$.

VA (falysis; q:@hl.:‘ﬂ"d
S ysisy: »
In this subsection, we show the res&t’-’ﬁﬁr‘? rgn with matter fields in ¢ and ¢! order

expansion. At the 0-th order of g, the action is just
1 1 -
S"Ofay, X1, W] ~ / dxd®y {—ZFABFAB — §8AXI<9AX’ - %\I!PAaA\If} (4.28)
after we integrate out the VPD gauge fields b*. This defines a Maxwell’s theory with neu-

tral bosons X’ and fermions W.In next section, we can find the action is supersymmetry

invariant.
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For completeness let us also give the expression of the action to the 1st order:
. 1 1 . ) .
S ax, X1, 0] ~ / d*xd®y {—§aaXfaaXf = S0 XX + %\IJP“&a\IJ + %wrﬂaﬂ\p
+geP a0 X0, X1 + g0 X0, X0, — g%eaﬂFﬁﬂraaﬂqf
—g%@raaﬂ\yaabﬂ — g0 X "X 9,1 + g0 X9, X" 0,0
—i—g%\IIF"’@-\I/@-b" - g%@rpaﬂapb” + g%@r%ﬂwﬁ’waﬂ\y
1 .1

__’7"[123,’1'[123 T _ﬂ‘.e.-‘FVp D) ﬂﬂFﬁ“ - §6a5Faﬁaﬂbﬂ

Sl
U g ge Figdob 05" + gFy P 00l
s
“Ed O} (4.20)
It is more complex, but we can expett al cas Wltl}"ghe nonlocal effect after we
integrate out the VPD gaug =

'-1-\.

7

4.2.3 Rewrite Kctl?.m

Qables

As same as before, we cajf}'*ch"’e@{'
SA® = gr?9,®, where the ® is: a.n}}varlaBle
variable as before: Hjss, Fpp, and ﬁ*@ Awhere ® are X! or U. The other covariant
variables relate the gauge field Bg and B”, we need to check them.

Firstly, the covariant variable D® become to (—gieé?F;;,0,®) = D® after DDR, we

can find the gauge transformation law is:

1C co?!hbm'@tlon of fields will be covariant:

alr%'hdy know these fields are covariant

M—g%eﬂ"%paﬂ@) = 0A(D®) = gr?d5(DD). (4.30)

The cach part of (—g3e"?F;;,0,®) is not covariant, but the combination of them are
covariant. In another case of DDR on y3, we can find the covariant derivative vanishing
D; — 0 after we take away zero mode of y?’. In our new D4 action, we have these addition
terms with Dy in action.

Secondary, we know the original variables with B, are covariant even if we replace

it by the solution B,*. We want to check if the result is same when we include matter
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fields in theory. The results of gauge transformation of similar fields are given by:

0AM, ™ = g[k70s M + (957 )My + (0567 )M, (4.31)
Mg = gl 0 M 5 — (05 M g — (05" )MV ] (4.32)
SAWLY = 0 M + g[S O W, + 0,k W5, (4.33)
OABJ = Our" + g(K" 0y B — B.Y0,k"). (4.34)

Hence, we can find these transformations are similar as before. The covariant variables,
which are defined by B,/ in previous cases, are also covariant in this general cases.
Thirdly, we want to get m_o;;g@;glﬂéﬁ.-mQ%yi‘th covariant variuables, then we can
define the new covariant vaﬁ_z:l,ablléhf?'@}i_,;by th_i?_guétﬁ@;é_of motion of B,":
o ; 228

[ —r

. & " N8 . .
Fai =V {Fav + gl Bys By 0°X Waﬂ{‘llm. 0,0] - ¢*leas B0, X' 0° X I]} :
- S T
£ 9 m = =) (4.35)

We also can check the gaug 1 his covariant variable:
o - - *
= =i =
= b I (4.36)
X %
B oo iy A : S
After we combine the"&ﬂ#ﬁb i e can rewrite the action (4.27) in this
= o, &0, £V
way: & Y o ead g S
i = -2 ) Jl;.;_ef;'i“-"
- S o e ] P B |
S/[bu, aa, XI, \I/] = /d2xd3y {—%ﬂﬁ%ﬂgﬂ_ Z—lff,pfyp + 5.75[‘?'8“ + Q—EQBFQB
g
1 1 1A orn
—— — =D, X' DX - - DX'DX'
29> 2 2

gt gt
__{X'uaXIvXJ}2 - _{XI7XJan}2
4 S 12
+%\IIFADA\II i %wmf

+92%\ifrﬂrf{xﬂ,xf, U} - g2%\IfFIJF123{XI,XJ, \1/}} . (4.37)

In this section, we get the full effective theory of D4-brane in large C field back-
ground. However, we do not know how to generalize it to Dp-brane cases. Because the
supersymmetry laws of these cases are still unclear. Before the generalization, we want

to write down the supersymmetry transformation law of the all fields in the new effective
D4-brane theory.
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4.3 Supersymmetry Transformation

The full action (4.27) inherits the full supersymmetry from the NP Mb5-brane theory be-
cause DDR preserves global SUSY, and duality transformation is an equivalence relation.
Nevertheless it is not totally trivial to derive the explicit SUSY transformation rules for
all the variables, in particular those arise as Lagrange multipliers. In this section we want
to deal the problem. The supersymmetry transformation of each field after DDR on 2

are represented by:

6 X' = ey, - (4.38)
35 ,;J:‘ir_ "-L.ﬁrlﬂ»_' T } o
0V = Do X'T R+ DX T Ele FSge " Fyp0, X T e
i - N A Y
‘- e A..{ L
i ll"_"_.HiQ?)) P123€

| =

= P

Y%-JXJ%?(K}FIJKFDSE’

(4.39)
Ocbjs = | . ""‘ (4.40)
dcay, = i€R’L, W gel T, W0, b” Hige ol o, X, (4.41)
6B = i PO T “«i’*rﬁ?’aﬂ/eﬂ"ﬂaﬁxl. (4.42)

kS
o Y,

We want to know what'is t @éup:ed? et 1 gir_r&formation law of new fields after
dual transformation. After dﬁral-tgg_

'If_éf_orr'nz}t_ 0y ,.W”e'-'éet the new fields B,/ and a,, the
new field E’ﬁ"’ is not divergenceless @léﬁw 3!0) How to find the SUSY law of these
fields?

4.3.1 Supersymmetry Law of Dual Field

The dual transformation is equivalent to add one term eaﬁé?ﬂagéof‘ in action and to
replace B by B After doing supersymmetry variation for action (4.22), the new

term will have a additional contribution:
—e“ﬁaﬂéeagéa” — e"ﬁaﬂaﬁégéa’l. (4.43)

Because the other terms in action do not include a,, we should choose 5€Z§Of‘ = 6B} to

make the second term vanish, the reason is 8ﬂ(5€§0f‘ =0=0,0.B". So we get:

8B = —ieT T ;0,Wet — igel o T30, W9, b* 4 igel LT 20, Wet09, X1, (4.44)
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After calculating the supersymmetry variation of action, we get the terms which depends
on B,/

1 — oo . G .
00 = —5igd T VO, B} — igel*T, Ve 0,09, B,
+igeD T T3 we 0, X109, B,
+€75.a,0; B (4.45)
Hence, we obtain the SUSY law of dual field:

deag = —wz—rlégﬂé{ﬁ?ﬂég@—l—zgdﬂl“ \Ilagb”
L E
N —ng rrizgo X 4.46
\.rl F —% B ‘H{% ‘J‘- ( )

(4.47)

5 w2

4.3.2 Non-linear Fernﬁ yinme
%}1}: Aot

The theory has 16 non-linear fermionic symmetries d,, which shift the fermion by a

constant spinor

U=y, 0,X =30b"=0da;=0. (4.48)

We also can get the SUSY transformation of the new term:
5,5 = %gyr“\yaﬂéaﬂ + €8, a0, B (4.49)
Hence, we obtain the non-linear transformation law of a,:

5\t = —%gyrﬁxpeaﬂ. (4.50)

4.3.3 Linear Supersymmetry Transformation

The SUSY law of a; and a, are not similar, this is the new characteristic in D4 with

C-field background. However, we can redefine a new linear supersymmetry law which
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combine the two SUSY laws in previous subsections, the SUSY law of a, becomes more
similar to the SUSY law of a,. We choose:

0= é&xﬁpiégg + 9, (4.51)

then we can find the SUSY law of a, becomes:
80 = 00 s + %ﬁrﬁ%aﬁ. (4.52)
After the linear combination, we can find the lowest order of §¥ will start from ¢° order.

L
4.3.4 SupersymmetryI'I‘Falq,sfon{'ié'tiag Law of B," Field

j..—w

When we integrate out Ru%" Afl same with replacing B, " by B,
which is the solution of »E' O.M i Tts sol “‘r:
ol .ﬂ.- _. 2 .

B — YL fopke o)
S = adrs 2‘{
= (M Rvel| = .4-* (4.53)
-
where  / ‘
M S, X (454
and (M) op 18 defined lr)i?‘ 4 : N
{L : Tf'?l:il?': ¥
(M viga®e 5> 5 2. (4.55)

We want to ask if the action is still supersymmetry invariant. Moreover, what is
the supersymmetry law of B,". The supersymmetry transformation of the theory is a
on-shell formalism. So the 8, B,/ and §.B," can be different with E.O.M of all fields. In

fact, we find the exact results of the difference. The answer is:
0Bol = 0B —2(M N (00]5)," (E.OM of ). (4.56)
Here the notation (6.%|4),” means the terms of 6, ¥ with B,/ field. The explicit form is
T Ly & _ =i i
(6.9 5),° = iefp)‘Fﬂed A Vi” — gel' TP 0, X" (4.57)
The E.O.M of ¥ is:
(E.OM of T) = fraa U4 igr%ﬂﬂ%ﬁa«p - %gFO‘B R

+2F”D U+ 2g2F XA XU} — 21“”1“123{X’ X9 0},
(4.58)
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The relation (4.56) reproduces:
(M, Bs” — Wg) =0, (4.59)

so the result is exact in all order.
Another way to check the relation (4.56) is calculate the zeroth-order expansion of
Ba"‘, then we find:
8. Bo"| ;0 = 6 Bo| o — i€l DB TATA0, W, (4.60)

lo lo

The result is also get from the exact answer (4.56).

By the way, the supersymmetr tﬂraqssfernl}atlon law of fermion is just to replace B!
with B.”. Now we get all s\uﬂersymmetry._ transfor: f_.matlon laws of all fields in action
(4.27). Vo = o

A
J"N.Ni ‘

4.4 Topologi_.l?gaﬁﬁl. Y4 Lm Large C Field
Backgrdh.i::lﬂd : 5

'-ll-u-\.

In this section, we try-to stu - gica ti "@rf D4-brane in C field back-
ground. There are several ';'\tpo ant t ogi¢al-qu afitities of D-brane researches: the

soliton solutions, 1nstant0n.$solut§0ns.; monopo}ﬁ s&‘ﬁtlﬁps and BPS states. One way to
study these topological quantltles is Eff) caTcula-{e th_e ‘Central charge of superalgebra. An-
other way is to find the solutions from’ ‘thé equatlon of motion of fields. However, the
researches of topological quantities of D4-brane in C field background are still in progress.

Hence, this section does not really finish right now, I just list the main idea of this topic.

4.4.1 Central Charges of Superalgebra

In this subsection, we want to calculate the central charge of D4 in C field background.

From the paper [49] or more early papers, the supercurrent of BLG model is given by:
Jt = 50T, (4.61)

We can derive the §,U from the BLG — NP M5 — D4 in C before dual transform — D4
in C after Dual transform — D4 in C after integrating out B,". Hence, we can get the

central charges in our theory:

7@{Q, Qe ~ / dz'd®y (5., 0)I°(5., D). (4.62)
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Here the integral range [ dz'd’y is the full space directions in this D4-brane theory and
the supersymmetry transformation law of fermion is written down in previous section.
These central charges are the possible soliton solutions of D4-brane in C field background.

The remaining problem is how to classify these central charges.

4.4.2 Instanton Solutions

We know the noncommutative U(1) gauge theory can have instanton solutions [50], but

U(1) gauge theory have no instanton solutions. The reason is the solution space of
field t 1

gauge field is nontrivial in noncoirmi‘q.\i@%&

people [51] study D3-brane in gﬁh‘v P ﬂ;on fi

They also find some defor@‘&"tl 1 of i

gauge theory. On the other hand,
sths (R-R 2-form field) background.
nstrau_}tﬁﬁay graviphoton background. We

want to know if we can @d th olutr@ns of D4-brane in R-R C field
background, because thﬂ&.@fa‘s 1 %@NS NS B field background.

Moreover, what is the _@0581b i 1 —braﬁe:s in R-R field background?
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Chapter 5

Conclusion and Discussion

61e il ‘J' f'_f {,:_f |
5.1 Summary’* / \
In this thesis, we glve the e 'ectlv nf Dp-bra "'es in large R-R field background.

We motivate the theg_gy fr er‘dq],_lble dimensional reduction

on :z;2. The first Chara.ater

he@ry-..mcludes volume-preserving

without manifest one form ﬁeld a“ F'uqst Y, \ye*uée Ehe “dual transformation to make one
form field a, to become manlfest _,T}‘lten We s.tuciy ow to find the gauge symmetry and
supersymmetry of one form gauge field a,. The nontrivial parts are how to find suitable
covariant variables in this mixing symmetry (i.e. VPD and U(1) gauge symmetry) system.
We solve this problem, and we use these covariant variables to construct the Dp-branes
in large R-R (p-1)-form background. After integrating out the auxiliary field B, ", we
find we still need the two form field b*. This two form field help us to keep system with
U(1) gauge symmetry and VPD at same time. We also need the two form field to define
these covariant variables. The b field is necessary in our theory, we can understand it
as the degree of one form field a, from electric-magnetic dual viewpoints. We give the
evidence in order expansion analyses; in zeroth order, we find the relation 90" = —Fy,.
In general, we should solve the relation in all order, but it is really nontrivial work.
Hence, we deal with it by gauge fixing method in first order calculation. Finally, We
study the full system which couples with matter fields (X!,¥). We do similar analyses as
gauge fields case. The hard problem is to find the supersymmetry transformation law of
dual field. We need to calculate the remaining terms of dual action after supersymmetry

transformation. Using the result, we can find the way to define the supersymmetry
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transformation law of dual field. We also study the topological quantities in this system
from the central charge of superalgebra. If we can find the new solitons solutions, it will

be interesting.

5.2 Discussion

The final purpose in this thesis is to find effective field theory of all extended objects
in all possible background fields. However, we are still far from this purpose. One way
to extend our recent work is to study the D3-brane in R-R 4-form background from T-
duality. Firstly, we do dimensiﬂm@ﬂ:&ﬁ&éﬁfbﬁi@ﬂ-_xg}zmthen we view the gauge field a; as
the transverse direction of le_g-branel.(_&l) J’:ﬁﬁaﬂy!ﬁv@;get the effective D3-brane theory

in large R-R 4-form backgr-ouﬁ‘g{/{.'” R-R 4- A1d B(4)
A -
= Y, T
& 1 | \ = & (5.1)
< L ~
The C® is original 3-forh b ane theory, and the VM is the one-form

on the transverse dired_;-ion?_ .;-},;iiliis(ﬁonclusion to Dp-branes, we

claim that for a Dp-brame'in ial background

— S o
- L] s
;

R 4 (5.2
. 5 e AN

where VU is transverse and C’(pf'iéi"fji)aifg;]jlel-jpo]'t}i'év"ﬁb—brane. The VPD, corresponding to
the volume-form C'®), shares the same gauge field degrees of freedom with the component
of the momentum p along the direction of V1.

The other brane systems in large field background are also interesting. For example,
we want to know the behavior of NS5-branes in large R-R field background, the effective
action of KK monopole in large field background, etc.

There are some interesting papers which describe the possible effective action of Dp-
brane in R-R field background [37-39,51]. However, they only focus on the D3-brane
in R-R 2-form background case and the supersymmetry is N = % This topic is called
by non-anticommutative field theory, which is motivated from the extension of original
anticommutative field theory (supersymmetry theory). How to understand the relation
between their work and our new methods is an important problem.

Furthermore, we know the original AdS/CFT correspondence which describe the
physics of D-branes in R-R field background. How to apply the correspondence into

large R-R field background is another important application.
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Appendix A
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The conventions of Gamma matrix are:

{r*, oy = 247, (A9
(FO)T = _FO7
(FMyéO)T _ FM7607

(

(

I N S R A Y (
Pl = mwep, (A.13

(

(

uvp pvpTi23 17
T HPTIBT

We use these conventi a _ ions in D4-brane theory:

In this article, we use I =6,7,8,9, 11 n V ra,ne or D4-brane cases.
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Appendix B

L. 1 .
DArizy, = Eeaﬂrarﬂﬁrﬂw. (B.8)

o Gamma matrix
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There are some useful identities of gamma matrix:

e Levi-Civita

Cluwpllss

I
T,
L,
r,rme
el'wﬁ

i
I'e

47

FAB + 77AB;
3,

2T,

I,

avpTi23
—[HPTEE,

oUW W

. . . w

< = o ©
N — — Y N ~— —

[\

B.13
B.14
B.15
B.16
B.17
B.18

e e N e e e T T

(B.19)

(B.20)
(B.21)
(B.22)



Appendix C

Suitable Scaling Limit in Different

--|. . '-r_"'r
AR e P8 =y gt
A= Y= = %
A - Al

& \ 8
B ol 72l

"ﬁ "-_{"..:"‘. e
When we describe the effective fie deth

s
)p—br‘ ﬁé, we need to choose some limit
.. b ‘ u
of original exact theo&f. “The effe¢t v@t gory
should be described by some limit.| 1

Cases

™
open string ending on Dp-brane

I%L..a@'..i;‘.ion of Dp-brane is given by

e ; . .
slowly varying limit( dF < 1) of k g amplitude analysis. Hence,

the DBI action is a effeé’ﬁvl e ription of string ‘;zilf‘i'thout higher derivative term.
T 2 )‘+J o
Scaling limit(zero slope limit o™=+ Q,Q;_}ls a. o%;gné'?gy limit, which make theory be more

easy for analysis. For examplé‘:'ﬁhe H,z(;f"o Sl‘Opé_ﬁWiﬁ’ld#DBI action is Yang-Mill action. In

this section, we want to describe the su:iéﬁf:%i%{é.féw'energy limit of theory in different fields

background.

C.1 Scaling Limit of Dp-brane in B-field Background

The low energy limit means the theory without string behavior, the first example is
Yang-Mill theory. People [12] find the commutative Yang-Mill theory can relate to non-
commutative Yang-Mill theory by using Seiberg-Witten map and taking scaling limit.
This scaling limit is called Seiberg-Witten limit:

o ~ \e—0, (C.1)
gij ~ €—0, (C.2)

here 7, j is the non-vanish component of B field. This limit is understood the low energy
limit of Dp-brane in NS-NS B-field background.
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C.2 Scaling Limit of M5 in Large C-field Background

Following the logic in previous section, the NP M5 theory is some special limit of M5
in large C-field background. The reason is the kinetic terms of gauge field which is
quadratic (H?) as Yang-Mill theory case. So, we should ask what is the scale limit of
this NP M5 theory. The NP M5 theory can relate to the action of Dp-brane in NS-NS
B-field background after DDR, so we can get the clue of scaling limit from this relation.

Following the calculations in paper [47], we summary it by below equations:

- =
here the /p is Plank lq_;}gth a ThQ‘scaling limit will match the

scahng limit of D4 in E.,ﬁeld g,q, - "BQ understand this result. we

= i N
way: Tps = 2R hySTM;, = .(% ? E_gw i 1 ,%;Wle ge.. of M-TTA which D4 is given by
M5 after DDR. From the reIaIr on Tm. = 27TR 1. T M,sa,ﬂc is consistent with the results:

Rphys egeien”_ STl (C.8)

On the other hand, the C field can relate to B field in D4 by this way:

Bijs V933 Bis
Cny — 2 _ . C.9
123 QWRgoord Zﬂ_R;ghys ( )

From these relation we can find the scaling limit after DDR on y°:

here the scaling of g can get from the constraints of finite Yang-Mills coupling. These

relations are same with previous section.

49



C.3 Scaling Limit of D4 in Large C-field Background

To carry out the double dimensional reduction (DDR) for the M5-brane along the x2-
direction, we set
2 ~ 2%+ 27R, (C.15)

and let all other fields to be independent of 2%. As a result we can set 0, to zero when
it acts on any field. Here R is the radius of the circle of compactification and we should
take R < 1 such that the 6 dimensional field theory on M5 reduces to a 5 dimensional
field theory for D4. Since the NP Mb-brane action is a good low energy effective theory in
the limit in previous section, the 51d11’nef&516nail fjeld theory is a good low energy effective
description of a D4- brane i ﬁhe hmrt 1 — Qﬁ)x

.r .___,‘:-_"_'_
Oy ~ €2, g"vw € 1/ Csi ~ 1, (C.16)
B i
& (C.17)
H 1 1
from the perspective of-ﬁhe?t,y heoryl, - ﬁ "5!: 0, 1 are used to distinguish
from the M5-brane 1nd1ces ‘ 0

Note that in the scahh E,L..ﬂ;, N an@ther three C-field component

*"‘r As’ @.resultr_s’he
noncommutative parameter O ~ B 1, Foisfe Vj&ﬁmﬂes in the limit ¢ — 0. However, the

Coia ~ €1 look like dlvergg Qéi'ﬂ component By ~ e ! and the
combination 27a’B is finite in the hm1t and thus the D4-brane is not only in a C-field
background but also in the B-field background. Using the nonlinear self-dual relation

derived in [23,24], we can express Cpio in terms of Cjs3, and then the B-field background

is given by
21/ By = —23. C.18
T Doy 27‘{' ( )
In the convention (normalization of the worldvolume coordinates) of [2], we have
1 /
0123 = E = 2o’ By = 271"(]2‘ (C.lg)
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