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論文摘要: 

本篇論文主要研究在 Ramond-Ramond（R-R）背景場下 D膜(D-brane)的有效場論。

由於 R-R 背景場的存在，這樣的理論在背景場的方向會有體積保持不變的對稱性

（volume-preserving diffeomorphism），這是這理論的主要特徵之一。之所以

會研究這樣的理論，起源於最近有關 M5 膜在大 C 背景場的有效場論的研究。高

一維度的理論可以透過丟掉場在這一維度的自由度，來得到低一維度在低能量極

限的有效場論。因此這樣的分析方法常常會有一些多餘的場殘留在低一維度的理

論中。要如何分辨哪些場是理論所必須的，而哪些場又是可以被積掉的，是這研

究的核心部分。在這篇論文中，我們發現原先所預期出現的規範場被隱藏在某些

場內，我們使用了對偶變換的方法來使這樣的規範場在理論中變的明顯。接著我

們討論了在這樣的變換下，要如何求出規範場的規範對稱變換以及超對稱變換。

我們研究了在規範對稱性以及體積保持不變性之下的協變量（covariant 

variables）應是什麼樣子的，並利用它們來使理論易於推廣到不同的情形。最

後我們利用這理論所具有的超對稱去討論這理論的拓樸性質，即理論所允許的孤

立子解。 
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Abstract

In this paper, we try to understand the low energy effective theory of Dp-brane in large

R-R (p-1)-form field background. To construct the effective theory, we start with the

M5-brane theory in large C-field background [1, 2]. The C-field background defines the

3-dimensional volume form in M5-brane theory. Hence, the M5-brane theory can be

described as a Nambu-Poisson-bracket gauge theory with volume-preserving diffeomor-

phism symmetry (VPD). After doing double dimensional reduction, we obtain the effec-

tive theory of D4-brane in large C-field background [3]. This theory has both the usual

U(1) gauge symmetry and the new symmetry VPD. The VPD two-form gauge potential

can be understood as the electric-magnetic dual of the one-form gauge field in the D4-

brane theory. This theory is described by the one-form gauge field and the dual two-form

gauge field at the same time. These results can be generalized to Dp-branes cases. In the

last part of thesis, we study the supersymmetry (SUSY) algebra in this theory. We can

calculate the central charges from the SUSY algebra in this theory, then we can know

the possible topological quantities in this system. This interesting system may help us

to understand M-theory, the models with volume-preserving diffeomorphism, the suit-

able low energy description of Dp-branes in different field backgrounds, some new soliton

solutions, and so on.
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Chapter 1

Introduction

In this chapter, we will review several relevant elements of effective theory in a certain

background. First of all, we will talk about the effective action of D-brane theory. To

understand the string theory, we can start with the calculation of perturbative string

scattering amplitudes. On the other hand, the nonperturbative effect of string theory is

described by soliton solutions in ten-dimensional supergravity theory. These solitons are

the Dp-branes, which are the extended object with p-spatial dimensions. The open string

ends on these Dp-branes, hence the low energy effective field theory of Dp-brane can be

obtained from the calculation of the open string scattering amplitudes. The Dp-branes

theories have two main descriptions. One is the Dirac-Born-Infeld action [4]. Another is

the Yang-Mills gauge theory [5]. They share part of the original brane theory in different

limits, which are the slowly varying limit or zero slope limit of string theory. There are

several good reviews of D-brane theory. For example, the review articles [6–8] are useful.

On the other hand, we want to introduce the well-known case of Dp-branes in constant

NS-NS field background [9–12]. We will show noncommutative Yang-Mills theory as

the effective field theory of the Dp-branes theory in the low energy limit. The first-

order expansion of noncommutative algebra is described by Poisson bracket, which is

the generator of Area-Preserving Diffeomorphism (APD). The noncommutative effect

depends on the inverse of NS-NS B-field. Hence, the field theory of Poisson-bracket is

relevant to Dp-branes in large NS-NS B-field background.

When we want to study the effective field theory in large n-form field background, we

can focus on the symmetry in this theory. While the n-form field defines the n-dimensional

volume form in the theory, we expect that the effective theory may have n-dimensional

volume-preserving diffeomorphism (VPD) symmetry. We will give more detail description

of the VPD symmetry, where the symmetry generator is Nambu-Poisson bracket.
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In the last part of this chapter, we will review M theory, where similar phenomena

can be found. The M5-brane worldvolume theory has their own action with C field,

which is called PST action [25]. Recently, people [1, 2] found another action for M5 in

large C field background. It is similar to the story of Dp-branes in the NS-NS B-field

background. We will give more details of this theory in next chapter.

1.1 Dp-Branes with Different Field Backgrounds

The low energy effective theories of Dp-branes are called Dirac-Born-Infeld (DBI) action.

People also study the modification of DBI action in NS-NS and R-R field backgrounds.

For the theory to be gauge invariant and anomaly free, we need to replace U(1) field

strength F by B + F and add Wess-Zumino terms into the original DBI action. In fact,

the NS-NS and R-R fields are the massless mode of the close string spectrum. They

are the background fields of open string scattering amplitudes just like the gravitational

background. When we use the open string scattering amplitudes to study the effective

theories of D-brane in NS-NS and R-R field backgrounds, we may have different inter-

pretations for these background fields. For example, the NS-NS background fields can be

absorbed into the field strength of open-string oscillation mode or the open-string metric,

then we get different effective theories of D-brane. For these effective theories, we call

all of them to be D-brane in field backgrounds. However, this terminology is confusing

in this thesis. The effective theory, which we want to talk in this thesis, is the effective

theory without manifest background fields. In this case, the effects of background fields

hide in the geometry and the symmetry algebra of effective theory. We try to distinguish

them in next subsection.

1.1.1 Terminology Explanation

When we want to talk about a theory in some field backgrounds, we need to know what

it really means.

Firstly, the meaning of background field is that we neglect the dynamic behavior of this

background field. The simple case is that we study the matter field in electric-magnetic

fields background, in this case, we neglect the dynamic contribution of EM gauge fields.

So the background fields what we means are constant fields. The terminology “theory in

constant field background” is the same as the terminology “theory in field background”.

Secondly, when we talk about the effective field theory in field background, the ef-

fective theory usually does not include the manifest background fields dependence. The

2



effect of background field can appear in effective mass, effective coupling or new geometry.

Hence we will have a new field theory, then we can study the equivalent phenomena in the

two theories. We do not have a simple example in field theory. However, the phenomena

appear frequently in string theory. For example, the effective description of Dp-brane is

not unique, we have more than one effective description. The first example is the com-

mutative and noncommutative gauge theory for Dp-brane in NS-NS B field background.

People [12] understand this phenomena as the result of different regularization method

of open string scattering amplitude analysis. The effective field theory will be different

in the different regularization method, they can be related by changing variables. In this

case, this change of variables is called the Seiberg-Witten map [12]. However, the two

different effective field theories are not really the same after Seiberg-Witten map, they

are different by higher derivative terms and total derivative terms. Hence, they stand

for the different parts of the full D-brane theory, while they can have overlap in the scal-

ing limit (Appendix C). Hence, in order to distinguish these two situations from other

cases, we use the terminology of Dp-brane “with” NS-NS and R-R fields for originally

well known DBI action. We use the terminology of Dp-brane “in” NS-NS and R-R fields

“background” for the case what we want to talk in this thesis. The effective field theory

“in” fields background does not have manifest background fields dependence.

Finally, we study the theory in large field background in the most part of this thesis.

In this limit, the effective field theory becomes simpler and easier to analyze.

1.1.2 Dirac-Born-Infeld Action and Yang-Mills Gauge Theory

In this subsection, we want to write down the explicit action form of effective field theory

of D-brane. It is called the Dirac-Born-Infeld(DBI) action [4]. Roughly speaking, the

DBI action comes from the calculation of open string scattering amplitude. When we

calculate the β-function of open string scattering amplitude, because the theory has

conformal invariance, the β-function must vanish. From these constraints, we can find

the constraints of fields. These fields are the oscillation mode of open string. These

constraints of fields can be understood as the equations of motion which are derived

from corresponding effective field theory action. The effective action (DBI action) is

described by p+1 coordinates ξa, a = 0, 1, . . . , p. The DBI action is written as1 [4]:

SDBI = Tp

∫

dp+1ξ
√

det(Gab + 2πα′Fab), (1.1)

1In this chapter, we use the review paper of Dp-brane [6]

3



here Tp is defined by 1

(2π)pgsℓ
p+1
s

, which is the tension of Dp-brane. It is the generalization

of the string tension TF1 = 1
2πα′

. The p labels the number of spatial dimensions for

Dp-brane. The gs is string coupling and ℓs =
√
α′ is identified as string length. The Gab

is the induced metric in Dp-brane, it is usually complex in the fermionic part. Here, we

give the bosonic part of the induce metric:

Gab = ηMN∂aX
M∂bX

N , (1.2)

where M is from 0 to p. We can choose gauge to let Xa = ξa. So, the remaining scalars

in DBI action are the transverse coordinates in target spacetime, and we label them with

2πα′XI I = p + 1, . . . , 9. Here, we use the factor 2πα′ to make the mass dimension of

XI equal to one. Hence, we can rewrite action as:

SDBI = Tp

∫

dp+1ξ
√

det(ηab + 2πα′∂aXI∂aXI + 2πα′Fab). (1.3)

The F is the field strength of one form gauge potential A, that is F = dA in Maxwell

theory. We can regard the DBI action as the high energy version of Maxwell action. To

take the low energy limit α′ → 0 and omit the scalar terms, we can get:

SDBI = Tp

∫

dp+1ξ
√

det ηab(1−
1

4
F abFab +O(α′)). (1.4)

The low energy limit makes the D-brane theory to become simpler.

1.1.3 Dp-Branes with NS-NS and R-R Fields

The dynamics of Dp-Brane will be affected by background fields, which come from the

closed string NS-NS and R-R sector. In NS-NS sector, we have graviton gMN which is

symmetry rank-2 field, and NS-NS B-field 2πα′BMN which is antisymmetry two-form

field. We also have dilaton field Φ, which is a scalar. All of them will modify the form of

DBI action. For simplicity, here we only consider the effect of NS-NS B-field. The action

of Dp-brane in NS-NS B field background can be written as:

SDBI = Tp

∫

dp+1ξ
√

det(ηab + 2πα′∂aXI∂aXI + 2πα′(Fab + Bab)), (1.5)

which can be realized by modification of Gab, the induce metric, in following way:

Gab = (ηMN + 2πα′BMN)∂aX
M∂bX

N , (1.6)

4



the mixed terms of B and X will vanish for the antisymmetry of B field. The action

form can have the gauge symmetry of two form field B with additional shift of one form

field A:

B → B + dΛ, A→ A− Λ, (1.7)

such that B + F term do not transform.

The R-R sectors of close string are some higher ranks form. For example, the Dp-

brane can have R-R (p+1)-form,(p-1)-form,. . .,1-form (or 0-form for odd p), we label

them by Cp+1, Cp−1, . . . , C1 (or C0 for odd p).

The action of Dp-brane in R-R field background can be written as [13, 14]:

SDBI = Tp

∫

dp+1ξ
√

det(Gab + 2πα′Fab) + SWZ , (1.8)

here the new term is written by:

SWZ = µp

∫

(Ce2πα
′F )p+1, C ≡

8
∑

n=0

Cn. (1.9)

The notation (· · · )p+1 is to keep the p+1 form inside the parentheses. The µp is the

electric charge of Dp-brane. In fact, the calculation of open-string scattering amplitude

in R-R background is very difficult. People do not know how to quantize the nonlinear

sigma model in curved spacetime. However, we can know the field contents, the gauge

symmetry, and the supersymmetry from the flat space calculation. Hence, we can use

these informations to analyze the effective worldvolume theory of Dp-brane with R-R

fields. For example, the Wess-Zumino term (SWZ) is introduced to cancel the gauge

anomaly in superstring theory.

While the DBI-like action of multiple Dp-branes is incomplete and unclear (the rel-

evant papers [15, 16]), we can still use non-abelian Yang-Mills action to describe them.

Yang-Mills action is the leading term of multiple Dp-branes action after taking zero slope

limit (α′ → 0).

1.2 Large Field Background Effects

From effective theory viewpoint, the high derivative terms can be omitted in the low

energy limit. However, when the system is embedded in large field background, this

approximation is not true. The large field background can couple to these high derivative

terms, which are still leading in low energy limit. Large field background will be have

more differently from original case. Those new effects worth further investigation.

5



The well-known example is the Dp-branes in constant NS-NS B field background. In

this case, the effective field theory is not conventional Yang-Mills field theory, we should

use the noncommutative Yang-Mills field theory to suitably describe the effective field

theory of Dp-branes in constant NS-NS B field background [9–12]. The noncommutative

field theory is a better description of D-brane in NS-NS B field background than orig-

inal DBI action or Yang-Mills field theory. The reason is the noncommutative theory

includes nonlocal behavior, which encodes the information of the higher derivative terms

in original theory. As what we mentioned before, the large NS-NS B field coupled to

higher derivative terms will remain after taking low energy limit, and noncommutativity

emerges.

1.2.1 Dp-Branes in constant NS-NS B-field Background

When we calculate the scattering amplitudes of open string in constant NS-NS B field

background, we use another regularization processes called point splitting regularization.

The different regularization methods will modify the forms of β-function. After imposing

the vanishing β-function, we get the effective field theory of Dp-branes in constant NS-

NS B field background. After taking scaling limit, we get the similar Yang-Mills type

effective action. For example, the leading terms of three point open string scattering

amplitude can be effectively obtained from the action [12]:

(α′)
3−p
2

4(2π)p−2Gs

∫ √
detGGabGcdF̂ac ∗ F̂bd. (1.10)

It is called noncommutative Yang-Mills field theory. The noncommutativity is defined

by the Moyal product “∗”, such that

f(x) ∗ g(x) = e
i
2
θab ∂

∂ξa
∂

∂ζb f(x+ ξ)g(x+ ζ)
∣

∣

∣

ξ=ζ=0
. (1.11)

The field strength F̂ is defined by gauge potential â and Moyal product:

F̂ab = ∂aâb − ∂bâa − iâa ∗ âb + iâb ∗ âa, (1.12)

while the gauge symmetry is :

δλâa = ∂aλ+ iλ ∗ âa − iaa ∗ λ. (1.13)

6



When the background B field is large, the noncommutative factor θ becomes small. We

can expand the Moyal product to the first order. Hence we will get (in U(1) case) [12]:

f(x) ∗ g(x) = fg +
i

2
θab∂af∂bg +O(θ2), (1.14)

F̂ab = ∂aâb − ∂bâa + θcd∂câa∂dâb +O(θ2), (1.15)

δλâa = ∂aλ− θcd∂cλ∂dâa +O(θ2). (1.16)

In this case, the main characteristic in large B field is appearance of the Poisson bracket

structure:

{f, g}pb = ǫab∂af∂bg. (1.17)

We will discuss it more in next subsection.

1.2.2 Volume-Preserving Diffeomorphism and Nambu-Poisson

Bracket

From previous subsection, we can understand the noncommutative gauge fields theory

can be described by Moyal product. If we focus on the large NS-NS B field case, theory

is handled by Poisson bracket, which is the generator of Area-Preserving Diffeomorphism

(APD). In general. for higher ranks field background, they need a general Poisson bracket,

which is called Nambu-Poisson bracket [17–21], to be the generator of Volume-Preserving

Diffeomorphism (VPD).

To understand the reason why VPD emerges, we can think in following way. The

original worldvolume theory has diffeomorphism symmetry:

xa → x́a = x́a(xa). (1.18)

When we consider the theory in large field background, the original diffeomorphism sym-

metry will be broken by background field, the remaining symmetry is volume-preserving

diffeomorphism. The n-dimensional volume-preserving diffeomorphism is the reduced

symmetry of n-dimensional general coordinate diffeomorphism, which is described by

(infinitesimal transformation):

xa → x́a = x́a(xa) = xa + κa, ∂aκ
a = 0. (1.19)

where a = 0, 1, ..., n − 1. The n-dimensional volume-preserving diffeomorphism can be

understood as that this transformation parameter κa has additional constraint as shown

7



in (1.19). To see how this constraint gives rise to the volume-preserving, we can investi-

gate the Jacobian of coordinate transformation. For example, we can find the Jacobian

of coordinate transformation for n=2 reads

ǫab∂ax́
0∂bx́

1 = {x́0, x́1}. (1.20)

We consider the coordinate transformation in (1.19), after simple calculation, we can

find:

{x́0, x́1} = 1 + ∂aκ
a +O(κ2). (1.21)

Therefore we can see the constraint ∂aκ
a = 0 makes area-preserving. Moreover, higher

ranked volume-preserving transformation can be generated by generalize Nambu-Poisson

bracket, defined by

{f1, f2, · · · , fn} ≡ ǫa1a2···an∂a1f1∂a2f2 · · · ∂anfn. (1.22)

Hence, we can define the VPD transformation as follows

δΛ1,...,Λn−1
xa = {Λ1, ...,Λn−1, x

a} = ǫa1···an−1a∂a1Λ1 · · · ∂an−1
Λn−1 ≡ κa. (1.23)

In the special case of APD (n=2):

δΛx
a = {Λ, xa}pb = κa. (1.24)

This is the simplest case in this kind of symmetry transformation. We can see the

Nambu-Poisson bracket is the generator of VPD.

Now we can ask the next question; what is the field theory with VPD? In fact, we

already saw the example of field theory with APD in previous subsection. We can find

the symmetry transformation is generated by Poisson bracket. We will see more examples

in next three chapters.

1.3 A Review of M Theory

In order to understand more nonperturbative effect of superstring theory, people start to

study the M theory. M theory is the complete picture of string theory. The five different

perturbative string theories and eleven dimensional supergravity theory can be under-

stood as the different descriptions of M theory. For example, M theory can be understood

as strong coupling limit of type IIA superstring theory in one higher dimension. Hence,

the low energy effective theory of M theory is eleven dimensional supergravity theory.
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From the eleven-dimensional superalgebra analysis, there are two kind high-dimensional

central charges [22]. They are carried by M2-brane and M5-brane, which are the extended

objects 2-brane and 5-brane in eleven dimensions. Following the analysis of 2-brane and

5-brane soliton solutions in eleven-dimensional supergravity theory, we can know the field

contents of the effective worldvolume theory of M2-brane and M5-brane. The action of

effective field theory for single M2-brane and M5-brane is well known. The M2-brane ef-

fective action is the generalized Nambu-Goto action. The effective action of M5-brane is

more difficult because it involves the self-dual two-form gauge potential [23–28]. Recently,

there are several interesting papers about self-dual gauge theory [29,30].

The theory also have a background form fields as string does, and it is the three form

field background. The M2-brane couple electrically to the 3-form field. As the research of

D-brane in NS-NS B field background, people try to generalize the research into M theory.

For example, people [31] tried to study the quantization of open membrane in large C-field

background, and they found similar noncommutative behavior as in the open string case

because quantization processes naturally adopts Poisson structure. Moreover, people [32]

calculated the scattering amplitudes of open membrane in large C-field background which

can be described by Nambu-Poisson algebra (or VPD gauge symmetry). It gives the

candidate of generalization of Poisson bracket and Moyal product. To study the M theory

in large C-filed background helps us understand the way to generalize Moyal product,

which gives the way to quantize string. Hence, people try to apply these researches to

understand how to quantize membrane. To study M5 in large C-field background has

more interesting physic phenomena. This kind theory includes the self-dual two form,

the non-abelian gauge algebra and new action form which is different from PST M5

action [25]. We will discuss this topic in next chapter.
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Chapter 2

M5 in Large C-Field Background

Recently, Bagger, Lambert and Gustavsson imposed the Lie-3 algebra into Basu-Harvey

BPS system to construct the theory of multiple membranes [33–36]. It is called BLG

model, which describes the multiple M2-branes system. In this articles, we will not give

any more detail of BLG theory. Latter, people [1, 2] started to impose the Nambu-

Poisson structure into the three internal dimensions of BLG model, then they found the

new description of single M5-brane theory. We denote it as Nambu-Poisson (NP) M5

theory.

2.1 Nambu-Poisson M5 Theory

The Nambu-Poisson algebra is an infinite dimensional Lie-3 algebra, which is used to de-

scribe the algebra in BLG model. People [1,2] consider the additional three internal space

dimensions (N ) with 3-dimensional volume-preserving diffeomorphism, which define the

space of Nambu-Poisson bracket. Moreover, the worldvolume of multiple M2-branes (M)

and the 3 internal dimensions N together can be identified as the worldvolume of M5

theory (M×N ).

These processes will divide the worldvolumes dimensions of M5 into two parts:

{xµ; yµ̇} = {x0, x1, x2; y1̇, y2̇, y3̇}. (2.1)

Here, the coordinate xµ label the direction on M, which are the longitudinal directions

of M2-branes. Another coordinates yµ̇ label the internal directions on N , which are

the space of the volume-preserving diffeomorphism. Roughly speaking, this effective M5

description have 3-dimensional VPD, which is the main characteristic of theory in large C
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field background. Hence, the Nambu-Poisson structure in M5 theory is the first evidence

of M5 in large C field background.

The fields contents of NP M5 theory are self-dual two form (bµµ̇, bµ̇ν̇), five scalar fields

XI , and chiral Majorana fermion Ψ. The two form gauge fields are self-dual, so the

degree of freedom (DOF) of two form fields are 6
2
= 3 and we do not need bµν in this

theory. The five scalar fields are the DOF of M5-brane on the transverse directions.

The Majorana fermion is reduction from 11 dimension which satisfies the 6-dimension

chirality condition Γ7Ψ = Ψ. Hence the DOF of fermion are 1
2
2[

11

2
] = 16. The one half

of fermion DOF1 (16
2
) are equal to the bosonic DOF (3+ 5) in NP M5 theory, which is a

result of supersymmetry.

In next section, we will give the full action to describe the dynamics of these fields.

We will not give all the details about how to derive the action from the BLG theory.

The main process of action calculation is to replace the Lie-3 bracket by Nambu-Poisson

bracket: [•, •, •] → g2{•, •, •}. The other details can be found in the papers [1, 2].

2.2 Action of Nambu-Poisson M5 Theory

In this section, we want to summarize the main result of action of NP M5 theory. The NP

M5 action is the effective description of M5 in large C field background, so the description

is well-defined in some suitable scaling limit. We put the discussion of suitable scaling

limit in Appendix.

Following the result of the papers [1, 2], the action of NP M5 theory is written as:

S =
TM5

g2
(SX + SΨ + Sgauge, ) , Sgauge = SH2 + SCS, (2.2)

1Only one half of fermionic DOF is really equivalent to bosonic DOF, because the EOM of fermion

involves first derivative.
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where 2

SX =

∫

d3xd3y

[

−1

2
(DµX

I)2 − 1

2
(Dλ̇X

I)2

− 1

2g2
− g4

4
{X µ̇, XI , XJ}2 − g4

12
{XI , XJ , XK}2

]

, (2.3)

SΨ =

∫

d3xd3y

[

i

2
ΨΓµDµΨ+

i

2
ΨΓρ̇Dρ̇Ψ

+
ig2

2
ΨΓµ̇Γ

I{X µ̇, XI ,Ψ} − ig2

4
ΨΓIJΓ1̇2̇3̇{XI , XJ ,Ψ}

]

, (2.4)

SH2 =

∫

d3xd3y

[

− 1

12
H2

µ̇ν̇ρ̇ −
1

4
H2

λµ̇ν̇

]

, (2.5)

SCS =

∫

d3xd3y ǫµνλǫµ̇ν̇λ̇
[

−1

2
∂µ̇bµν̇∂νbλλ̇ +

g

6
∂µ̇bνν̇ǫ

ρ̇σ̇τ̇∂σ̇bλρ̇(∂λ̇bµτ̇ − ∂τ̇bµλ̇)

]

.(2.6)

In the above we use the notation

X µ̇(y) ≡ yµ̇

g
+

1

2
ǫµ̇κ̇λ̇bκ̇λ̇(y) ≡

yµ̇

g
+ bµ̇(y), (2.7)

{A,B,C} ≡ ǫµ̇ν̇ρ̇∂µ̇A∂ν̇B∂ρ̇C. (2.8)

Here, we can find the effective field theory on worldvolume of NP M5 theory are described

by Nambu-Poisson bracket.

The covariant derivative is defined by(Φ = XI or Ψ):

DµΦ ≡ ∂µΦ− g{bµν̇ , yν̇ ,Φ}, (2.9)

Dµ̇Φ ≡ g2

2
ǫµ̇ν̇ρ̇{X ν̇ , X ρ̇,Φ}. (2.10)

We can find the covariant derivative is defined by two gauge fields: bµµ̇ and bµ̇ν̇ . The

definition of the 3-form field strength reads

Hλµ̇ν̇ = ∂λbµ̇ν̇ − ∂µ̇bλν̇ + ∂ν̇bλµ̇, (2.11)

Hλ̇µ̇ν̇ = ∂λ̇bµ̇ν̇ + ∂µ̇bν̇λ̇ + ∂ν̇bλ̇µ̇, (2.12)

which is no longer covariant under the non-Abelian gauge transformations. The covariant

2In original paper [2], they meet the unusually kinetic term of fermions, which has added Γ
1̇2̇3̇

factor.

In order to solve the problem, they used the similar unitary transformation:Ψ = 1√
2
(1− Γ

1̇2̇3̇
)Ψ′. Here,

we use the symbol Ψ, which was denoted by Ψ′ in [2].
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3-form field strengths H should be defined as

Hλµ̇ν̇ = ǫµ̇ν̇λ̇DλX
λ̇

= Hλµ̇ν̇ − gǫσ̇τ̇ ρ̇(∂σ̇bλτ̇ )∂ρ̇bµ̇ν̇ , (2.13)

H1̇2̇3̇ = g2{X 1̇, X 2̇, X 3̇} − 1

g

= H1̇2̇3̇ +
g

2
(∂µ̇b

µ̇∂ν̇b
ν̇ − ∂µ̇b

ν̇∂ν̇b
µ̇) + g2{b1̇, b2̇, b3̇}. (2.14)

In fact, the deformations of field strengths come from the VPD symmetry. It is similar

to the theory with APD symmetry. We will give the more details of VPD symmetry

transformations of fields in next section.

2.3 Symmetry of Nambu-Poisson M5 Theory

In this section, we will show the symmetry in the NP M5 theory. The gauge symmetry of

NP M5 theory is the volume-preserving diffeomorphism. On the other hand, the theory

has also supersymmetry, which can be used to calculate the BPS states and central

charges.

2.3.1 Gauge Symmetry and VPD

The fundamental fields transform under the gauge transformation as

δΛΦ = gκρ̇∂ρ̇Φ (Φ = XI ,Ψ), (2.15)

δΛbκ̇λ̇ = ∂κ̇Λλ̇ − ∂λ̇Λκ̇ + gκρ̇∂ρ̇bκ̇λ̇, (2.16)

δΛbλσ̇ = ∂λΛσ̇ − ∂σ̇Λλ + gκτ̇∂τ̇bλσ̇ + g(∂σ̇κ
τ̇ )bλτ̇ , (2.17)

where

κλ̇ ≡ ǫλ̇µ̇ν̇∂µ̇Λν̇(x, y). (2.18)

The field strengths H transform like Φ.

The gauge transformations can be more concisely expressed in terms of the new

variables bµ̇, Bµ
µ̇

bµ̇ ≡ 1

2
ǫµ̇ν̇λ̇bν̇λ̇, (2.19)

Bµ
µ̇ ≡ ǫµ̇ν̇λ̇∂ν̇bµλ̇ (2.20)
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for the gauge fields as

δΛb
µ̇ = κµ̇ + gκν̇∂ν̇b

µ̇, (2.21)

δΛBµ
µ̇ = ∂µκ

µ̇ + gκν̇∂ν̇Bµ
µ̇ − g(∂ν̇κ

µ̇)Bµ
ν̇ . (2.22)

In terms of Bµ
ν̇ , the covariant derivative Dµ acts as

DµΦ = ∂µΦ− gBµ
µ̇∂µ̇Φ. (2.23)

Another feature of the gauge transformations is that, in terms of XI ,Ψ, bµ̇ and Bµ
µ̇,

all gauge transformations can be expressed solely in terms of κµ̇, without referring to Λµ̇,

as long as one keeps in mind the constraint

∂µ̇κ
µ̇ = 0. (2.24)

This gauge transformation can be naturally interpreted as volume-preserving diffeomor-

phism (VPD)

δyµ̇ = gκµ̇, with ∂µ̇κ
µ̇ = 0. (2.25)

The field bµ̇ is then interpreted as the gauge potential for the VPD in the 3-dimensional

space picked by the C-field background.

2.3.2 Supersymmetry

The M5-brane theory is also invariant under the supersymmetry transformations δχ and

δǫ. We have

δχΨ = χ, δχX
I = δχbµ̇ν̇ = δχbµν̇ = 0, (2.26)

and 3

δǫX
I = iǫΓIΨ, (2.27)

δǫΨ = DµX
IΓµΓIǫ+Dµ̇X

IΓµ̇ΓIǫ

−1

2
Hµν̇ρ̇Γ

µΓν̇ρ̇ǫ− 1

g
(1 + gH1̇2̇3̇) Γ1̇2̇3̇ǫ

−g
2

2
{X µ̇, XI , XJ}Γµ̇ΓIJǫ+

g2

6
{XI , XJ , XK}ΓIJKΓ1̇2̇3̇ǫ, (2.28)

δǫbµ̇ν̇ = −i(ǫΓµ̇ν̇Ψ), (2.29)

δǫbµν̇ = −i (1 + gH1̇2̇3̇) ǫΓµΓν̇Ψ+ ig(ǫΓµΓ
IΓ1̇2̇3̇Ψ)∂ν̇X

I . (2.30)

3ǫ here was denoted by ǫ′ in [2].
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The SUSY transformation parameters χ, ǫ can be conveniently denoted as an 11D Ma-

jorana spinor satisfying the 6D chirality condition

Γ7χ = −χ, Γ7ǫ = −ǫ. (2.31)

They are both nonlinear SUSY transformations, but a superposition of the two,

δχ + gδǫ and χ = Γ1̇2̇3̇ǫ, (2.32)

defines a linear SUSY transformation.

2.4 Double Dimensional Reduction

In order to understand that the NP M5 theory describes the M5-brane in large C field

background. One can study the relative superstring theory. This relation between M

theory and superstring theory can be done by dimensional reduction. There are several

ways of dimensional reductions. One way is just to compactify one target space dimension

on circle, then M2-brane and M5-brane in eleven dimensions will relate to D2-brane and

NS5-brane in ten dimensions. Another way is to compactify one target space dimension

and one worldvolume space dimension on a circle at the same time. It is called Double

Dimensional Reduction (DDR). After DDR, the M2-brane and M5-brane in eleven di-

mensions will relate to F1 string and D4-brane in ten dimensions. These objects (F1,

D2, D4, and NS5) are the main elements in IIA superstring theory in ten dimensions.

Similarly, if we compactify one target space dimension on S1/Z2, it will relate to the

E8 ×E8 heterotic superstring theory. In this section, we will focus on the DDR method,

then we can study the relative D4-brane action of NP M5 theory.

2.4.1 Poisson D4 Description From Nambu-Poisson M5 Theory

In this subsection, we will re-derive the D4 in large NS-NS B field background from the

NP M5 theory. Firstly, we know theory D4-brane theory can be obtained from M5-brane

theory after double dimensional reduction on a circle. The double dimensional reduction

(DDR) means that we do the dimensional reduction on worldvolume and target space at

the same time. In original, people [1,2] want to show the evidence of the NP M5 theory

is the effective description of M5-brane in large C field background. Hence, they expect

to get the D4 in large NS-NS B field background after compactification the circle, which

live in the direction y3̇ and has radius R. There are several reasons for this choice. The
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first thing is the C field background field C1̇2̇3̇ will be explained as B1̇2̇ after DDR on y3̇.

The relation between C1̇2̇3̇ and B1̇2̇ is written by:

∫ y3̇=2πR

y3̇=0

C1̇2̇3̇dy
1̇dy2̇dy3̇ ≡ B1̇2̇dy

1̇dy2̇. (2.33)

The second thing is the Nambu-Poisson bracket will relate to Poisson bracket by this

way: {f, g, y3̇} = ǫα̇β̇3̇∂µ̇f∂ν̇g ≡ {f, g}p.b.. Here the indices α̇ are {1̇, 2̇}.
After integrating out the auxiliary field (bµα̇) and renaming some fields, we get4:

SD4inB =

∫

d3xd2y

[

−1

2
(D̂aX

I)2 − 1

4
(F̂ab)

2 − g2

4
{XI , XJ}2 − 1

2g2

+
i

2

(

Ψ
′
ΓaD̂aΨ

′ + gΨ
′
ΓI{XI ,Ψ′}

)

]

, (2.34)

where we use the unitary transformation of fermion Ψ = 1√
2
(Γ3̇ + Γ7)Ψ′ to keep the

chirality condition of gaugino (Ψ′) on D4-brane: Γ3̇Ψ
′ = Ψ′. The gauge field bµ3̇ and bα̇3̇

are understood as the one form gauge field in D4-brane theory after DDR. The gauge

field âa := ba3̇ can be used to define the covariant derivative and field strength:

δΛâa = ∂aΛ− g{Λ, âa}p.b., Λ ≡ Λ3̇, (2.35)

F̂ab = ∂aâb − ∂bâa + g{âa, âb}p.b., (2.36)

D̂aΦ = ∂aΦ + g{âa,Φ}p.b.. (2.37)

This theory describes the D4-brane in large NS-NS B field background(B1̇2̇).

In this chapter, we show the main characters of NP M5 theory. We give several evi-

dences of the M5-brane in large C field background. For example, the constant term exists

in action, the supersymmetry law is nonlinear, the two form gauge field has non-abelian

structure, and it reproduces D4-brane in NS-NS B field background, etc. However, we

find another possible D4-brane formalism, which can describe the D4-brane in large C

field background. It can be achieved by DDR on another circle x2. We will deal with it

in next chapter.

4Here the indices ‘a’ are {µ; α̇}.
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Chapter 3

D4 in R-R Three Form Background

In this chapter, we will start to consider the effective action of D4-brane in the large

three-form background. This is motivated from NP M5 theory, which describes the single

M5-brane in large C field background. If we do double dimensional reduction along the

codimension of C field. We will get the effective description of D4-brane in large C field

background.

3.1 D4-Brane in C Field Background via DDR

To carry out the double dimensional reduction (DDR) for the M5-brane along the x2-

direction, we set

x2 ∼ x2 + 2πR, (3.1)

and let all other fields to be independent of x2. As a result we can set ∂2 to zero when

it acts on any field. Here R is the radius of the circle of compactification and we should

take R ≪ 1 such that the 6 dimensional field theory on M5 reduces to a 5 dimensional

field theory for D4. To keep zero mode of fields in x2 direction, we need to explain the

meaning of field with component 2. For example, the bµµ̇ → {b2µ̇, bαµ̇}, where α = 0, 1

and the field b2µ̇ is understood by one form field on D4-brane theory. Hence, we define

bµ̇2 ≡ aµ̇. (3.2)

On the other hand, the Gamma matrix Γ2 is understood by ten dimensional chirality

matrix. It is used to define the chirality condition of fermion (gaugino) in D4-brane

theory.
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3.1.1 Gauge Transformation of Fields

As what we have mentioned, the fields after DDR are XI ,Ψ, bαµ̇, b2µ̇, and b
µ̇. After DDR,

the gauge transformation of fields are:

δΛΦ = gκρ̇∂ρ̇Φ (Φ = XI ,Ψ), (3.3)

δΛbασ̇ = ∂αΛσ̇ − ∂σ̇Λα + gκτ̇∂τ̇bασ̇ + g(∂σ̇κ
τ̇ )bατ̇ , (3.4)

δΛb2σ̇ = −∂σ̇Λ2 + gκτ̇∂τ̇b2σ̇ + g(∂σ̇κ
τ̇ )b2τ̇ , (3.5)

δΛb
µ̇ = κµ̇ + gκν̇∂ν̇b

µ̇. (3.6)

We expect that the U(1) gauge symmetry on the D4-brane has its origin in the gauge

transformations (2.16), (2.17) on the M5-brane. The gauge transformation parameter

Λ2 shall be identified with the U(1) gauge transformation parameter. This is consistent

with the identification of aµ̇ with bµ̇2. The gauge symmetry parametrized by Λµ̇, i.e., the

VPD, is also still present on the D4-brane. Hence, we can have the gauge transformation

of aµ̇:

δΛaµ̇ = ∂µ̇λ+ g(κν̇∂ν̇aµ̇ + aν̇∂µ̇κ
ν̇). (3.7)

The gauge symmetry combines U(1) gauge symmetry and volume-preserving diffeomor-

phism symmetry. This is the first new character of the new D4 theory. The 3-dimensional

volume-preserving diffeomorphism is the evidence of D4 in large C-field background. We

want to ask how to find the other DOF of one form fields (aα), and we also want to know

how to find the gauge transformation law of aα. We will deal with it in next section.

3.1.2 Action

After keeping the zero mode of fields in x2 direction, we get the effective description of

five dimensions worldvolume theory. The action is what we expect for the new D4-brane

action, which describe the effective action of D4-brane in large C-field background. The

complete action form can be represented in different parts. The result of DDR on Sgauge

is

S(1)
gauge =

∫

d2xd3y

{

−1

2
H2

1̇2̇3̇
− 1

4
H2

2µ̇ν̇ −
1

4
H2

αµ̇ν̇

+ǫαβǫµ̇ν̇ρ̇∂βaρ̇∂µ̇bαν̇ +
g

2
ǫαβǫµ̇ν̇ρ̇ǫ

µ̇δ̇τ̇ ǫν̇σ̇λ̇ǫρ̇η̇ξ̇∂δ̇bατ̇∂σ̇bβλ̇∂η̇aξ̇

}

, (3.8)
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where we use the definition of ǫαβ2 ≡ ǫαβ. The result of DDR on SX is

S
(1)
X =

∫

d2xd3y

{

−1

2
Dµ̇X

IDµ̇XI − 1

2
∂αX

I∂αXI + gB µ̇
α ∂µ̇X

I∂αXI

−g
2

2
B µ̇

α B
α
ν̇∂µ̇X

I∂ ν̇XI − g2

8
ǫµ̇ρ̇τ̇ ǫν̇σ̇δ̇Fρ̇τ̇F

σ̇δ̇∂µ̇X
I∂ ν̇XI

− 1

2g2
− g4

4
{X µ̇, XI , XJ}2 − g4

12
{XI , XJ , XK}2

}

. (3.9)

The result of DDR on SΨ is

S
(1)
Ψ =

∫

d2xd3y

{

i

2
Ψ̄Γα∂αΨ+

i

2
Ψ̄Γρ̇Dρ̇Ψ+ g

i

4
Ψ̄Γ2ǫµ̇ν̇ρ̇Fν̇ρ̇∂µ̇Ψ− g

i

2
Ψ̄ΓαB µ̇

α ∂µ̇Ψ

+g2
i

2
Ψ̄Γµ̇Γ

I{X µ̇, XI ,Ψ} − g2
i

4
Ψ̄ΓIJΓ1̇2̇3̇{XI , XJ ,Ψ}

}

. (3.10)

In this chapter, we will focus on the gauge field part. To understand if the gauge part has

a well description of D4 in large C-field background will teach us how to deal with matter

fields part. After turning off the mater fields, we only need to consider the equation (3.8).

Focus on the action of gauge fields after DDR, we identify aµ̇ as components of the one-

form potential on the D4-brane. In terms of the field strength

Fµ̇ν̇ ≡ ∂µ̇aν̇ − ∂ν̇aµ̇, (3.11)

we can rewrite H2µ̇ν̇ as

H2µ̇ν̇ = Fµ̇ν̇ +
g

2
ǫµ̇ν̇λ̇ǫ

σ̇ρ̇τ̇∂σ̇b
λ̇Fρ̇τ̇ . (3.12)

In the above we see that part of the two-form potential b on the M5-brane transforms

into part of the one-form potential a on D4. However, in order to interpret this action

as a D4-brane action, we still need to identify the rest of the components aα of the one-

form gauge potential, and to re-interpret bαµ̇ and bµ̇ν̇ from the D4-brane viewpoint. We

also need to find all components of field strength or find all covariant variables in this

theory. On the other hand, we also need to understand the new D4 action in usually D4

viewpoint. We will deal with these problems in different sections.

3.2 Dual Transformation

In this section, we use the method which is called dual transformation to find the other

components of one form fields (aα). This one form component is not suddenly adding

into the theory. In fact, this method relates the degree of freedom of bαµ̇ to this one
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form field aα. It also can be understood as the electric-magnetic duality in 3-dimensional

spaces (yµ̇). This is the dual description between the one form (bα)µ̇ and the zero form

(aα). We will see this fact in this section.

3.2.1 Equivalent Dual Action and Dual One Form Field

In order to understand the physical meaning of the action (3.8), we try to simplify the

action by integrating out the remaining components of the 2-form gauge field b as much as

possible, since there is no 2-form gauge potential in the usual description of a D4-brane.

First we note that the action (3.8) depends on bαµ̇ only through the variable Bα
µ̇

(2.20). In terms of Bα
µ̇, we have

Hαµ̇ν̇ = ǫµ̇ν̇λ̇(∂αb
λ̇ − Vσ̇

λ̇Bα
σ̇), (3.13)

where

V µ̇
ν̇ ≡ δ µ̇

ν̇ + g∂ν̇b
µ̇. (3.14)

Hence we can rewrite the action (3.8) as

S(2)[bµ̇, aµ̇, B
µ̇

α ] =

∫

d2xd3y

{

−1

2
H2

1̇2̇3̇
− 1

4
H2

2µ̇ν̇

−1

2
(∂αb

µ̇ − V µ̇
σ̇ B σ̇

α )2 +ǫαβ∂βaµ̇B
µ̇

α +
g

2
ǫαβFµ̇ν̇B

µ̇
α B

ν̇
β

}

.(3.15)

It turns out that it is possible to extract the components aα on the D4-brane by

dualizing the field B µ̇
α . We can introduce the Lagrange multiplier fαµ̇ to rewrite the

action (3.15) as

S(3)[bµ̇, aµ̇, bαµ̇, B̆
µ̇

α , fβµ̇] =

∫

d2xd3y

{

−1

2
H2

1̇2̇3̇
− 1

4
H2

2µ̇ν̇ −
1

2
(∂αb

µ̇ − V µ̇
σ̇ B̆ σ̇

α )2

+ǫαβ∂βaµ̇B̆
µ̇

α +
g

2
ǫαβFµ̇ν̇B̆

µ̇
α B̆

ν̇
β

−ǫαβfβµ̇[B̆ µ̇
α − ǫµ̇ν̇ρ̇∂ν̇bαρ̇]

}

, (3.16)

where we used the notation B̆ for a new variable independent of bαµ̇. If we integrate out

the Lagrange multiplier fβµ̇, we will get B̆ µ̇
α = B µ̇

α , and the action above reduces back

to (3.15).

Instead, we can integrate out B̆ µ̇
α and bαµ̇ to dualize the field B µ̇

α . First we integrate

out bαµ̇, and find the constraint on fαµ̇

ǫµ̇ν̇λ̇∂µ̇fαν̇ = 0. (3.17)
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It implies that, locally

fαµ̇ = ∂µ̇aα (3.18)

for some potential aα. Hence, after integrating out bαµ̇, we get

S(4)[bµ̇, aµ̇, aα, B̆
µ̇

α ] =

∫

d2xd3y

{

−1

2
H2

1̇2̇3̇
− 1

4
H2

2µ̇ν̇ −
1

2
(∂αb

µ̇ − V µ̇
σ̇ B̆ σ̇

α )2

+ǫαβ∂βaµ̇B̆
µ̇

α +
g

2
ǫαβFµ̇ν̇B̆

µ̇
α B̆

ν̇
β −ǫαβ∂µ̇aβB̆ µ̇

α

}

. (3.19)

In order to find the final form of dual action, we should also need to integrate out the B̆.

We will get the complete form in next subsection.

3.2.2 Action after Dual Transformation

Since the action is at most quadratic in B̆ µ̇
α , the result of integrating out B̆ µ̇

α is the same

as replacing B̆ µ̇
α by the solution to its equation of motion, which is a constraint

V ν̇
µ̇ (∂αbν̇ − V ρ̇

ν̇B̆
α
ρ̇) + ǫαβFβµ̇ + gǫαβFµ̇ν̇B̆

ν̇
β = 0. (3.20)

The solution of B̆ µ̇
α , denoted as B̂ µ̇

α , is given by

B̂ µ̇
α ≡ (M−1)αβ

µ̇ν̇(V σ̇
ν̇ ∂βbσ̇ + ǫβγFγν̇), (3.21)

where

Mµ̇ν̇
αβ ≡ Vµ̇ρ̇Vν̇

ρ̇δαβ − gǫαβFµ̇ν̇ , (3.22)

and M−1 is defined by

(M−1)γα
λ̇µ̇Mµ̇ν̇

αβ = δλ̇ν̇δ
β

γ . (3.23)

After integrating out B̆ µ̇
α , we get

S(5)[bµ̇, aµ̇, aα] =

∫

d2xd3y

{

−1

2
H2

1̇2̇3̇
− 1

4
(Fν̇ρ̇ +

g

2
ǫµ̇ν̇ρ̇ǫ

σ̇δ̇τ̇∂σ̇b
µ̇Fδ̇τ̇ )

2 − 1

2
∂αb

µ̇∂αbµ̇

+
1

2
(ǫαγFγµ̇ + V σ̇

µ̇ ∂αbσ̇)(M
−1)αβ

µ̇ν̇(ǫβδFδν̇ + Vν̇
λ̇∂βbλ̇)

}

. (3.24)

At the quantum level, there is a one-loop contribution to the action when we integrate

out B̆α
µ̇. It is

∆S1−loop = −~

2
Tr(Log(Mµ̇ν̇

αβ)). (3.25)

The action (3.24) is only remotely resembling the familiar Maxwell action for a U(1)

gauge theory we expect on the D4-brane. We can find terms resembling F 2
µ̇ν̇ and F 2

αµ̇,

21



but the coefficients do not match. The term F 2
αβ is missing. We still have the field bµ̇

which can not be easily integrated out because it has 2nd derivative terms in the action.

It appears that we need to keep the field bµ̇, which continues to play the role of the gauge

potential for the gauge transformation parametrized by Λµ̇, but we need to identify its

physical degrees of freedom in the D4-brane theory.

Having decided to keep the gauge transformations parametrized by Λµ̇ as a new gauge

symmetry in the D4-brane theory, we need to define covariant field strengths suitable for

the gauge transformations.

3.3 Covariant Variables

In this section, we want to search the covariant field strengths in this new D4 theory.

First of all, we need to understand the gauge transformation of all gauge fields, then we

can find out what kinds of variables transform covariantly.

3.3.1 Gauge Symmetry after Dual Transformation

The field aα was introduced by hand and so its gauge transformation rule has to be

solved from the requirement that the action S(4) (3.19) to be invariant. For a quick

derivation one needs to realize that the Chern-Simons term must be gauge invariant by

itself. Plugging in the gauge transformation of B̆ µ̇
α

1 and bµ̇, the gauge transformation

of the CS term (after integration by part ) is

δΛ(ǫ
αβ∂βaµ̇B̆

µ̇
α +

g

2
ǫαβFµ̇ν̇B̆

µ̇
α B̆

ν̇
β − ǫαβ∂µ̇aβB̆

µ̇
α )

= ∂µ̇B̆
µ̇

α ǫ
αβ[−∂βλ− g(κσ̇∂σ̇aβ + aσ̇∂βκ

σ̇) + δaβ]. (3.26)

Hence we get

δΛaβ = ∂βλ+ g(κσ̇∂σ̇aβ + aσ̇∂βκ
σ̇). (3.27)

In our formulation of the self dual gauge field b, the components bµν do not explicitly

show up in the action. Rather they appear when we solve the equations of motion for the

rest of the components bµ̇ν̇ and bµµ̇. In [44,45], the components bµν are used to explicitly

exhibit the self duality of the gauge field, and their gauge transformation laws are given

by

δΛbµν = ∂µΛν − ∂νΛµ + g[κρ̇(∂ρ̇bµν) + (∂νκ
ρ̇)bµρ̇ − (∂µκ

ρ̇)bνρ̇]. (3.28)

1The gauge transformation of B̆ µ̇

α
should be the same as that of B µ̇

α
.
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Identifying bβ2 with aβ and setting ∂2 = 0 for DDR, we get exactly the same gauge

transformation rule as (3.27) with Λ2 = λ.

We find that the gauge transformation of aµ̇ (3.7) and that of aα (3.27) are of the

same form

δΛaA = ∂Aλ+ g(κν̇∂ν̇aA + aν̇∂Aκ
ν̇). (3.29)

For the convenience of the reader, let us also give here the gauge transformation of

Vν̇
µ̇, Mµ̇ν̇

αβ and B̂ µ̇
α :

δΛVν̇
µ̇ = gκλ̇∂λ̇Vν̇

µ̇ + g(∂ν̇κ
λ̇)Vλ̇

µ̇, (3.30)

δΛMµ̇ν̇
αβ = g[κσ̇∂σ̇Mµ̇ν̇

αβ + (∂µ̇κ
σ̇)Mσ̇ν̇

αβ + (∂ν̇κ
σ̇)Mµ̇σ̇

αβ], (3.31)

δΛB̂
µ̇

α = ∂ακ
µ̇ + g(κν̇∂ν̇B̂

µ̇
α − B̂ ν̇

α ∂ν̇κ
µ̇). (3.32)

3.3.2 Covariant Variable with U(1) and VPD Symmetry

In the original NP M5-brane theory, we have the covariant field strengths 2

H1̇2̇3̇ = ∂µ̇b
µ̇ +

1

2
g(∂ν̇b

ν̇∂ρ̇b
ρ̇ − ∂ν̇b

ρ̇∂ρ̇b
ν̇) + g2{b1̇, b2̇, b3̇}, (3.33)

Fµ̇ν̇ ≡ H2µ̇ν̇ = Fµ̇ν̇ + g[∂σ̇b
σ̇Fµ̇ν̇ − ∂µ̇b

σ̇Fσ̇ν̇ − ∂ν̇b
σ̇Fµ̇σ̇], (3.34)

which survive the DDR. Here we have also rewritten H2µ̇ν̇ , which was given above in

(3.12), in a different but equivalent form.

The covariant version of Fαµ̇ can be defined as

Fαµ̇ ≡ 1

2
ǫβαǫµ̇ν̇λ̇Hβν̇λ̇. (3.35)

This is motivated by the intuition that Fαµ̇ corresponds to Hαµ̇2 in the M5-brane theory,

and we used the self duality condition ofH to write down the expression above. Replacing

Bα
µ̇ by the solution B̂α

µ̇, we can rewrite Hβν̇λ̇ (3.13) as a function of FAB, ∂µ̇b
ν̇ and B̂α

µ̇.

(That is, we avoided using ∂αb
µ̇ directly. The dependence on ∂αb

µ̇ only appears through

B̂α
µ̇.) As a result, we have

Fαµ̇ = V −1
µ̇
ν̇(Fαν̇ + gFν̇σ̇B̂α

σ̇). (3.36)

This is also in agreement with the definition of Hµνµ̇ defined in [44,45].

2A field Φ̂ is covariant if its gauge transformation is δΛΦ̂ = gκµ̇∂µ̇Φ̂.
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By inspection, we can guess the covariant form of Fαβ. Together with the rest of the

covariant field strengths of the U(1) gauge field, we have

Fµ̇ν̇ = Fµ̇ν̇ + g[∂σ̇b
σ̇Fµ̇ν̇ − ∂µ̇b

σ̇Fσ̇ν̇ − ∂ν̇b
σ̇Fµ̇σ̇]

= V ρ̇
ρ̇ Fµ̇ν̇ + V ρ̇

µ̇ Fν̇ρ̇ + V ρ̇
ν̇ Fρ̇µ̇, (3.37)

Fαµ̇ = V −1 ν̇
µ̇ (Fαν̇ + gFν̇δ̇B̂

δ̇
α ), (3.38)

Fαβ = Fαβ + g[−Fαµ̇B̂
µ̇

β − Fµ̇βB̂
µ̇

α + gFµ̇ν̇B̂
µ̇

α B̂
ν̇

β ], (3.39)

where

FAB ≡ ∂AaB − ∂BaA. (3.40)

Unlike Fµ̇ν̇ and Fαµ̇, the components Fαβ can not be directly matched with the field

Hαβ2 in the M5-brane theory, because the latter involves other fields that does not exist

in the D4-brane theory.

3.3.3 Action with Covariant Variables

Remarkably, in terms of the covariant field strengths, the action is simply

S ′
gauge[b

µ̇, aA] =

∫

d2xd3y

{

−1

2
H1̇2̇3̇H1̇2̇3̇ − 1

4
Fν̇ρ̇F ν̇ρ̇ +

1

2
Fβµ̇Fβµ̇ +

1

2g
ǫαβFαβ

}

. (3.41)

The last term in the Lagrangian resembles the Wess-Zumino term for the C-field.

It appears that we are missing the kinetic term FαβFαβ in the Lagrangian, and the

coefficient of the term Fαµ̇Fαµ̇ is wrong. However, in the next section we will see that

the missing kinetic term arises when we integrate out bµ̇.

3.4 Order Expansion Analysis

In this section, we want to give the detail analysis of the action of D4-brane in large C field

background. We will expand the action in different g order. From these calculations, we

will see the behavior of the new action, and understand the meaning of bµ̇ in this action.

We will find the degree of freedom of bµ̇ is not really independent, it can be understood

as the electric-magnetic dual transformation of aα in worldvolume viewpoint.

3.4.1 Zeroth Order Expansion

In this subsection we show that at the lowest order of g, the D4-brane action (3.41) agrees

with the Maxwell action for a U(1) gauge field in the ordinary D4-brane action. First we
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expand everything to the 1st order

H1̇2̇3̇ = ∂µ̇b
µ̇ + g

1

2
(∂ν̇b

ν̇∂ρ̇b
ρ̇ − ∂ν̇b

ρ̇∂ρ̇b
ν̇) +O(g2), (3.42)

V −1 ν̇
µ̇ = δ ν̇

µ̇ − g∂µ̇b
ν̇ +O(g2), (3.43)

(M−1)µ̇ν̇ αβ = δµ̇ν̇δαβ − g[(∂µ̇bν̇ + ∂ ν̇bµ̇)δαβ − ǫαβF
µ̇ν̇ ] +O(g2), (3.44)

B̂ µ̇
α = ∂αb

µ̇ + ǫαβF
βµ̇ + g[−∂σ̇bµ̇∂αbσ̇ − ∂µ̇bσ̇ǫαβF

βσ̇ − ∂σ̇b
µ̇ǫαβF

βσ̇

+ǫαβ∂
βbσ̇F

µ̇σ̇ + Fασ̇F
µ̇σ̇] +O(g2). (3.45)

Fβµ̇ = Fβµ̇ + g(∂µ̇b
σ̇Fσ̇β + ∂βb

σ̇Fµ̇σ̇ + ǫβγFµ̇σ̇F
γσ̇) +O(g2) (3.46)

Fαβ = Fαβ + g[−Fαµ̇(∂βb
µ̇ + ǫβγF

γµ̇)− Fµ̇β(∂αb
µ̇ + ǫαγF

γµ̇)] +O(g2).(3.47)

To the lowest order of g, the last term in the Lagrangian (3.41) is

1

2g
ǫαβFαβ =

1

2g
ǫαβFαβ +

1

2
ǫαβ[−Fαµ̇(∂βb

µ̇ + ǫβγF
γµ̇)− Fµ̇β(∂αb

µ̇ + ǫαγF
γµ̇)] +O(g)

≃ −ǫαβFαµ̇∂βb
µ̇ − Fαµ̇F

αµ̇ +O(g)

≃ ǫαβ∂βaα∂µ̇b
µ̇ − Fαµ̇F

αµ̇ +O(g), (3.48)

up to total derivatives. To the 0-th order of g, the action (3.41) can now be expressed as

S ′(0)
gauge[b

µ̇, aA] =

∫

d2xd3y

{

−1

2
H2

1̇2̇3̇
− 1

2
ǫαβFαβH1̇2̇3̇ −

1

4
Fµ̇ν̇F

µ̇ν̇ − 1

2
Fαµ̇F

αµ̇

}

=

∫

d2xd3y

{

−1

2
(H1̇2̇3̇ + F01)

2 − 1

4
FABF

AB

}

, (3.49)

where H1̇2̇3̇ = ∂µ̇b
µ̇ and A,B = (µ̇, α). Note that H1̇2̇3̇ is the only gauge invariant

degree of freedom in the gauge potential bµ̇ because there are two independent gauge

transformation parameters. 3 Furthermore there is no kinetic term for bµ̇ and so we can

integrate it out and then (3.49) becomes exactly the Maxwell action. Integrating out bµ̇

is a duality transformation which imposes the identification

H1̇2̇3̇ = −F01. (3.50)

The physical degrees of freedom in bµ̇ is transformed into that of aα. Although b
µ̇ appears

as new gauge potentials in the D4-brane theory, they share the same physical degrees of

freedom with aα.

3Since the 3 gauge transformation parameters κµ̇ are subject to the condition ∂µ̇κ
µ̇ = 0, there are

only 2 functionally independent degrees of freedom in κµ̇.
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3.4.2 First Order Expansion

The first order correction to the action (3.49) is

S ′(1)
gauge[b

µ̇, aA] = g

∫

d2xd3y

{

(−1

2
H2

1̇2̇3̇
+

1

2
∂µ̇b

ν̇∂ν̇b
µ̇)(H1̇2̇3̇ + F01)

+H1̇2̇3̇

(

−1

2
Fµ̇ν̇F

µ̇ν̇ + ǫαβFαµ̇∂βb
µ̇

)

− 1

2
ǫαβFµ̇ν̇F

αµ̇F βν̇

+F µ̇ν̇Fλ̇ν̇∂µ̇b
λ̇ + Fαµ̇F

α
ν̇∂

µ̇bν̇ − Fαµ̇∂
αbν̇F

µ̇ν̇
}

. (3.51)

In order to integrate out H1̇2̇3̇, note that we can impose the gauge fixing condition

ǫµ̇ν̇λ̇∂µ̇bν̇ = 0, (3.52)

so that

bµ̇ = ∂µ̇c (3.53)

for some function c. Solving c from

H1̇2̇3̇ = ∂µ̇b
µ̇, (3.54)

we find

bµ̇ = ∂µ̇∂̇−2H1̇2̇3̇, (3.55)

where ∂̇−2 is the inverse operator of the Laplacian ∂̇2 ≡ ∂µ̇∂
µ̇. Denoting the Green’s

function of the Laplacian by G so that

∂̇2G(y − y′) = δ(3)(y − y′), (3.56)

where y and y′ represent the coordinates in the directions y1̇, y2̇, y3̇. We have

∂̇−2φ(y) =

∫

d3y′ G(y − y′)φ(y). (3.57)

Plugging (3.55) into the action, we get an action as a functional of H1̇2̇3̇ and aA. To

the first order in g, we can integrate out H1̇2̇3̇ and the action becomes

S ′′
gauge[aA] =

∫

d2xd3y

{

−1

4
FABF

AB + g

[

−F01C − 1

2
ǫαβFµ̇ν̇F

αµ̇F βν̇

−F µ̇ν̇Fλ̇ν̇∂µ̇∂
λ̇∂̇−2F01 − Fαµ̇F

α
ν̇∂

µ̇∂ ν̇ ∂̇−2F01 + Fαµ̇F
µ̇ν̇∂α∂ν̇ ∂̇

−2F01

]}

,

(3.58)

where

C = −1

2
Fµ̇ν̇F

µ̇ν̇ − ǫαβFαµ̇∂β∂
µ̇∂̇−2F01. (3.59)
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Apparently the action becomes nonlocal at order O(g).

In principle, using (3.55) to rewrite the action as a functional of aA and H1̇2̇3̇, we can

integrate out H1̇2̇3̇ to an arbitrary order in g. The resulting action would be a functional

of FAB with higher derivatives and ∂̇−2.

3.4.3 Electric-Magnetic (EM) duality

In here, we need to emphasize the role of gauge potential of bµ̇. The two form gauge

field can be seen as the dual description of one form gauge potential aα. From the order

expansion analyses, we can find the one form field aα encodes the information of bαµ̇

and bµ̇. The original two form degree in NP M5 theory, after DDR on x2, the bµ̇2 can

be understood by aµ̇. Another two degree of one form field in D4 theory (a0, a1) were

encoded in other two form fields bαµ̇ and bµ̇. What we do in this chapter will make the

result be more manifest. There is an EM duality between bαµ̇ and aα in the 3-dimensional

space (yµ̇). This result can be understood from the calculation of dual transformation.

Moreover, when we write down the field strength Fµ̇β, we use the solution of equation

of motion of B̆α
µ̇ (B̂α

µ̇). This is the general EM dual relation between bαµ̇ and aα. The

dual transformation always appear in the calculation of M5 after DDR. For example, to

connect the D4-brane theory with PST M5 action by DDR, they also need to do dual

transformation to get normal D4-brane theory [25]. Finally, after integrating out B̆α
µ̇,

we still have the two form gauge field bµ̇, this field is also the dual description of one

form gauge field aα in the 5-dimensional worldvolume. This result can be understood

from many places. The zeroth order expansion analysis tell us the ∂µ̇b
µ̇ = −F01, hence

the d.o.f of bµ̇ is relative to d.o.f of aα. From the relation, we also can know the correct

physics degree of freedom of one form gauge field aA. It can be understood from the

E.O.M of aA and bµ̇. In g0 order, these equations are simpler:

∂ν̇F
ν̇µ̇ + ∂βF

βµ̇ = 0, (3.60)

ǫαβ∂α∂µ̇b
µ̇ + ∂µ̇F

µ̇β = 0, (3.61)

∂µ̇∂ν̇b
ν̇ +

1

2
ǫαβ∂µ̇Fαβ = 0. (3.62)

It is easy to simplify them in these two equations:

∂µ̇b
µ̇ = −ǫαβ∂αaβ, (3.63)

∂A∂
AaB = ∂B∂Aa

A. (3.64)

There are three independent gauge parameters λ and Λµ̇. We can choose Λµ̇ to make

ǫµ̇ν̇ρ̇∂ν̇bρ̇ = 0, and we know ∂µ̇b
µ̇ = −ǫαβ∂αaβ, so we fix all degree of freedom of gauge
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field bµ̇. Now we choose λ to make ∂Aa
A − ∂0a

0 = 0, then from the second equation,

we get a0 = 0. Hence we find we only have 3 independent one form in this g0 order.

For higher g order case, the equation of motion become more complicate, it hard to deal

with in this case. However, this result should keep in perturbation theory order by order.

Hence, we can fix all d.o.f of bµ̇ field in our action, but this calculation break the VPD

gauge symmetry. The complete action of D4 in C field background should be described

by one-form gauge field aA and two-form gauge field bµ̇ at the same time.
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Chapter 4

Extension and Application

From the previous chapter, we already show the main part of D4-brane in large R-R

3-form field background. In this chapter, we will do more extension of these results.

We focus on several things: the generalization of Dp-brane in large R-R (p-1)-form

background, the multiple branes extension, the D4-brane action with matter fields, the

supersymmetry transformation law in this D4-brane action, and the possible topological

quantities in this theory.

4.1 Dp-Branes in R-R field Background

In fact, the system of D-branes in NS-NS background can be understood from the effective

theory, which describes the low energy effect of open string ending on D-branes. The

open string is a one-dimensional extended object which can couple to the 2-form NS-NS

B field, hence the effective theory is affected by NS-NS B field. On the other hand, the

system of D4-brane in R-R 3-form background, which can be understood as the system

of D2 ending on D4. The D2-brane can couple to the 3-form R-R C field, hence the

effective theory is affected by R-R C field. In general, we can study the Dp-brane in

R-R (p-1)-form background. The D(p-2)-brane can end on Dp-brane, which can couple

to R-R (p-1)-form field. We expect these theories still with (p-1) dimensions VPD. We

also study how to generalize our previous researches to multiple Dp-branes cases. In this

thesis, we only consider these extensions in gauge fields, because the gauge parts are

easily generalized to multiple Dp-branes from general VPD symmetry.
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4.1.1 Generalize VPD in R-R (p-1) Form Field Background

To generalize the story about a single D4-brane to a system of multiple Dp-branes, we

notice first that the VPD for a volume (p− 1)-form is generated by a (p− 1)-bracket

{f1, f2, · · · , fp−1} ≡ ǫµ̇1µ̇2···µ̇p−1∂µ̇1
f1∂µ̇2

f2 · · · ∂µ̇p−1
fp−1. (4.1)

We define a (p− 2)-form gauge potential bµ̇1···µ̇p−2
and its dual

bµ̇1 =
1

(p− 2)!
ǫµ̇1µ̇2···µ̇p−1bµ̇2···µ̇p−1

. (4.2)

Let

X µ̇ =
yµ̇

g
+ bµ̇ (4.3)

and the field strength H can be defined as

Hµ̇1µ̇2···µ̇p−1
≡ gp−2{X µ̇1 , X µ̇2 , · · · , X µ̇p−1} − 1

g
= ∂µ̇b

µ̇ +O(g). (4.4)

In terms of bµ̇ the gauge transformation is exactly of the same form as (3.6), and the

parameter κµ̇ is still divergenceless. The only change is that the range of the indices µ̇, ν̇

becomes 2, 3, · · · , p. 1

4.1.2 Gauge Symmetry and Covariant Variables in Multiple

Dp-Branes Theory

While we do not intend to promote the VPD gauge potential bµ̇ to a matrix mostly

because we do not know how to modify its gauge transformation law, we shall replace

the U(1) potential by a U(N) potential aA, which is now an N×N anti-Hermitian matrix

of 1-forms. The U(N) gauge transformation of aA should be defined by

δaA = [DA, λ] + g(κµ̇∂µ̇aA + aµ̇∂Aκ
µ̇), (4.5)

where DA ≡ ∂A + aA. It modifies (3.29) only by replacing ∂Aλ by [DA, λ]. The gauge

transformation parameter λ is an N × N anti-Hermitian matrix but κµ̇ is 1 × 1. The

range of the index A is now A = 0, 1, 2, · · · , p. Decomposing the potential aA into the

U(1) part and the SU(N) part

aA = a
U(1)
A + a

SU(N)
A , (4.6)

1The indices 2, 3, · · · would be denoted as 1̇, 2̇, · · · in previous chapter.
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the gauge transformation of a
U(1)
A is exactly the same as before (3.29).

We can define Vµ̇
ν̇ and B̂α

µ̇ using the same expressions (3.14)–(3.21) as before

V µ̇
ν̇ ≡ δ µ̇

ν̇ + g∂ν̇b
µ̇, (4.7)

Mµ̇ν̇
αβ ≡ Vµ̇ρ̇Vν̇

ρ̇δαβ − gǫαβF
U(1)
µ̇ν̇ , (4.8)

B̂ µ̇
α ≡ (M−1)µ̇ν̇αβ(V

σ̇
ν̇ ∂βbσ̇ + ǫβγF

U(1)
γν̇ ), (4.9)

but with the field strength F
U(1)
µ̇ν̇ being the U(1) part of the U(N) field strength, so that

their gauge transformations remain the same. The range of the indices α, β is still 0, 1.

The naive definition of field strength FAB ≡ [DA, DB] is not covariant. They transform

like

δFAB = [FAB, λ] + gκµ̇∂µ̇FAB + g[(∂Aκ
µ̇)Fµ̇B − (∂Bκ

µ̇)Fµ̇A]. (4.10)

It turns out that exactly the same expressions as (3.37)–(3.39) give the covariant field

strengths. For the convenience of the reader we reproduce them here

Fµ̇ν̇ = Fµ̇ν̇ + g[∂σ̇b
σ̇Fµ̇ν̇ − ∂µ̇b

σ̇Fσ̇ν̇ − ∂ν̇b
σ̇Fµ̇σ̇]

= V ρ̇
ρ̇ Fµ̇ν̇ + V ρ̇

µ̇ Fν̇ρ̇ + V ρ̇
ν̇ Fρ̇µ̇, (4.11)

Fαµ̇ = V −1 ν̇
µ̇ (Fαν̇ + gFν̇δ̇B̂

δ̇
α ), (4.12)

Fαβ = Fαβ + g[−Fαµ̇B̂
µ̇

β − Fµ̇βB̂
µ̇

α + gFµ̇ν̇B̂
µ̇

α B̂
ν̇

β ]. (4.13)

They transform like

δFAB = [FAB, λ− gκµ̇∂µ̇]. (4.14)

From this expression it is easy to check that the gauge symmetry algebra is given by

[δ1, δ2] = δ3, (4.15)

where δi is the gauge transformation with parameters λi, κ
µ̇
i and

λ3 = [λ1, λ2] + g(κµ̇2∂µ̇λ1 − κµ̇1∂µ̇λ2), (4.16)

κµ̇3 = g(κν̇2∂ν̇κ
µ̇
1 − κν̇1∂ν̇κ

µ̇
2). (4.17)

4.1.3 Ansatz of Action

In view of the D4-brane action (3.41), it is now natural to define the action for the gauge

fields on multiple Dp-branes in R-R (p− 1)-form field background as

SDp
gauge[b

µ̇, aA] =

∫

d2xdp−1y

{

−1

2

1

(p− 1)!
Hµ̇1···µ̇p−1

Hµ̇1···µ̇p−1 +
1

2g
ǫαβFU(1)

αβ

−1

4
FU(1)

ν̇ρ̇ F ν̇ρ̇
U(1) +

1

2
FU(1)

βµ̇ Fβµ̇
U(1) −

1

4
tr
(

FSU(N)
AB FAB

SU(N)

)

}

. (4.18)

31



If we focus our attention on the U(1) part of the 1-form gauge potential aA and the VPD

gauge potential bµ̇, everything is exactly the same as before. The VPD field strength H
is dual to only the U(1) part of F01. But since the SU(N) part of the field strength FAB

involves the VPD potential bµ̇, the U(1) part of aA couples to the SU(N) part indirectly

through bµ̇. This is different from the usual Yang-Mills theory of U(N) gauge symmetry,

for which the U(1) part decouples, but similar to the noncommutative U(N) YM theory.

To the 0-th order in g, the action is

S ′Dp(0)
gauge[b

µ̇, aA] =

∫

d2xdp−1y

{

−1

2
(H23···p + F

U(1)
01 )2 − 1

4
F

U(1)
AB FAB

U(1) −
1

4
tr
(

F
SU(N)
AB FAB

SU(N)

)

}

,

(4.19)

where H23···p = ∂µ̇b
µ̇. Again, since H23···p is the only component of the field strength

for the gauge potential bµ̇, we can integrate it out and the action reduces to that of a

Yang-Mills theory in (p+ 1) dimensions.

In fact, the VPD symmetry allows us to impose the gauge fixing condition

∂µ̇1bµ̇1µ̇2···µ̇p−2
= 0 ⇔ ∂µ̇bν̇ − ∂ ν̇bµ̇ = 0. (4.20)

This condition allows us to solve bµ̇ in terms of H23···p as

bµ̇ = ∂µ̇∂̇−2H23···p, (4.21)

where ∂̇−2 is the inverse of the Laplace operator ∂̇2 ≡ ∂µ̇∂
µ̇. Like what we did in Sec.

3.4.2, we can continue to integrate out H23···p at higher orders of g using the relation

(4.21) for every term involving bµ̇ in the action, although we would get a nonlocal action

in the end. In principle we can write down a nonlocal action of aA without any trace of

bµ̇ or H23···p as an expansion of g to an arbitrary order.

To end this section, we want to emphasize one important thing. The formulation in

this section applies to Dp-branes for all p ≥ 2. For D1-branes, the gauge symmetry

introduced by the R-R 0-form (axion) background is the trivial group of diffeomorphism

on a single point. There is thus no deformation of the D1-brane theory due to the axion

background. Furthermore, as there is no R-R (-1)-form potential, D0-branes are also free

from analogous deformations due to R-R backgrounds.

4.2 Couple to Matter fields

In this section, we consider the complete action of NP M5 after DDR on x2. We use

same processes as previous pure gauge fields case. We also can do dual transformation,
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find covariant variables and solve two form field B̂µ̇
α with matter fields modification.

The new thing is the supersymmetry in this case. We should find the way to find the

supersymmetry transformation law of the dual field aα. We will deal with it in next

section.

4.2.1 D4 in C Field Background with Matter Fields

In the above we have ignored the matter fields in the NP M5-brane theory. It is straight-

forward to repeat the derivations above with the matter fields included. To consider the

complete action with matter fields: (3.8), (3.9), and (3.10). We do dual transformation

in this general case, as the result of action (3.19), then we get

S(4)[bµ̇, aA, B̆
µ̇

α , X
I ,Ψ] =

∫

d2xd3y

{

−1

2
Dµ̇X

IDµ̇XI − 1

2
∂αX

I∂αXI + gB̆ µ̇
α ∂µ̇X

I∂αXI

−g
2

2
B̆ µ̇

α B̆
α
ν̇∂µ̇X

I∂ ν̇XI − g2

8
ǫµ̇ρ̇τ̇ ǫν̇σ̇δ̇Fρ̇τ̇F

σ̇δ̇∂µ̇X
I∂ ν̇XI

−g
4

4
{X µ̇, XI , XJ}2 − g4

12
{XI , XJ , XK}2 + i

2
Ψ̄Γρ̇Dρ̇Ψ

+
i

2
Ψ̄Γα∂αΨ+ g

i

4
Ψ̄Γ2ǫµ̇ν̇ρ̇Fν̇ρ̇∂µ̇Ψ− g

i

2
Ψ̄ΓαB̆ µ̇

α ∂µ̇Ψ

+g2
i

2
Ψ̄Γµ̇i{X µ̇, XI ,Ψ} − g2

i

4
Ψ̄ΓIJΓ1̇2̇3̇{XI , XJ ,Ψ}

− 1

2g2
− 1

2
(H1̇2̇3̇)

2 − 1

4
Fν̇ρ̇F ν̇ρ̇ − 1

4
(ǫµ̇ν̇ρ̇(∂αb

µ̇ − V µ̇
σ̇ B̆ σ̇

α ))2

+ǫαβFβµ̇B̆
µ̇

α +
g

2
ǫαβFµ̇ν̇B̆

µ̇
α B̆

ν̇
β

}

. (4.22)

With the matter fields included, the action is still no more than quadratic in B̆ µ̇
α and

so we can still integrate it out. This is equivalent to solving the equation of motion for

B̆ µ̇
α and plugging it back into the action. The new equation of motion for B̆ µ̇

α is

V ν̇
µ̇ (∂αbν̇−V ρ̇

ν̇B̆
α
ρ̇)+ǫ

αβFβµ̇+gǫ
αβFµ̇ν̇B̆

ν̇
β +g∂µ̇X

I∂αXI−g i
2
Ψ̄Γα∂µ̇Ψ−g2B̆α

ν̇∂µ̇X
I∂ ν̇XI = 0.

(4.23)

Its solution is

B̂ µ̇
α = (M−1)µ̇ν̇ αβ(V

σ̇
ν̇ ∂βbσ̇ + ǫβγFγν̇ + g∂ν̇X

I∂βXI − g
i

2
Ψ̄Γβ∂ν̇Ψ)

≡ (M−1)µ̇ν̇ αβW
β
ν̇ , (4.24)

where

M αβ
µ̇ν̇ ≡ (Vµ̇ρ̇V

ρ̇
ν̇ + g2∂µ̇X

i∂ν̇X
i)δαβ − gǫαβFµ̇ν̇ , (4.25)
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and (M−1)µ̇ν̇ αβ is defined by

(M−1)λ̇µ̇ γαM
αβ

µ̇ν̇ = δλ̇ ν̇δ
β

γ . (4.26)

Finally, we get the action

S(5)[bµ̇, aA, X
I ,Ψ] =

∫

d2xd3y

{

−1

2
Dµ̇X

IDµ̇XI − 1

2
∂αX

I∂αXI

−g
2

8
ǫµ̇ρ̇τ̇ ǫν̇σ̇δ̇Fρ̇τ̇F

σ̇δ̇∂µ̇X
I∂ ν̇XI

−g
4

4
{X µ̇, XI , XJ}2 − g4

12
{XI , XJ , XK}2

+
i

2
Ψ̄Γα∂αΨ+

i

2
Ψ̄Γρ̇Dρ̇Ψ+ g

i

4
Ψ̄Γ2ǫµ̇ν̇ρ̇Fν̇ρ̇∂µ̇Ψ

+g2
i

2
Ψ̄Γµ̇Γ

I{X µ̇, XI ,Ψ} − g2
i

4
Ψ̄ΓIJΓ1̇2̇3̇{XI , XJ ,Ψ}

− 1

2g2
− 1

2
(H1̇2̇3̇)

2 − 1

4
Fν̇ρ̇F ν̇ρ̇ +

1

2
W α

µ̇ (M
−1)µ̇ν̇αβW

β
ν̇

}

.(4.27)

Here the fields F are defined by the same expressions as before but with the new definition

of B̂.

4.2.2 Order Expansion Analysis

In this subsection, we show the result of action with matter fields in g0 and g1 order

expansion. At the 0-th order of g, the action is just

S ′′(0)[aA, X
I ,Ψ] ≃

∫

d2xd3y

{

−1

4
FABF

AB − 1

2
∂AX

I∂AXI +
i

2
Ψ̄ΓA∂AΨ

}

(4.28)

after we integrate out the VPD gauge fields bµ̇. This defines a Maxwell’s theory with neu-

tral bosons XI and fermions Ψ.In next section, we can find the action is supersymmetry

invariant.
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For completeness let us also give the expression of the action to the 1st order:

S ′(1)[bµ̇, aA, X
I ,Ψ] ≃

∫

d2xd3y

{

−1

2
∂αX

I∂αXI − 1

2
∂µ̇X

I∂µ̇XI +
i

2
Ψ̄Γα∂αΨ+

i

2
Ψ̄Γµ̇∂µ̇Ψ

+gǫαβFβµ̇∂
µ̇XI∂αX

I + g∂µ̇XI∂αX
I∂αbµ̇ − g

i

2
ǫαβFβµ̇Ψ̄Γα∂

µ̇Ψ

−g i
2
Ψ̄Γα∂

µ̇Ψ∂αbµ̇ − g∂µ̇X
I∂µ̇XI∂ρ̇b

ρ̇ + g∂µ̇XI∂ρ̇X
I∂µ̇b

ρ̇

+g
i

2
Ψ̄Γρ̇∂ρ̇Ψ∂ν̇b

ν̇ − g
i

2
Ψ̄Γρ̇∂ν̇Ψ∂ρ̇b

ν̇ + g
i

4
Ψ̄Γ2ǫµ̇ν̇ρ̇Fν̇ρ̇∂µ̇Ψ

−1

2
H1̇2̇3̇H1̇2̇3̇ − 1

4
Fν̇ρ̇F ν̇ρ̇ − 1

2
Fβµ̇F

βµ̇ − 1

2
ǫαβFαβ∂µ̇b

µ̇

−gǫαβFβµ̇∂αbν̇∂
ν̇bµ̇ +

1

2
gǫαβFµ̇ν̇∂αb

µ̇∂βb
ν̇ + gFµ̇ν̇F

αν̇∂αb
µ̇

+gF αν̇Fαµ̇∂ν̇b
µ̇ +

1

2
gǫαβFβµ̇F

µ̇ν̇Fαν̇ +O(g2)

}

. (4.29)

It is more complex, but we can expect the general case with the nonlocal effect after we

integrate out the VPD gauge fields βµ̇.

4.2.3 Rewrite Action with Covariant Variables

As same as before, we can check which kind combination of fields will be covariant:

δΛΦ̂ = gκσ̇∂σ̇Φ̂, where the Φ̂ is any variable. We already know these fields are covariant

variable as before: H1̇2̇3̇, Fµ̇ν̇ , and Dµ̇Φ, where Φ are XI or Ψ. The other covariant

variables relate the gauge field Bµ̇
2 and Bµ̇

α, we need to check them.

Firstly, the covariant variable D2Φ become to (−g 1
2
ǫµ̇ν̇ρ̇Fν̇ρ̇∂µ̇Φ) ≡ D̂Φ after DDR, we

can find the gauge transformation law is:

δΛ(−g
1

2
ǫµ̇ν̇ρ̇Fν̇ρ̇∂µ̇Φ) ≡ δΛ(D̂Φ) = gκσ̇∂σ̇(D̂Φ). (4.30)

The each part of (−g 1
2
ǫµ̇ν̇ρ̇Fν̇ρ̇∂µ̇Φ) is not covariant, but the combination of them are

covariant. In another case of DDR on y3̇, we can find the covariant derivative vanishing

D3̇ → 0 after we take away zero mode of y3̇. In our new D4 action, we have these addition

terms with D2 in action.

Secondary, we know the original variables with B̆α
µ̇ are covariant even if we replace

it by the solution B̂α
µ̇. We want to check if the result is same when we include matter
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fields in theory. The results of gauge transformation of similar fields are given by:

δΛMµ̇ν̇
αβ = g[κσ̇∂σ̇Mµ̇ν̇

αβ + (∂µ̇κ
σ̇)Mσ̇ν̇

αβ + (∂ν̇κ
σ̇)Mµ̇σ̇

αβ], (4.31)

δΛM
−1µ̇ν̇

αβ = g[κσ̇∂σ̇M
−1µ̇ν̇

αβ − (∂σ̇κ
µ̇)M−1σ̇ν̇

αβ − (∂σ̇κ
ν̇)M−1µ̇σ̇

αβ], (4.32)

δΛWµ̇
α = ∂βκ

σ̇Mµ̇σ̇
αβ + g[κσ̇∂σ̇Wµ̇

α + ∂µ̇κ
σ̇Wσ̇

α], (4.33)

δΛB̂
µ̇

α = ∂ακ
µ̇ + g(κν̇∂ν̇B̂

µ̇
α − B̂ ν̇

α ∂ν̇κ
µ̇). (4.34)

Hence, we can find these transformations are similar as before. The covariant variables,

which are defined by B̂α
µ̇ in previous cases, are also covariant in this general cases.

Thirdly, we want to get more simple action with covariant variables, then we can

define the new covariant variable F̂αµ̇ by the equation of motion of B̆α
µ̇:

F̂αµ̇ ≡ V −1 ν̇
µ̇

{

Fαν̇ + g[Fν̇δ̇B̂
δ̇

α + ǫαβ∂ν̇X
I∂βXI − i

2
ǫαβΨ̄Γβ∂ν̇Ψ]− g2[ǫαβB̂

β
ρ̇ ∂ν̇X

I∂ ρ̇XI ]

}

.

(4.35)

We also can check the gauge transformation of this covariant variable:

δΛF̂αµ̇ = gκσ̇∂σ̇F̂αµ̇. (4.36)

After we combine the all covariant variables, we can rewrite the action (4.27) in this

way:

S ′[bµ̇, aA, X
I ,Ψ] =

∫

d2xd3y

{

−1

2
H1̇2̇3̇H1̇2̇3̇ − 1

4
Fν̇ρ̇F ν̇ρ̇ +

1

2
F̂βµ̇F̂βµ̇ +

1

2g
ǫαβFαβ

− 1

2g2
− 1

2
DAX

IDAXI − 1

2
D̂XID̂XI

−g
4

4
{X µ̇, XI , XJ}2 − g4

12
{XI , XJ , Xk}2

+
i

2
Ψ̄ΓADAΨ+

i

2
Ψ̄Γ2D̂Ψ

+g2
i

2
Ψ̄Γµ̇Γ

I{X µ̇, XI ,Ψ} − g2
i

4
Ψ̄ΓIJΓ1̇2̇3̇{XI , XJ ,Ψ}

}

. (4.37)

In this section, we get the full effective theory of D4-brane in large C field back-

ground. However, we do not know how to generalize it to Dp-brane cases. Because the

supersymmetry laws of these cases are still unclear. Before the generalization, we want

to write down the supersymmetry transformation law of the all fields in the new effective

D4-brane theory.
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4.3 Supersymmetry Transformation

The full action (4.27) inherits the full supersymmetry from the NP M5-brane theory be-

cause DDR preserves global SUSY, and duality transformation is an equivalence relation.

Nevertheless it is not totally trivial to derive the explicit SUSY transformation rules for

all the variables, in particular those arise as Lagrange multipliers. In this section we want

to deal the problem. The supersymmetry transformation of each field after DDR on x2

are represented by:

δǫX
I = iǫΓIΨ, (4.38)

δǫΨ = DαX
IΓαΓIǫ+Dµ̇X

IΓµ̇ΓIǫ+
1

2
gǫµ̇ν̇ρ̇Fν̇ρ̇∂µ̇X

IΓ2ΓIǫ

−1

2
Fν̇ρ̇Γ

2Γν̇ρ̇ǫ− 1

2
Hαν̇ρ̇Γ

αΓν̇ρ̇ǫ−
(

1

g
+H1̇2̇3̇

)

Γ1̇2̇3̇ǫ

−g
2

2
{X µ̇, XI , XJ}Γµ̇Γ

IJǫ+
g2

6
{XI , XJ , XK}ΓIJKΓ1̇2̇3̇ǫ, (4.39)

δǫbµ̇ν̇ = −iǫΓµ̇ν̇Ψ, (4.40)

δǫaµ̇ = iǫΓ2Γµ̇Ψ+ igǫΓ2Γν̇Ψ∂µ̇b
ν̇ − igǫΓ2ΓIΓ1̇2̇3̇Ψ∂µ̇X

I , (4.41)

δǫB
µ̇

α = −iǫΓαΓλ̇∂ν̇Ψǫ
µ̇ν̇ρ̇(δρ̇

λ̇ + g∂ρ̇b
λ̇) + igǫΓαΓ

IΓ1̇2̇3̇∂ν̇Ψǫ
µ̇ν̇ρ̇∂ρ̇X

I . (4.42)

We want to know what is the supersymmetry transformation law of new fields after

dual transformation. After dual transformation, we get the new fields B̆α
µ̇ and aα, the

new field B̆ ν̇
β is not divergenceless (∂ν̇B̆

ν̇
β 6= 0). How to find the SUSY law of these

fields?

4.3.1 Supersymmetry Law of Dual Field

The dual transformation is equivalent to add one term ǫαβ∂µ̇aβB̆
µ̇

α in action and to

replace B µ̇
α by B̆ µ̇

α . After doing supersymmetry variation for action (4.22), the new

term will have a additional contribution:

−ǫαβ∂µ̇δǫaβB̆ µ̇
α − ǫαβ∂µ̇aβδǫB̆

µ̇
α . (4.43)

Because the other terms in action do not include aα, we should choose δǫB̆
µ̇

α = δǫB
µ̇

α to

make the second term vanish, the reason is ∂µ̇δǫB̆
µ̇

α = 0 = ∂µ̇δǫB
µ̇

α . So we get:

δǫB̆
µ̇

α = −iǫΓαΓρ̇∂ν̇Ψǫ
µ̇ν̇ρ̇ − igǫΓαΓλ̇∂ν̇Ψǫ

µ̇ν̇ρ̇∂ρ̇b
λ̇ + igǫΓαΓ

IΓ1̇2̇3̇∂ν̇Ψǫ
µ̇ν̇ρ̇∂ρ̇X

I . (4.44)
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After calculating the supersymmetry variation of action, we get the terms which depends

on B̆α
µ̇:

δǫS = −1

2
igδǫΨΓαΨ∂µ̇B̆

µ̇
α − igǫΓ2Γν̇Ψǫ

αγ∂γb
ν̇∂µ̇B̆

µ̇
α

+igǫΓ2ΓIΓ1̇2̇3̇Ψǫαγ∂γX
I∂µ̇B̆

µ̇
α

+ǫαγδǫaγ∂µ̇B̆
µ̇

α . (4.45)

Hence, we obtain the SUSY law of dual field:

δǫaβ = −1

2
igδǫΨΓαΨǫαβ + igǫΓ2Γν̇Ψ∂βb

ν̇

−igǫΓ2ΓIΓ1̇2̇3̇Ψ∂βX
I . (4.46)

Here, the transformation law of Ψ is:

δǫΨ = ǫΓIΓADAX
I +

1

2
gǫΓIΓ2ǫµ̇ν̇ρ̇Fν̇ρ̇∂µ̇X

I

−1

2
ǫΓν̇ρ̇Γ2Fν̇ρ̇ −

1

2
ǫΓν̇ρ̇ΓαHαν̇ρ̇ − ǫΓ1̇2̇3̇

(

1

g
+H1̇2̇3̇

)

−g
2

2
ǫΓIJΓµ̇{X µ̇, XI , XJ}+ g2

6
ǫΓ1̇2̇3̇ΓIJK{XI , XJ , XK}. (4.47)

4.3.2 Non-linear Fermion Symmetry of Dual Field

The theory has 16 non-linear fermionic symmetries δχ, which shift the fermion by a

constant spinor

δχΨ = χ, δχX
i = δχb

µ̇ = δχaµ̇ = 0. (4.48)

We also can get the SUSY transformation of the new term:

δχS =
i

2
gχΓαΨ∂µ̇B̆

µ̇
α + ǫαβδχaβ∂µ̇B̆

µ̇
α . (4.49)

Hence, we obtain the non-linear transformation law of aα:

δχaα = − i

2
gχΓβΨǫαβ. (4.50)

4.3.3 Linear Supersymmetry Transformation

The SUSY law of aµ̇ and aα are not similar, this is the new characteristic in D4 with

C-field background. However, we can redefine a new linear supersymmetry law which
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combine the two SUSY laws in previous subsections, the SUSY law of aα becomes more

similar to the SUSY law of aµ̇. We choose:

δ ≡ 1

g
δχ→Γ

1̇2̇3̇
ǫ + δǫ, (4.51)

then we can find the SUSY law of aα becomes:

δaα = δaµ̇→α +
1

2
δΨΓβΨǫαβ. (4.52)

After the linear combination, we can find the lowest order of δΨ will start from g0 order.

4.3.4 Supersymmetry Transformation Law of B̂α
µ̇ Field

When we integrate out B̆α
µ̇, in classical level, it is same with replacing B̆α

µ̇ by B̂α
µ̇,

which is the solution of E.O.M of B̆α
µ̇. Its solution is

B̂ µ̇
α = (M−1)µ̇ν̇ αβ(V

σ̇
ν̇ ∂βbσ̇ + ǫβγFγν̇ + g∂ν̇X

i∂βX i − g
i

2
Ψ̄Γβ∂ν̇Ψ)

≡ (M−1)µ̇ν̇ αβW
β
ν̇ , (4.53)

where

M αβ
µ̇ν̇ ≡ (Vµ̇ρ̇V

ρ̇
ν̇ + g2∂µ̇X

i∂ν̇X
i)δαβ − gǫαβFµ̇ν̇ , (4.54)

and (M−1)µ̇ν̇ αβ is defined by

(M−1)λ̇µ̇ γαM
αβ

µ̇ν̇ = δλ̇ ν̇δ
β

γ . (4.55)

We want to ask if the action is still supersymmetry invariant. Moreover, what is

the supersymmetry law of B̂α
µ̇. The supersymmetry transformation of the theory is a

on-shell formalism. So the δǫB̂α
µ̇ and δǫB̆α

µ̇ can be different with E.O.M of all fields. In

fact, we find the exact results of the difference. The answer is:

δǫB̂α
µ̇ = δǫB̆α

µ̇ − 2(M−1)µ̇ν̇ αβ(δǫΨ|B̂)ν̇β(E.O.M of Ψ). (4.56)

Here the notation (δǫΨ|B̂)ν̇β means the terms of δǫΨ with B̂α
µ̇ field. The explicit form is

:

(δǫΨ|B̂)ν̇β =
1

2
ǫΓρ̇λ̇Γβǫσ̇ρ̇λ̇Vν̇

σ̇ − gǫΓiΓβ∂ν̇X
i. (4.57)

The E.O.M of Ψ is:

(E.O.M of Ψ) =
i

2
Γα∂αΨ+

i

4
gΓ2ǫµ̇ν̇ρ̇Fν̇ρ̇∂µ̇Ψ− i

2
gΓαB̂α

µ̇∂µ̇Ψ

+
i

2
Γρ̇Dρ̇Ψ+

i

2
g2Γµ̇Γ

i{X µ̇, X i,Ψ} − i

4
g2ΓijΓ1̇2̇3̇{X i, Xj ,Ψ}.

(4.58)
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The relation (4.56) reproduces:

δǫ(M
αβ

µ̇ν̇ B̂β
ν̇ −W α

µ̇ ) = 0, (4.59)

so the result is exact in all order.

Another way to check the relation (4.56) is calculate the zeroth-order expansion of

B̂α
µ̇, then we find:

δǫB̂α
µ̇|g0 = δǫB̆α

µ̇|g0 − iǫΓαΓ
1̇2̇3̇Γµ̇ΓA∂AΨ. (4.60)

The result is also get from the exact answer (4.56).

By the way, the supersymmetry transformation law of fermion is just to replace B̆α
µ̇

with B̂α
µ̇. Now we get all supersymmetry transformation laws of all fields in action

(4.27).

4.4 Topological Quantities of D4 in Large C Field

Background

In this section, we try to study the topological quantities of D4-brane in C field back-

ground. There are several important topological quantities of D-brane researches: the

soliton solutions, instanton solutions, monopole solutions, and BPS states. One way to

study these topological quantities is to calculate the central charge of superalgebra. An-

other way is to find the solutions from the equation of motion of fields. However, the

researches of topological quantities of D4-brane in C field background are still in progress.

Hence, this section does not really finish right now, I just list the main idea of this topic.

4.4.1 Central Charges of Superalgebra

In this subsection, we want to calculate the central charge of D4 in C field background.

From the paper [49] or more early papers, the supercurrent of BLG model is given by:

Jµ = δǫΨΓµΨ. (4.61)

We can derive the δǫΨ from the BLG → NP M5 → D4 in C before dual transform → D4

in C after Dual transform → D4 in C after integrating out B̆α
µ̇. Hence, we can get the

central charges in our theory:

ǫ1{Q,Q}ǫ2 ≈
∫

dx1d3y(δǫ1Ψ)Γ0(δǫ2Ψ). (4.62)
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Here the integral range
∫

dx1d3y is the full space directions in this D4-brane theory and

the supersymmetry transformation law of fermion is written down in previous section.

These central charges are the possible soliton solutions of D4-brane in C field background.

The remaining problem is how to classify these central charges.

4.4.2 Instanton Solutions

We know the noncommutative U(1) gauge theory can have instanton solutions [50], but

U(1) gauge theory have no instanton solutions. The reason is the solution space of

gauge field is nontrivial in noncommutative U(1) gauge theory. On the other hand,

people [51] study D3-brane in graviphoton field strengths (R-R 2-form field) background.

They also find some deformation of ADHM constraints by graviphoton background. We

want to know if we can find the possible instanton solutions of D4-brane in R-R C field

background, because this case is similar to the D4-brane in NS-NS B field background.

Moreover, what is the possible instanton solutions of Dp-branes in R-R field background?
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Chapter 5

Conclusion and Discussion

5.1 Summary

In this thesis, we give the effective action of Dp-branes in large R-R field background.

We motivate the theory from the NP M5 theory after double dimensional reduction

on x2. The first character what we find is that the theory includes volume-preserving

diffeomorphism, because of the (p-1)-form field define the (p-1)-dimensional volume form

in the effective theory. The trouble what we meet is the theory with auxiliary fields and

without manifest one form field aα. Firstly, we use the dual transformation to make one

form field aα to become manifest. Then we study how to find the gauge symmetry and

supersymmetry of one form gauge field aα. The nontrivial parts are how to find suitable

covariant variables in this mixing symmetry (i.e. VPD and U(1) gauge symmetry) system.

We solve this problem, and we use these covariant variables to construct the Dp-branes

in large R-R (p-1)-form background. After integrating out the auxiliary field B̆α
µ̇, we

find we still need the two form field bµ̇. This two form field help us to keep system with

U(1) gauge symmetry and VPD at same time. We also need the two form field to define

these covariant variables. The bµ̇ field is necessary in our theory, we can understand it

as the degree of one form field aα from electric-magnetic dual viewpoints. We give the

evidence in order expansion analyses; in zeroth order, we find the relation ∂µ̇b
µ̇ = −F01.

In general, we should solve the relation in all order, but it is really nontrivial work.

Hence, we deal with it by gauge fixing method in first order calculation. Finally, We

study the full system which couples with matter fields (XI ,Ψ). We do similar analyses as

gauge fields case. The hard problem is to find the supersymmetry transformation law of

dual field. We need to calculate the remaining terms of dual action after supersymmetry

transformation. Using the result, we can find the way to define the supersymmetry
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transformation law of dual field. We also study the topological quantities in this system

from the central charge of superalgebra. If we can find the new solitons solutions, it will

be interesting.

5.2 Discussion

The final purpose in this thesis is to find effective field theory of all extended objects

in all possible background fields. However, we are still far from this purpose. One way

to extend our recent work is to study the D3-brane in R-R 4-form background from T-

duality. Firstly, we do dimensional reduction on x1, then we view the gauge field a1 as

the transverse direction of D3-brane (X̃1). Finally we get the effective D3-brane theory

in large R-R 4-form background. The R-R 4-form field D(4):

D(4) = V (1) ∧ C(3). (5.1)

The C(3) is original 3-form background in D4-brane theory, and the V (1) is the one-form

on the transverse direction X̃1 of D3-brane. Extending this conclusion to Dp-branes, we

claim that for a Dp-brane in R-R (p+ 1)-form potential background

D(p+1) = V (1) ∧ C(p), (5.2)

where V (1) is transverse and C(p) is parallel to the Dp-brane. The VPD, corresponding to

the volume-form C(p), shares the same gauge field degrees of freedom with the component

of the momentum p along the direction of V (1).

The other brane systems in large field background are also interesting. For example,

we want to know the behavior of NS5-branes in large R-R field background, the effective

action of KK monopole in large field background, etc.

There are some interesting papers which describe the possible effective action of Dp-

brane in R-R field background [37–39, 51]. However, they only focus on the D3-brane

in R-R 2-form background case and the supersymmetry is N = 1
2
. This topic is called

by non-anticommutative field theory, which is motivated from the extension of original

anticommutative field theory (supersymmetry theory). How to understand the relation

between their work and our new methods is an important problem.

Furthermore, we know the original AdS/CFT correspondence which describe the

physics of D-branes in R-R field background. How to apply the correspondence into

large R-R field background is another important application.
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Appendix A

Conventions and Notations

In this article, we use these indices to label the 6 worldvolume directions:

M,N,R = µ, ν, ρ, µ̇, ν̇, ρ̇ , (A.1)

µ, ν, ρ = 0, 1, 2 , (A.2)

µ̇, ν̇, ρ̇ = 1̇, 2̇, 3̇ . (A.3)

The metric and Levi-Civita tensor are:

gMN =

(

ηµν 0

0 ηµ̇ν̇

)

, (A.4)

ηµν =







−1 0 0

0 1 0

0 0 1






, (A.5)

ηµ̇ν̇ =







1 0 0

0 1 0

0 0 1






, (A.6)

ǫ012 = −ǫ012 = 1, (A.7)

ǫ1̇2̇3̇ = ǫ1̇2̇3̇ = 1. (A.8)
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The conventions of Gamma matrix are:

{ΓM ,ΓN} = 2gMN , (A.9)

(Γ0)† = −Γ0, (A.10)

(ΓM 6=0)† = ΓM 6=0, (A.11)

Γ7 ≡ Γ0Γ1Γ2Γ1̇Γ2̇Γ3̇, (A.12)

ΓµνρΓ1̇2̇3̇ = ǫµνρΓ7, (A.13)

Γµνρ = ǫµνρΓ1̇2̇3̇Γ7, (A.14)

(Γ7)2 = 1. (A.15)

We use these conventions to label the fields and directions in D4-brane theory:

α, β, γ, δ = 0, 1 , (A.16)

A,B,C = 0, 1, 1̇, 2̇, 3̇ , (A.17)

bµ̇2 ≡ aµ̇, (A.18)

Λ2 ≡ λ, (A.19)

FAB ≡ ∂AaB − ∂BaA, (A.20)

ǫαβ2 ≡ ǫαβ. (A.21)

On the other hand, we also use the index I to label the transverse directions of brane.

In this article, we use I = 6, 7, 8, 9, 11 in M5-brane or D4-brane cases.
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Appendix B

Some Useful Identities

In order to check supersymmetry, we need to use some identities. Here is the summary.

• Chirarity condition

Γ7Ψ = Ψ, (B.1)

Γ7ǫ = −ǫ. (B.2)

Hence, we can get:

ΓµνρΓ1̇2̇3̇ψ = ǫµνρΓ7ψ = ǫµνρψ, (B.3)

ΓαβΓ2Γ1̇2̇3̇ψ = ǫαβψ, (B.4)

ΓαβΓ1̇2̇3̇ψ = ǫαβΓ2ψ, (B.5)

ΓαΓ1̇2̇3̇ψ = −ǫαβΓβΓ
2ψ, (B.6)

Γ1̇2̇3̇ψ = −1

2
ǫαβΓαΓβΓ

2ψ, (B.7)

Γµ̇Γ1̇2̇3̇ψ =
1

2
ǫαβΓαΓβΓ

2Γµ̇ψ. (B.8)

• Gamma matrix
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There are some useful identities of gamma matrix:

ΓAΓB = ΓAB + ηAB, (B.9)

Γµ̇Γ
µ̇ = 3, (B.10)

Γµ̇Γ
µ̇ν̇ = 2Γν̇ , (B.11)

Γµ̇Γ
µ̇ν̇ρ̇ = Γν̇ρ̇, (B.12)

ǫµ̇ν̇ρ̇ = −Γµ̇ν̇ρ̇Γ1̇2̇3̇, (B.13)

Γµ̇ǫ
µ̇ν̇ρ̇ = −Γν̇ρ̇Γ1̇2̇3̇, (B.14)

Γµ̇ν̇ǫ
µ̇ν̇ρ̇ = 2Γρ̇Γ1̇2̇3̇, (B.15)

Γµ̇Γ1̇2̇3̇ = Γ1̇2̇3̇Γµ̇, (B.16)

ΓαΓα = 2, (B.17)

ΓαΓβΓα = 0. (B.18)

• Levi-Civita tensor

ǫαβǫγδ = −ηγαηδβ + ηγ
βηδ

α, (B.19)

ǫµ̇ν̇ρ̇ǫσ̇λ̇δ̇ = ησ̇
µ̇ηλ̇

ν̇ηδ̇
ρ̇ + ησ̇

ν̇ηλ̇
ρ̇ηδ̇

µ̇ + ησ̇
ρ̇ηλ̇

µ̇ηδ̇
ν̇

−ησ̇ µ̇ηλ̇ρ̇ηδ̇ ν̇ − ησ̇
ν̇ηλ̇

µ̇ηδ̇
ρ̇ − ησ̇

ρ̇ηλ̇
ν̇ηδ̇

µ̇, (B.20)

ǫαβηγδ = −ηαγǫβδ + ηβγǫαδ, (B.21)

ǫµ̇ν̇ρ̇ησ̇δ̇ = ǫµ̇ν̇σ̇ηρ̇δ̇ + ǫν̇ρ̇σ̇ηµ̇δ̇ + ǫρ̇µ̇σ̇ην̇δ̇. (B.22)

47



Appendix C

Suitable Scaling Limit in Different

Cases

When we describe the effective field theory of Dp-brane, we need to choose some limit

of original exact theory. The effective field theory of open string ending on Dp-brane

should be described by some limit. For example, the DBI action of Dp-brane is given by

slowly varying limit( ∂F ≪ 1) of original string scattering amplitude analysis. Hence,

the DBI action is a effective description of string theory without higher derivative term.

Scaling limit(zero slope limit α′ → 0) is a low energy limit, which make theory be more

easy for analysis. For example, the zero slope limit of DBI action is Yang-Mill action. In

this section, we want to describe the suitable low energy limit of theory in different fields

background.

C.1 Scaling Limit of Dp-brane in B-field Background

The low energy limit means the theory without string behavior, the first example is

Yang-Mill theory. People [12] find the commutative Yang-Mill theory can relate to non-

commutative Yang-Mill theory by using Seiberg-Witten map and taking scaling limit.

This scaling limit is called Seiberg-Witten limit:

α′ ∼ √
ǫ→ 0, (C.1)

gij ∼ ǫ→ 0, (C.2)

here i, j is the non-vanish component of B field. This limit is understood the low energy

limit of Dp-brane in NS-NS B-field background.
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C.2 Scaling Limit of M5 in Large C-field Background

Following the logic in previous section, the NP M5 theory is some special limit of M5

in large C-field background. The reason is the kinetic terms of gauge field which is

quadratic (H2) as Yang-Mill theory case. So, we should ask what is the scale limit of

this NP M5 theory. The NP M5 theory can relate to the action of Dp-brane in NS-NS

B-field background after DDR, so we can get the clue of scaling limit from this relation.

Following the calculations in paper [47], we summary it by below equations:

ℓP ∼ 3
√
ǫ, (C.3)

gµν ∼ ǫ0, (C.4)

gµ̇ν̇ ∼ ǫ, (C.5)

Cµ̇ν̇ρ̇ ∼ ǫ0, (C.6)

ǫ → 0, (C.7)

here the ℓP is Plank length and C is background 3-form. The scaling limit will match the

scaling limit of D4 in B-field background after DDR on y3̇. To understand this result. we

introduce the radius of compact direction(y3̇) Rphys

3̇
, the radius can be calculated by this

way: TD4 = 2πRphys

3̇
TM5 =

2πRphys

3̇

(2π)5ℓ6p
. This is the knowledge of M-IIA which D4 is given by

M5 after DDR. From the relation TD4 = 2πRphys

3̇
TM5, it is consistent with the results:

Rphys

3̇
= gsℓs, ℓP = 3

√
gsℓs. (C.8)

On the other hand, the C field can relate to B field in D4 by this way:

C1̇2̇3̇ =
B1̇2̇

2πRcoord
3̇

=

√
g3̇3̇B1̇2̇

2πRphys

3̇

. (C.9)

From these relation we can find the scaling limit after DDR on y3̇:

α′ ∼ √
ǫ, (C.10)

g1̇2̇ ∼ ǫ, (C.11)

B1̇2̇ ∼ ǫ0, (C.12)

gs ∼ 4
√
ǫ, (C.13)

ǫ → 0, (C.14)

here the scaling of gs can get from the constraints of finite Yang-Mills coupling. These

relations are same with previous section.
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C.3 Scaling Limit of D4 in Large C-field Background

To carry out the double dimensional reduction (DDR) for the M5-brane along the x2-

direction, we set

x2 ∼ x2 + 2πR, (C.15)

and let all other fields to be independent of x2. As a result we can set ∂2 to zero when

it acts on any field. Here R is the radius of the circle of compactification and we should

take R ≪ 1 such that the 6 dimensional field theory on M5 reduces to a 5 dimensional

field theory for D4. Since the NP M5-brane action is a good low energy effective theory in

the limit in previous section, the 5 dimensional field theory is a good low energy effective

description of a D4-brane in the limit ǫ→ 0 for

ℓs ∼ ǫ1/2, gs ∼ ǫ−1/2, gαβ ∼ 1, gµ̇ν̇ ∼ ǫ, Cµ̇ν̇λ̇ ∼ 1, (C.16)

with

gsℓs ≪ 1, (C.17)

from the perspective of the type IIA theory. The indices α, β = 0, 1 are used to distinguish

from the M5-brane indices µ, ν = 0, 1, 2.

Note that in the scaling limit of NP M5 theory, another three C-field component

C012 ∼ ǫ−1 look like divergence. As a result the B-field component B01 ∼ ǫ−1 and the

noncommutative parameter θ01 ∼ B−1 ∼ ǫ vanishes in the limit ǫ → 0. However, the

combination 2πα′B is finite in the limit, and thus the D4-brane is not only in a C-field

background but also in the B-field background. Using the nonlinear self-dual relation

derived in [23,24], we can express C012 in terms of C1̇2̇3̇, and then the B-field background

is given by

2πα′B01 =
C1̇2̇3̇

2π
. (C.18)

In the convention (normalization of the worldvolume coordinates) of [2], we have

C1̇2̇3̇ =
1

g2
⇒ 2πα′B01 =

1

2πg2
. (C.19)
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