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Abstract (in Chinese) 

現今結構物健康監測技術多經由普通接觸式量測計（如：加速度規、速度規…

等）裝設於結構物量取反應訊號進行分析判斷。為獲取結構細部反應資訊而大量

安裝儀器的情況下，此種量測法將會有佈線繁雜以及裝設位置選項過少等問題產

生。然而受惠於光學科技之進步，此問題可有效解決。光學量測方法是將待量測

位置標示上一可經由影像辨識之目標點，藉由攝影裝置觀測目標移動情況進行三

維動態分析。只要目標位於裝置監控範圍內，此方法將能進行大規模位置點計算。 

本研究重點在探討此光學量測位移訊號應用於結構系統識別及破壞診斷的適

用性。分析方法分為兩大類。第一類是整體系統識別方法，對於 1.只需結構反應

的斜方差型隨機子空間識別 (Covariance driven Stochastic Subspace Identification, 

SSI-COV)，和 2.需系統輸入輸出資訊的子空間識別 (Subspace Identification, SI) 作

探討，應用光學多維訊號進行自然頻率與阻尼比分析。再來是研究 3.主成分分析 

(Principal component analysis, PCA) 應用此訊號進行結構模態識別。第二類是局部

系統評估，在將光學量測點網格化為數個單元後，應用幾何分析概念進行 4.奇異

譜分析 (Singular spectral analysis, SSA) 獲取單元之主要動態做進一步幾何處理。

另外應用 5.連續小波轉換 (Continuous Wavelet Transform, CWT) 分析訊號不連續

性，對破裂做動時間點進行判斷。單元也可由 6.有限元素法 (Finite element method, 

FEM) 計算其應變動態行為。本研究將會針對單層雙垮鋼筋混凝土桁架的振動台實

驗進行實際應用。此實驗使用集成式光學量測儀器 DMM (Dynamic Measuring 

Machine) 量測中間柱三維位移訊號。分析結果顯示應用此種空間位移訊號，整體

系統識別方法可有效的獲取結構物資訊，並對結構變化進行描述；網格化之動態

行為分析也能為結構局部破壞提供重要資訊。 

關鍵詞：結構健康監測、空間位移、訊號處理、奇異譜分析、有限元素
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Abstract 

In this research, the capability of advance spatial displacement measurement for 

structural health monitoring (SHM) is studied. The method for obtaining this kind of 

data is different from regular measuring system. It utilizes the optical processing 

technique to calculate the specific particles’ locations (called targets) within an image. 

While taking image and compute the locations over time, the dynamic motion can be 

estimated. This research employed the three dimensional displacement from optical 

sensors to identify system and perform damage assessment. 

The applied signal analysis methodologies can separate into two categories, global 

system identification and local element motion detection. For global system, two 

subspace methods including 1.covariance-driven stochastic subspace identification 

(SSI-COV) and 2.recursive subspace identification (RSI) are examined. They can obtain 

the system natural frequency and damping ratio based on different condition. The other 

method is 3.principal component analysis (PCA), which the system normal modes can 

be briefly calculated while the measured locations are distributed along the system. For 

local motion, we can discretize the targets into a set of local elements. These elements 

motion is detect by 4.singular spectral analysis (SSA), 5.continuous wavelet transform 

(CWT), and 6.finite element method (FEM). The extracted information is used to 
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describe the structural local properties and detect the damage occurrence. To examine 

the applications of these methodologies on real three dimensional displacement data, a 

shake table test of one-story two-bay RC frame performed in the NCREE is selected. 

This experiment installed a totally integrated optical measuring system (DMM, by NDI 

Inc.) on its central column to obtain the displacement. The analysis results show that 

this kind of data is capable for system identification, and the detection of damage is also 

feasible. Detail analyzes the discrete elements. The damage location may be obtained. 

 

Keywords: Structural Health monitoring, spatial displacement, signal processing, 

singular spectral analysis, finite element method 
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Chapter 1. Introduction 

1.1 Motivation 

Structure health monitoring (SHM) has become more and more important in the 

civil engineering structure. Since the structures are deteriorated under service condition, 

it is recommended observing the structure health over time. The structure dynamic 

response measurement is very useful information. These measured signals contain the 

system response properties. Base on signal processing techniques, one can extract the 

signal feature for structure health monitoring and damage assessment. 

 The vibration-based SHM framework not only relies on the signal processing 

techniques but also the sensor arrangement. The recent structure measuring system 

utilizes normal contact sensors, for example accelerometers, placed on specific locations 

to represent the structure DOFs. These locations are mostly selected the floor slabs 

according to structural analysis concept. But if we want a more detail information 

within the floors, these sensors are not suitable because of installation difficulty. A 

measuring technique on this kind of location is needed. We discover that a novel 

technique utilized the optical processing method can measure particles’ motions within 

an image over time with a reliability accuracy. This optical measuring technique can 
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implement on the locations that the normal contact sensors are difficult to install. 

Therefore, we can extract both global and local information from the structure by 

combining the optical and normal contact sensors. 

These optical sensors are distributed within a region of local structure. The 

research on the application of presents signal processing techniques is needed. It is 

believed that the measured information can be used to identify the system and perform 

local damage assessment for structure health monitoring. 

1.2 Literature Review 

There have already lots of researches of signal processing methodologies on 

damage detection and system identification. Science the optical measuring system 

measures a large amount of sensor locations over time, methodologies with multivariate 

techniques are more suggested in this research. 

For system identification, the subspace identification method is proved that its 

capability to observe the structure characteristics [15, 26]. With recursive updating the 

measurement data, an on-line system monitoring is obtained. Moreover, the method 

relies on the singular value decomposition (SVD). Since the system information is 

contained in the singular vectors of SVD, damage assessment can achieve by observing 
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the vector space expanded by singular vectors. There are researches utilize the space 

projection theorem to detect damage according to the change point of dataset [17, 23]. 

The principal component analysis (PCA) is another signal feature extraction 

technique. It is one of the well-known methods for multivariate analysis. Originally, the 

PCA are used to perform data compression [18]. Feeny [7] conducted the applicability 

of structural dynamic response with PCA to real experiment test. It is proved that PCA 

has the ability to express the structural normal modes under some condition [3]. While 

the sensors are arrange into an array form, the PCA can be applied on the data to detect 

the damage location [5]. The advantage is that the PCA is straight forward and has 

capability for nonlinear applications. 

The singular spectral analysis (SSA) can extract not only features of one signal but 

also mutual features of signals with multivariate. It has been proved that it can 

decompose the data into trend, harmonic wave, and noise term [24]. The SSA has a 

widely application. In the civil engineering scope, there are studies on the analysis of 

seismic response data [11, 21] to grab site vibration information. The concept of SSA is 

relative to PCA. It is like analysis the signal with the embedding theorem [20] using 

PCA. And the decomposed results are the signal principal feature that can represent the 

original signal. 
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The analysis methods mentioned above are capable for multivariate data analysis. 

But they are still some processes need to study for the real application on damage 

assessment with the array of optical sensors. The explanation is in remaining chapters. 

1.3 Research Objective 

The objective of this research is to conduct a survey on the applications of the 

spatial displacement data and provides to a series of shake table test of the RC frame to 

check the capability. The displacement data measure the structure three dimensional 

motions over time with large amount of the sensing locations. It is expected that one can 

perform the system identification and detect the damage using this detail spatial 

displacement information. 

The organization of this research is briefly described as follows: 

Chapter 1:  Describe the research motivation and literature review of some present 

system identification and damage assessment techniques. 

Chapter 2:  Introduce the signal processing methodologies used in this research. The 

introduced methodologies can perform system identification and feature 

extraction on the spatial displacement data. 
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Chapter 3:  Perform the methods on the seismic response of a one-story two-bay RC 

frame. The analysis is separated into two categories: global system 

identification and local motion detection. The selected parameters and 

results of each method are discussed. Finally, the analysis results will be 

compared to each other. 

Chapter 4:  Summaries for the use of the proposed techniques are listed in this 

chapter, and the potential research topics are indicated at the end. 
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Chapter 2. Signal Analysis Methodology 

2.1 Introduction 

In this chapter, the algorithm of signal analysis methodologies used in this research 

will be introduced. These methodologies are separated into two categories according to 

their application, which are global system characteristics identification and local 

element motion analysis. After introduction, all of the analysis methodologies will be 

applied on the spatial displacement signals acquired from the experiment mentioned in 

the next chapter to identify the system parameters and detect the damage occurrence. 

2.2 Global System Characteristics Identification 

Nowadays, there are several signal processing techniques can perform global 

system characteristics identification. These methods can be categorized into parametric 

and non-parametric methods, or model based and non-model based. To choose reliable 

methods for this study, there are three different methods are selected. Two of them are 

subspace methods (SSI-COV and RSI) based on the discrete time state space model and 

can identify system natural properties including frequency, damping, and mode shape. 

The other is principal component analysis (PCA) which is a time series decomposition 
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technique that can briefly obtain the system normal modes. Detail introductions of these 

methodologies are mentioned in the following sections. 

2.2.1 Covariance-Driven Stochastic Subspace Identification (SSI-COV) 

The SSI-COV algorithm is an expansion of the stochastic subspace identification 

(SSI) technique which identifies stochastic state space model using output only data. 

Instead of the original SSI algorithm [22, 26], the SSI-COV calculates the system via 

assemble of block covariance matrices. Since these SSI algorithms based on concepts 

from linear algebra, state space model, and statistics, they have been proven to perform 

on the structure identification [15, 28]. Only one restrict of the SSI based algorithms is 

the output measurement should be ambient response of structure because of the 

assumption of noise input. The derivation of SSI-COV is as follows: 

Stochastic Discrete Time State Space Model 

For a system motion equation + + = =Mx Cx Kx F Lu  , where M , C , and 

n n×∈K   are system mass, damping and stiffness matrix; 1n×∈x   and 1m×∈u   are 

displacement and input force vector; n  and m  represent number of DOFs and 

number of inputs. The state space equation is written as 

 ( ) ( ) ( ) ,c ct t t= +X A X B u   (2.1) 
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 2 2 2
1 1 1,  and   ,n n n n m

c c
× ×

− − −

 
= ∈ −

 
= ∈ − − 

0 I
A B

0

M K C MM L
   (2.2) 

where ( ) ( ) ( ) 2 1TT T nt t t × = ∈ X x x   is the state vector at continuous time t  and 

( )c tA , ( )c tB  are continuous time state matrix and input matrix. If there are only l  

DOFs has been measured, and the measurement response can be acceleration, velocity 

or displacement. The output observation vector ( ) 1lt ×∈y   can be written as 

( ) ( ) ( ) ( )a v dt t t t= + +y C C x xx C , where aC , vC , and l n
d

×∈C   are output location 

matrices. To transform ( )ty  into state space representation, it becomes 

 ( ) ( ) ( ) ,c ct t t= +Xy C D u   (2.3) 

 1 1 2 1,  and   .l n l m
c d a v a c a

− − × − ×= − − =  ∈ ∈C C M K C M C C M LC C D    (2.4) 

This equation is called observation equation. The cC  is output matrix and cD  is direct 

transmission matrix. Since all data are measured in discrete time, Eq.(2.1) and Eq.(2.3) 

need to be transformed into discrete time state space model, that is 

 1 ,

,
k d k d k k

k c k c k k

+ +
+

= +
= +

X w

y

A X B u

X u vC D
  (2.5) 

with the c t
d e Δ= AA , ( ) 1

d d c c
−= − IB A BA , and ( )k k t= ΔX X . The terms kw  and kv  

at the end of equations are the error from noise and measurement. If the input force 

satisfies the stochastic expression, the discrete time state space mode can be further 

transformed into 

 1 ,

.

s s s
k d k k

s s s
k c k k

+ =

=

+

+

X w

y X v

A X

C
  (2.6) 
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This equation is called stochastic state space model. The SSI-COV identifies the system 

matrices ( dA  and cC ) of Eq.(2.6) only using the output measurement s
ky . 

Hankel Covariance Matrix of SSI-COV 

Assume the output measurement ( )ty  is [ ]21 Ny y y , the first step of the 

SSI-COV is to gather the measurement vectors into a data Hankel matrix that is 

 

1 2

2 3 1

1 1

1 2

2 3 1

2 2 1

,

s s s
j

s s s
j

s s s
p i i i j

s s s
i i i jf
s s s
i i i j

s s s
i i N

+

+ + −

+ + +

+ + + +

+

 
 
 
 
 

   =       
 
 
 
  

y y y

y y y

Y y y y

y y yY

y y y

y y y




   




   


  (2.7) 

where li j
p

×∈Y   denotes the past measurements and li j
f

×∈Y   is the future 

measurements. After this, the block Toeplitz matrix is obtained by 

 

1 1

1 2

2 1 2 2

1
.

i i

i i

i i

T
f p

i

N

−

+

− −

 
 
 = =
 
 
 

R R R

R R R
T Y

R R

Y

R




   


  (2.8) 

Each iR  defines an output covariance between two time instant with lag i . 

Extended Observability Matrix and Singular Value Decomposition 

According to the derivation based on stochastic properties [15], the block Toeplitz 

matrix T  can be decomposed into the multiplication of the extended observability 
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matrix 2li n
i

×∈O   and the reversed extended stochastic controllability matrix 

2n li
i

×∈Γ   as follows 

 1

1

,i
i i

i

−

−

 
 
   = =   
 
 

C

CA
T O Γ A G G GA

CA




  (2.9) 

where the i  here denotes the order of the Toeplitz matrix T . The singular value 

decomposition (SVD) is utilized to perform this factorization. Representation of SVD is 

 [ ] 1 1
1 2 1 1 1

2 2

,
T

T T

T

  
= = ≅  

   

S 0 V
T USV U U S

S
VU

0 V
  (2.10) 

where li li×∈U   and li li×∈V   are the orthogonormal matrices, and S  is the 

diagonal singular values. To perform data compression from TUSV  to 1 1 1
TU S V , the 

svdC  defined the percentage of preservation is determined. Assume the diagonal terms 

of S  are [ ]1 2 lis s s . Size N  of 1S  is the minimum even number satisfied 

 ( )
1

trace .i sv
i

d

N

s C
=

≥ × S   (2.11) 

After the data compression, we can compare the form between Eq.(2.9) and Eq.(2.10). 

The extended observability matrix iO  can be defined as 

 1 2
1 1 .i = SO U   (2.12) 

State Matrix and System Properties 

The system matrices dA  and cC  can be easily extracted from iO . We can 

compare to Eq.(2.9) for the elements of matrix iO , the system matrices are 



 

12 

 

 
( )

( )( ) ( )
1: ,: ,

1: 1 ,: 1 : ,: ,

c i

d i i

l

l i l li
+

= − +

=C O

A O O
  (2.13) 

where ( )+⋅  denotes pseudo inverse. As soon as the discrete state matrix dA  is 

derived, we can transform it into the continuous form cA  following the relation in 

Eq.(2.5) and apply eigen-decomposition of it that 

 
1 ,

.

c
m
c

m
c c

−=

=

=A Λ Ψ A Ψ

C C Ψ
  (2.14) 

The superscript m  denotes the matrices in modal coordinate. Each eigenvalue kλ  in 

Λ  is a complex number and has its conjugate value kλ′ . After eigenvalues are 

determined, the system natural frequency kf  and damping ratio kξ  can be solved as 

 ( ) ( ) ( )2 2 Re1
Re Im ,  and   .

2 2
k

k k k k
k

f
f

λ
λ λ ξ

π π
−

+ ==   (2.15) 

Derivation from Eq.(2.7) to Eq.(2.15) represents the SSI-COV algorithm of system 

identification. Flowchart of the SSI-COV algorithm can be concluded as Figure 2-1. 

2.2.2 Recursive Subspace Identification (RSI) 

Different from the SSI-COV based on the noise property of input data, the 

subspace identification (SI) method utilizes both input and output signals to perform the 

system identification [26]. This makes the identified system properties more reliable 

while the measurements are not satisfying the ambient condition. Moreover if the 
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system varies over time, the SI algorithm should analysis with a moving window to 

perform on-line system identification (Figure 2-2). To speed up the repeating calculation 

of the SI, a recursive algorithm that solves equation based on the previous information 

is needed. This section will explain the algorithm of the SI technique first, and then 

introduce the recursive algorithm of LQ factorization briefly. The procedures of the 

recursive-SI (RSI) are as follows: 

Hankel Matrices of Subspace Identification 

The origin of the SI algorithm is based on state space model shown in Eq.(2.5). 

Since we already defined an output data Hankel matrix Eq.(2.7) at the SSI-COV 

algorithm, the input data ( )tu  can also be arrange in the Hankel form that is 

 

1 2

2 3 1

1 1

1

2

2

2 3 1

2 1

,

j

j

p i i i j

i i i jf

i i i j

i i N

+

+ + −

+ + +

+ + + +

+

 
 
 
 
    =       
 
 
 
  

u u u

u u u

U u u u

u u uU
u u u

u u u




   




   


  (2.16) 

where mi j
p

×∈U   denotes the past input measurements and mi j
f

×∈U   is the future 

input measurements. Furthermore, the special Hankel matrix can be defined as 

 ( ) .m l ip j
p

p

+ × 
= ∈ 
 

U
Ξ

Y
   (2.17) 
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Extended Observability Matrix and LQ Factorization 

For system characteristics identification, the extended observability matrix iO  is 

needed. The SI algorithm utilizes both oblique projection theorem and the MOESP 

theorem [25] of LQ factorization to extract the matrix iO . The procedures are 

 
1,1 1,1

2,1 2,2 2,1

3,1 3,2 3,3 3,1

,

T
f

T
p

T

f

    
    =    
        

U L 0 0 Q

L L 0 Q

L L L QY

Ξ   (2.18) 

 ( ) 3,2 2,1,
f

T
f p f i i f

⊥⊥ = =UY U O X U L QΞ    (2.19) 

 ( ) ( )3,2column space column space .i=L O   (2.20) 

where ⊥⋅ ⋅  and ⋅⋅  are orthogonal projection and oblique projection operator; 

Eq.(2.18) is LQ factorization and Eq.(2.19) is oblique projection of Hankel matrices. 

According to derivation [27], the relation between the oblique projection and the LQ 

factorization is defined and they can connect with the extended observability matrix iO  

in Eq.(2.19). Following this equation, only 3,2L  of LQ factorization is needed for 

system identification. Furthermore, column space of it can obtained from SVD, that is 

 
[ ] 1 1

3,2 1 2 1 1 1
2 2

1

,

.

T
T T

T

i

  
= = ≅  

  
=



S 0 V
L USV U U U

0 S

O

S V

U

V   (2.21) 

In this equation, the svdC  defines in Eq.(2.11) is also introduced to denoise the SVD 

result. 
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State Matrix and System Properties 

After the system extended observability matrix iO  is obtained, the same 

procedures introduced in the SSI-COV algorithm from Eq.(2.13) to Eq.(2.15) can be 

applied to obtain the system natural properties. Besides, another parameter omacC  is 

taken to filter out the noise modes. The idea is based on the matrix iO  can be 

reconstructed from two different approaches. First is direct calculation that 

 

( )
[ ]1 2

1

.

m
c

m m
c cm

i N

im m
c c

−

 
 
 = = 
 
 
 

φ

C

C A

C

φO

A

φ   (2.22) 

The other is based on the idea of data composition of Eq.(2.12), that is 

 [ ]1 1 2 .m
i i N== =O Ψ Ψ φ φU φO       (2.23) 

Therefore, the coherence between the vectors iφ  and iφ  are defined as 

 
( )

( ) ( )

*

* *

,  for   1 .OMAC

T

i i

i T T

i i i i

i N= =
φ φ

φ φ φ φ




 
  (2.24) 

The larger OMACi  value reflects the higher correlation. It means the identification of 

i -th mode will be more reliable. Therefore the criterion is set as 

 OMAC .i omacC≥   (2.25) 

Based on Eq.(2.25), we can just preserve the modes satisfied this condition and employ 

these remaining modes for system identification through Eq.(2.15). 
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Given Rotation of Recursive SI 

To identify system on-line and keep a fast calculation speed, a recursive algorithm 

is needed. The recursive-SI algorithm can be separated into following three parts: 

1. Calculate the SI for the initial round and keep the LQ factorization result. 

2. For the following cases, the Hankel matrix in Eq.(2.18) should be updated 

with new measurement and eliminate the old data with the same size. 

3. The LQ factorization of the new Hankel matrix can be replaced by applying a 

recursive algorithm, named given rotation, two times on the previous LQ 

result for updating and eliminating the data. 

Thus, the calculation of LQ factorization of the whole new Hankel matrix is omitted. It 

will not only save lots of computation time but also preserve the accuracy. Detail 

introduction of the processes of RSI algorithm can refer to [26, 27]. 

2.2.3 Principal Component Analysis (PCA) 

The PCA also known as Karhunen–Loève transform is first introduced by Pearson 

[18] as a line fitting algorithm in data space. The concept of PCA is to find orthogonal 

bases called principal components (PCs) which represented the largest possible variance 

direction of the data. Moreover, the PCs are arranged in descending order which means 
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the first PC has largest data variance. For dynamic analysis, PCs can represent system 

normal modes based on few assumptions. Therefore, it is also called proper orthogonal 

decomposition (POD) and the extracted PCs are called proper orthogonal modes 

(POMs). The procedures of PCA algorithm for structural analysis are as follows: 

Data Ensemble Matrix and Correlation Representation 

The PCA starts from the construction of the ensemble data matrix X  of all 

measured response signals, that is 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 2 1

2 1 2

1 2

1 1

2 2 ,

N

N

m m Nm

x t x t x t

x t x t x t

x t x t x t

 
 
 =
 
 
  

X




   


  (2.26) 

each ix  represents a time series measurement of acceleration, velocity, or displacement 

on a particular position of the structure. The suffix m  means total number of 

measurement. After the ensemble matrix X  is arranged, the covariance matrix 

m n×∈C   can be derived as 

 
1

.T

N
=C XX   (2.27) 

Orthogonal basis of Principal Components 

Based on the derivation [13], the orthogonal basis of PCs can be derived from the 

eigen-decomposition of matrix C  that is 

 1,−=C ΨΛΨ   (2.28) 
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where the eigenvectors Ψ  are the PCs of matrix X . 

Normal Modes and Principal Components 

Assume ensemble matrix X  of structural response satisfies modal combination 

theorem. Therefore, X  could be written as the combination of normal modes that 

 
1

,T T
i i

m

i=

= =ΦQ φ qX   (2.29) 

where the iφ , iq , and m  are normal modes, general coordinates, and number of 

modes can be extracted. Assume the structural mass matrix is homogeneous that 

m=M I  and satisfies T
i j ijδ=φ Mφ . Combine Eq.(2.27) and Eq.(2.29) together with 

right multiple iφ , it will become 

 
1 1 1

1 1
.T T

m m
T kk

k i i j

m

i j i
j k i i kN N m

δ
= = =

= = C q φ qφ q φ φ qφ   (2.30) 

Furthermore, assume the damping ratio is relatively small. Eq.(2.30) can be rewritten as 

 
lim 0, for 

1
.

lim 0, for 

T
i k

T kk
k k k k

N

T
k

N

i

i k
N

N m
i k

N

δ→∞

→∞


= = →

 ≠ =

=

q

φ φ
q

q

C q q
q

  (2.31) 

In this equation, 
1 T kk

k kN m

δ
q q  is constant and can be assumed as kλ . Therefore, we get 

 .k k kλ=Cφ φ   (2.32) 

Eq.(2.32) is equivalent to Eq.(2.28) as eigen-decomposition of matrix C . Thus, we 

have proven that PCs Ψ  are the same as structural normal modes Φ . 
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Through the derivation [3], three conditions need to be guaranteed for the 

equivalent of normal modes. There are 1.the structural damping ratio is small in all 

cases, 2.number of observation is large enough, and 3.the mass distribution is 

homogenous. If the mass are not uniform distribution, a modified correlation matrix is 

suggested [10] to improve the analysis result, that is 

 
1

.T
m N

= XX MC   (2.33) 

The mass matrix M  should be determined first to do the modification. According to 

numerical survey [2], PCA though may lose some precision; it can obtain the structural 

normal modes very briefly. 

2.3 Local Element Motion Analysis 

Since the spatial displacement data can represent an object motion very detail, 

there must have some local information according to the mesh elements of these sensors. 

To get the information from elements’ three dimensional motion, the singular spectral 

analysis (SSA) as powerful multivariate signal decomposition technique is introduced. 

Moreover, the signal discontinuity is detected by continuous wavelet transform (CWT) 

to find the crack effect. Finally, finite element method (FEM) which is well defined in 

mesh filed will also be discussed. 
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2.3.1 Singular Spectral Analysis (SSA) 

The SSA as a linear time series feature extraction technique is similar to apply the 

PCA on the time series with the embedding theorem [24] which combines lagged copies 

of the original data from lag 1 to k time steps. By performing the SSA, time series will 

be decomposed into several feature components that can be treat as trend, oscillation, or 

noise components [6, 9]. The procedures of SSA can be separated into four steps, which 

are (1) embedding, (2) SVD, (3) grouping, and (4) reconstruction. Details introduction 

are described as follows: 

Embedding Theorem 

Consider a time series ( ) [ ]0 1 1Nt y y y −=y   of length N . The embedding 

theorem maps the time series into a sequence of multi-dimensional lagged vectors. In 

this step, the only SSA parameter L  called window length should be determined, 

where the range is 2 2L N≤ ≤ . Then 1K N L= − +  lagged vectors are embedded to 

form the trajectory matrix X , 

 ( ) [ ]

0 1 2 1

1 2 3
,

, 2 3 4 1 1 2, 1

1 1 1

,

K

K
L K

i j K Ki j

L L L N L K

y y y y

y y y y

x y y y y

y y y y

−

+=

− + − ×

 
 
 
 = =
 
 
 

=

 

X x x x



 

    


  (2.34) 
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where [ ]1 2

T

i i i i Ly y y− + −=x   for 1 i K≤ ≤  is the i -th lagged vector. One of the 

properties of trajectory matrix is that it is Hankel matrix which the skew diagonal terms 

( const.i j+ = ) are equal. If the analysis data are multivariate, each component of ( )y t  

should be treated as a vector form that { } 1, 2, ,

T

i i i n iiy y y y  =  y   where n is 

the total number of variate. 

Singular Value Decomposition (SVD) 

The second step is to perform SVD to the trajectory matrix X . First define a 

matrix T=S XX . The eigenvalues of matrix S  are denoted by 1, , nλ λ  in the 

descending order ( 1 0nλ λ≥ ≥ ≥ ) and the corresponding eigenvectors are 1 ,, Lu u . 

Then, define vector T
i i iλ= Xv u . The SVD of the trajectory matrix X  can be 

written as 

 1 2
1

.
d

i

T
i i i dλ

=

= += ++ X XuX Xv    (2.35) 

Each T
i i i iλ= u vX  is a rank 1 elementary matrix and d  is ( )max i  with 0iλ > . 

The set of iλ  is called singular values (SVs). It contains the important information of 

decomposition quality and should be plotting out as singular spectrum. 

Grouping 

After the SVD is applied, the trajectory matrix X  has been decomposed into 

several components. The grouping step is to select the appropriate elementary matrices 
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to form an approximate trajectory matrix X . Decision-making of which components 

should be selected can refer to the singular spectrum. The singular spectrum shows brief 

decomposed properties [6] that oscillation comes with two closed SVs in a pair; trend 

component has a lonely SV in a certain amount; series of low value SVs may represent 

signal noise. Therefore through singular spectrum, one can group correlative 

eigentriples ( T
i i iλ u v ) following the type of components would like to reconstruct. 

Reconstruction (Diagonal Averaging) 

Since approximate trajectory matrix X  is no longer kept the property that skew 

diagonal terms are equal, new time series ( )ty  should be reconstructed by diagonal 

averaging the matrix X  based on this property. The scheme of diagonal averaging is 

shown as 

 ( ) ( )

1,1 1,2 1,3 1,

2,1 2,2 2,3 2,

3,1 3,2 3,3 3, 1,1 1,2 2,1

,

Dgnl. 

1 ,2 ,3 ,

Avg. 1
,

2

K

K

K

L L L L K

x x x x

x x x x

x x x x t x x

x x x x

x

 
 
    = ⎯⎯⎯⎯→ =     
 
  

+X y




  
    



 (2.36) 

where ( )ty  is the reconstructed time signal of length N . If the approximate trajectory 

matrix X  is selected to be an elementary matrix of the SVD result, the reconstructed 

signal ( )i ty  will also be called principal component. Equation form [9] of diagonal 

averaging can be written as 
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where ( )min , KL L′ =  and ( )max , KK L′ = . By selecting the different grouping 

components, the original time series can be decomposed into additive components 

represented the data feature. 

2.3.2 Continuous Wavelet Transform (CWT) 

The wavelet transform is a signal processing technique that decomposes the signal 

into the combination of wavelets. Different from the well-known STFT, the wavelet 

transform is believed that it offers more suitable time frequency decomposition. The 

CWT is a division of wavelet transform that divides a continuous time series into 

wavelets. In the wavelet analysis, the CWT starts from selecting a wavelet function 

called mother wavelet. The mother wavelet should satisfy some criteria that it’s narrow 

band, zero-mean, and with boundary value zero. In this research, the mother wavelet is 

selected the ‘bior6.8’ of MATLAB build-in wavelet function. The algorithm of CWT 

only contains two steps. They are briefly described as follows: 
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Wavelet Kernel and CWT 

The CWT starts with the selection of mother wavelet and the definition of wavelet 

kernel. Assume the mother wavelet is ( )tψ . The wavelet kernel is defined as 

 ( ),

1
.a b

t b
t

aa
ψ ψ − =  

 
  (2.38) 

The parameter 0a >  is called scale value, and b  is called translation value. Since the 

mother wavelet is a narrow-band function and only has a central frequency f . The 

value a will scale the mother wavelet’s central frequency, and value b  defines the 

mother wavelet’s location. Eq.(2.38) transforms the time function of mother wavelet 

into a two dimensional time-scale wavelet kernel function which can obtain the CWT. 

Define a square integrable time signal ( )x t . The second step of CWT is to 

transform ( )x t  into time-scale plane with the help of wavelet kernel, that is 

 ( ) ( ) ( )*
,, ,a bX a b x t t dtψ

−

∞

∞
=    (2.39) 

where the ( )*⋅  represents the operator of complex conjugate. By using the Eq.(2.39), 

the time function ( )x t  has becomes a time-scale function ( ),X a b . The value of 

( ),X a b  is called wavelet coefficient. It is likes a shifting processing that using the 

mother wavelet to fit the input signal with corresponding a and b . This two variates 

function can plot a figure called scalogram. The higher value in scalogram means the 

energy concentration region of the signal ( )x t . For a signal with non-continuity, the 
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scalogram of CWT will present a high value in the non-continuous time instance with a 

very long scale range. So, we can detect the signal non-continuity using the output 

time-scale scalogram via this property. 

2.3.3 Finite Element Method (FEM) 

The finite element analysis is a numerical approach that the partial differential 

equations (PDEs) can be solved approximately via discrete equations [19]. It is first 

invented for civil engineering problem, and now successfully employed in vast area. 

The concept of FEM is to transform the boundary value problems (BVPs) called strong 

form into equivalent integral equations called weak form, and then discretize the weak 

form into the finite domain space [8]. Following this way, the numerical integration to 

solve the discretized problem becomes possible. In this research, the measured spatial 

locations can be treated as the nodes of discretized element. Since the displacement is 

measured directly, the strain field can be derived following a more general 

representation without solving BVPs. For this analysis, we define the discretized 

element is a four nodes quadrilateral (Q4) element. The derivation of strain field via the 

FEM is as follows: 
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Natural Coordinate and Element Shape Function 

To develop the properties of the Q4 element, first we consider the coordinate 

representation. Though the element shape can be well defined in the physical coordinate, 

it is hard to perform calculation while the orientation is arbitrary. Therefore, the natural 

coordinate is obtained. The natural coordinate lies in ( ),ξ η  plane that the boundary is 

,1 1ξ η≤− ≤ + . With the mapping technique, we can depict the Q4 element into the 

natural coordinate for more clear representation (Figure 2-3). Based on the natural 

coordinate system, the element shape function 4Q
iN  (Figure 2-4) in ( ),ξ η  plane is 

obtained as 

 ( ) ( )( )4 1
, 1 1 .

4
Q

i i iN ξ η ξ ξ η η+ +=   (2.40) 

Moreover, the displacement field ( ) ( ),
,

T

x yu u
ξ η

ξ η  =  u  can also be represented as 

 ( ) ( )4 ,, ,Q eξ η ξ η=u N d   (2.41) 

where the shape matrix ( )4 ,Q ξ ηN  and displacement vector ed  are 

 [ ]1 1 2 2 3 3 4 4 ,
Te u v u v u v u v=d   (2.42) 
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4 4 4 4
4 1

4
2 3 4

1 2 3 ,4
4 4 4

,
0 0 0 0

.
0 0 0 0

Q Q Q Q
Q

Q Q Q Q

N N N N

N N N N ξ η

ξ η
 

=  
 

N   (2.43) 

Kinematic Equation and Strain Field 

The kinematic equation between displacement field and strain field is defined as 
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Combines the Eq.(2.41) and Eq.(2.44) together, we have 

 4 ,Q e e e
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The matrix eB  is called the strain-displacement matrix. According to this matrix, we 

found out it is necessary to compute the differentials in terms of physical coordinate. 

Since the shape function 4Q
iN  is obtained in ( ),ξ η  plane, the chain rule is utilized to 

perform the differentials, that is 
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The matrix eJ  is called the Jacobian matrix and can also be derived follows 
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where the e
ix  and e

iy  are the initial nodal positions. Therefore, the differentials of 

shape functions in terms of physical coordinate can be transformed into the differentials 

in terms of ( ),ξ η  plane following Eq.(2.47) and Eq.(2.49). After solving the 

differentials, they can be arranged to get the strain-displacement matrix eB . It should 

be mention that the matrix eB  is a function of ( ),ξ η  since 4Q
iN ξ∂  and 4Q

iN η∂  

are not constant. It means the strain field ε  in Q4 element is not a constant, either. For 

a normal FE representation, we usually calculate the strain field on the location of the 

2 2×  Gauss points where are 
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Hence, we can derive strain fields on the four points within the Q4 element. That is 
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The average strain field of Q4 element can be obtained as 
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The above procedures can be performed onto different meshes just use the 

information of the initial nodal positions (Eq.(2.49)) and the displacement vector 

(Eq.(2.42)), therefore the strain field of the entire domain can be derived. 

2.4 Chapter Summary 

This chapter has introduced all the algorithms presented in this research. They have 

been categories into two groups. The first group is global characteristics identification 

including three methods. The first-two are subspace identification methods including 

the SSI-COV (Section 2.2.1) and the RSI (Section 2.2.2). Both methods can identify the 

system natural frequency and damping ratio. The difference between them is as follows: 

the SSI-COV uses output measurement only to perform the identification where the 

measured data should satisfy the ambient vibration assumption. On the other hand, the 

recursive-SI needs both input and output measurement to do the identification. 

Moreover, it can identify system state on-line during the excitation according to moving 

window technique. The other method to identify system state is the PCA (Section 2.2.3). 

Base on the derivation, we can conclude that system normal modes can be approached 

as signals’ PCs follow three restrictions: 1.the damping ratio is small enough in all cases, 

2.the structural mass matrix is homogeneous, and 3.the number of measurement should 
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be larger enough. Following these criteria, the system normal modes can be obtained by 

the PCA. 

After the global system characteristics are identified, we go detail of the local 

motion properties based on three different analyses. The first one is the SSA (Section 

2.3.1). It can decompose local signals into the mutual mono-components following their 

energy contribution. Moreover, the singular spectrum of the SSA can reflect the 

decomposition quality and give the preview of the signal information. According to 

these properties, the SSA is employed to extract the local element’s principal motion for 

further analysis. The other method is CWT (Section 2.3.2). With the help of wavelet 

kernel, the CWT can transform input signal into a time-scale plane called scalogram that 

represents the time frequency decomposition. The resulting wavelet coefficient gives the 

energy distribution of the signal. While the signal is not continuous at certain time 

instances, the scalogram will come out a high energy concentration at that time 

instances with a wide range of scale distribution. This property is used to judge the 

crack movement. The last method is finite element analysis (Section 2.3.3). Because the 

spatial measurement has obtained the information of full dimensional element motion, 

the FEM can be easily performed to derive the element’s strain field using the 

displacement measurement. After the elements’ motion properties are derived. We can 



 

31 

 

compare the analysis result between elements to defined damage location. The research 

framework is shown in Figure 2-6. Further analysis of real structural system will 

mention in next chapter. 
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Chapter 3. Experimental Survey 

3.1 Description of the Experiment 

In order to study the application of spatial displacement signals in a real structure 

system, the data of a series of shake table test in the National Center for Research on 

Earthquake Engineering (NCREE) in Taiwan is chose for further analysis. The 

experimental specimen was an one-story two-bay reinforce concrete (RC) frame 

constructed following the Taiwanese design code, with the story height 2 m, span length 

2 m, and the approximate weight 6500 kg. The cross section of three columns was 20 

cm×20 cm, and both joints of the side columns were reinforced for repeated loading. 

The design detail and configurations of RC frame can refer to Figure 3-1 and Figure 3-2. 

This experiment constructed six specimens following the same design detail. For shake 

table test, each specimen was subjected to seismic loading along its longitudinal 

direction. To measure the structure vibration, two measuring systems were employed. 

First system is most commonly used in NCREE including 12 accelerometers, 4 lateral 

LVDTs, and 16 small LVDTs. These devices measured the frame acceleration, lateral 

displacement, and detail deformation of local connection. This system was connected to 

the control center and measured with sampling frequency 200 Hz. The other measuring 
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system was optical sensing system, with total 24 optical targets which were marked on 

the central column to measure the spatial displacement information. This system was 

independent from control center with its own sampling frequency 100 Hz. To 

synchronize both measuring systems, optical sensing system was triggered with control 

center. The configurations of each sensing devices can access from Figure 3-3 to Figure 

3-5. The input ground motion of shake table test was selected the Chi-Chi earthquake in 

Taiwan (Station TCU082) which is shown in Figure 3-6. Two groups of tests were 

performed. The Group1 compared the response of 4 specimens with different intensity 

level. And Group2 focused on a single specimen (RCF6) excited by series of excitation 

with different intensity level applied back to back. The intensity level was selected 600 

gal, 800 gal, 1000 gal, 1200 gal, 1000 gal, 800 gal, 600 gal (Numbered from RCF6-1 to 

RCF6-7). The physical information of these excitations is listed in Table 3-1. 

In this research, the analysis will focus on the Group2 test and the spatial 

displacement data acquired from the optical sensing system. The signal analysis 

methodologies mentioned in previous chapter are applied to identify the system 

parameters and produce damage assessment. 
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3.2 Preview of System Physical Properties 

Since this experiment was recorded using two different measuring system and the 

data from normal measuring system including accelerometers and lateral LVDTs had 

been well studied by other researchers [12, 14, 16], there are some structural physical 

properties we can preview (acceleration measurement of RCF6-2 (800 gal) was broken). 

First is the absolute acceleration response (Figure 3-7). The Fourier spectrum (Figure 

3-8) of it shows that the structure dominant frequency response changed during these 

seismic vibrations. The system natural frequency is also identified by absolute 

acceleration data using equilibrium linear system analysis (Table 3-1). Another 

measurement is about the relative displacement from the lateral LVDTs (Figure 3-9). It 

displays that the structure had permanent deformation in each seismic response. If we 

transform this displacement data into story drift ratio (Figure 3-10), the most vibration 

time frame can be roughly estimate. Finally is the hysteresis behavior (Figure 3-11) of 

each seismic test. From this figure, the stiffness degradation is significant during first 

two cases. After that, the structural stiffness just changed slightly. 
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3.3 Optical Data Preprocessing 

As mentioned in the Section 3.1, the spatial displacement data is measured using 

an optical sensing system. This system is called Dynamic Measuring Machine (DMM) 

designed by NDI Inc. It consists of two major devices. One is the Target-based 

Photogrammetry that provides the ability to conduct dynamic measurement functions 

and full three dimensional tracking. The other device is OPTOTRAK® Certus which is 

the optical tracker. It will track the optical laser flashed by the target system that marks 

on the specific points of the structure. The tracker has the ability to track how these 

three dimensional measurements change over time for dynamic motion measurement 

with RMS accuracy up to 0.1 mm. Detail configuration of optical sensing system is 

shown in Figure 3-12. Since the optical tracker uses its own processing system to 

measure the three dimensional motion over time, some optical data preprocessing 

techniques must be performed before utilizing these measured signals. The processing 

techniques are listed as follows: 

3.3.1 Three Dimensional Affine Transformation 

The original three dimensional measurements are stored in a regular Cartesian 

coordinate defined by the optical tracker’s location and facing direction. Although the 
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coordinate can be set up as correct as possible, it still has some difference because of the 

personal equation. The scheme of this question is shown in Figure 3-13, where axes 

1 1 1- -zx y  may refer to the coordinate of optical sensing system and axes 2 2 2- -zx y  are 

the design system. To correct the difference, the three dimensional affine transformation 

that combines of rotation and translation of the coordinate is performed. The processes 

are as below: 

First is arranging the design position of all optical targets and the measured 

position at the initial stage in two ensemble matrices with an adding coordinate w  of 

value 1, that is 
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The suffix 1, , n  represents order of optical sensors in the experiment. This kind of 

coordinate representation is called the homogenous coordinates. The adding coordinate 

of value 1 conducts the application of translation. Therefore, the transform matrix T  

between these two ensemble matrices can perform both rotation and translation of the 

vector space. To get the transform matrix T  at the second step, the division of two 

ensemble matrices is calculated. That is 

 , .measuredesign init
+=T P P   (3.2) 
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As soon as the coordinate transform matrix T  between design and optical system 

is known, the optical measurement over time can be transform into the design 

coordinate system by left multiplying T , that is 

 ( ) ( ).correct measuret t= TPP   (3.3) 

Therefore, the data in 
 ( )correct tP

 
will show in the design coordinate system we define. 

3.3.2 Shifting of Target Positions 

The target positions originally are determined at the design stage and then marked 

onto the test specimen, and therefore ,correct initP  of the affine transformation result 

should be the same as design position designP  at the initial stage. But actually there are 

slightly differences between them according to the mark imperfection, shifting of target 

position are employed to eliminate the differences. Thus, the resulting measurements 

can compare to the design. 

Shifting process is done by finding the translation matrix ,design correct init= −M PP  at 

the initial stage. After the translation matrix M  is determined, the measurement over 

time can be revised by following the equation, 

 ( ) ( ) .revise correctt t= +P P M   (3.4) 
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These two methods including the affine transformation and shifting of target 

position are the main optical data preprocessing techniques used in this experiment. 

Thus, the following analysis will utilize ( )revise tP  as the data of optical measurement. 

3.4 Global System Characteristics Identification 

In this section, the measured three dimensional displacements are used to identify 

global system characteristics. The identified system characteristics focus on the natural 

frequency, damping ratio, and mode shapes. Methodologies introduced in the Section 

2.2 will be employed here to do the analysis. 

3.4.1 Global System Identification by SSI-COV 

As mention in the Section 2.2.1, the derivation of SSI-COV is based on the 

discrete-time state space model transform from motion equation. Therefore the input 

data of optical measurement should use the relative displacement. The stochastic 

property of input data is another limitation should be confirmed as well. Only the 

measurement of white noise vibration satisfies this condition and is employed to 

identify the system. 

Before using the SSI-COV, two parameters should be defined. One is the svdC  

that determines the percentage of SVD result could be preserved. The other is number 
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of row i  which defined for building the data Hankel matrix. These two parameters 

sometimes influence the identification of system. For example, the larger svdC  value 

will involve more signal information so that more identified results whether they are 

noise or not may present; the number of row i  changes the arrangement of data 

Hankel matrix and the identified results may perturbations according to this reason. To 

deal with these problems, the stability diagram [15] is introduced. It is achieved by 

plotting calculation result (mostly the frequency) versus the number of row i  in the 

same figure. The real system modes in this diagram should be present in a line 

accordingly. As contrast, noise modes will appear in a mess. Therefore, it can be easy to 

identify the real system characteristics from this diagram. 

For this research, all the white noise vibration cases are used and the employed 

sensors are focus on central column (Sensor order 2-12, 18-26). The svdC  value is 

selected to be 0.7, 0.8, and 0.9, as well as the number of row i  vary between 2 and 200. 

The stability diagrams of identified result show from Figure 3-14 to Figure 3-16. These 

figures were plotted with frequency domain decomposition (FDD) as compared. From 

these figures, not only the SSI-COV but also the FDD show a single structure mode 

during the series of shake table tests. It may due to the almost SDOF system according 

to the one-story two-bay RC frame. And after each excitation, the structure natural 
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frequency got a little bit smaller of entire round. This situation means the structure state 

changed and the stiffness became smaller and smaller. If we compare between different 

svdC  values, the stability diagram shows that the natural frequency won’t vary but the 

higher svdC  will come out more stable identified result. The identified natural 

frequency and damping ratio are listed in Table 3-2. Though the damping ratio is hard to 

make a comment, the natural frequency can compare with Mao’s research [16] using 

equivalent linear system from accelerometers in Table 3-1. They are similar to each 

other. Thus, it confirms that spatial displacement data can also be applied to identify the 

system natural frequency and get a reliable result. 

3.4.2 Global System Identification by RSI 

The RSI is performed in this study to identify the system during seismic vibration. 

To employ RSI, some procedures need to be followed. First is about the analysis dataset. 

The measured structural relative displacement has permanent deformation due to the 

nonlinear behavior of seismic excitation. To keep the equilibrium linear assumption of 

state space model, the high-pass Butterworth filter with cut-off frequency 1 Hz is 

applied to all relative displacement measurement to remove these permanent 

components. The other process is to determine the window length and shift length. 
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These two parameters influence the identification resolution and the quality of detecting 

the change. For this research, the window length is 5 sec and shift length is 0.1 sec. 

Finally is to choose the number of row i , svdC , and omacC  that related to de-noise 

techniques. According to the information from the SSI-COV, these parameters are set to 

be 100, 0.9, and 0.9. The same optical sensors as the SSI-COV are employed as the 

output measurement, and the mean measurement of optical Sensor1 and Sensor17 is 

used as the input measurement. The identified system natural frequency and damping 

ratio are shown in Figure 3-19 and Figure 3-20. 

From the natural frequency variation, we found out the structural natural frequency 

has a significant jump at the first 600 gal excitation during 30 sec, and another jump 

occurs closed to 40 sec. After that, the natural frequency change during the remaining 

excitations just has slightly difference. The most distinguished time frame of frequency 

change is about 30 sec in these remaining excitations. For damping ratio variation in 

Figure 3-20, we found out the damping identification quality is not very well. But we 

can know that the system damping ratio is around 0.06, which is within the range of 

normal RC structural damping, and the damping is a little bit larger during the seismic 

effect. The identified natural frequency at the initial and end of time is listed at Table 

3-3 and all the natural frequency variations are plotted in Figure 3-21. 
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3.4.3 Effective Mode Shape by PCA 

PCA has been proved that it is capable for calculating the system mode shape in 

Section 2.2.3. Though there are three restrictions should be followed. For our optical 

sensing system, the weak point is that the marks of optical sensors are not well uniform 

distribution. Few sensors are placed at central and most sensors are placed at both ends 

(Figure 3-4). However, the optical sensors are still distributed on the whole central 

column with a nearly equal spacing at both ends. Therefore we can assume the 

restrictions are approximately agreed. One more thing needs to be mention in this 

analysis is that the mode shapes are approached using SVD, that is 

 ,T=X USV   (3.5) 

where the left singular vector U  is equal to principal components Ψ  which is the 

normal modes in Eq.(2.28). Since the normal modes are unit vectors, we plot out the 

mode shapes with the contribution from S  which stand out the analysis results. The 

resulting first and second mode shape are shown from Figure 3-23 to Figure 3-26. 

According to these figures, the contribution of first mode is relative larger than the 

second mode for every case. Also we know that the series of excitations is performed 

symmetric. The cases with the same intensity level show different contribution. This 

makes us detail see through the modal contribution which is 
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( ) ( )Modal Contribution

trace
100 % .= ×S

S
  (3.6) 

The calculation results of modal contribution are shown in Figure 3-27 and Table 3-3. 

The contribution of first mode leads over 99% in all cases according to the almost 

SDOF system. But if we further examine the scale between 99% and 100%, the modal 

contribution of first mode is getting larger and larger during these cases. This tells us 

while this structure suffering damage, the modal contribution will be difference, and the 

contribution from first mode is getting larger. 

3.4.4 Vector Space Damage Indicator by SSI-COV 

From the derivation of SSI-COV in Section 2.2.1, we know that the system 

extended observability matrix iO  is computed from the eigenvectors of SVD, and the 

matrix iO  contains the system information, which can further calculated to dA , dC  

that represented the state space equation. We expected iO  must have the information 

while the structure varies. To detect this kind of variation, there are researchers 

establishing methods to identify the vector space difference [1, 17, 27]. The concept is 

that the vector space represents a certain condition of system state. The space will differ 

while system changed. The left singular vectors U  of Eq.(2.12) can conduct this kind 

of detection [4]. Thus, the damage indicators of null-space and subspace are introduced: 
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It starts from the SVD of Eq.(2.10). While the system order is determined by 1S  

and the noise term or ultra-low level singular values are denoted by 2S  (control by 

svdC ), the SVD can be approximated as 
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where the suffix n denotes null-space, s  is subspace, and n ≅S 0  . Based on the 

orthogonormal properties of eigenvectors, the following equations are always satisfied: 

 ,T
s n =U U 0   (3.8) 

 .T T T− =UUT T T 0T   (3.9) 

Eq.(3.8) is about the orthogonality between subspace and null-space, and the second 

equation is the projection error on to the space expand by U . If nS  is close to zero, 

Eq.(3.9) can be revised as 

 ( )
1

0 0,
K

T T T T T T
s s i i i s s i

i=

− = ⇔ − =U UT T T U UT t t t t   (3.10) 

where it  is the i -th column vector in the Toeplitz matrix T . Both Eq.(3.8) and 

Eq.(3.10) are used to detect the damage. The scheme of damage detection can refer to 

Figure 3-17. The vector space U  at undamaged state (a) is set to be reference space. If 

the space is difference (b), the vector space ′U  is no longer equal. Compare these two 

vector spaces (c), they have space angle and projection value between them. To employ 
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this concept, assume the Toeplitz matrix T  of reference and current state are 0T  and 

T . Thus, the SVD of them are 
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The damage indicator DIn  based on the null-space of 0T  can be defined as the 

absolute mean value of the matrix evaluated from subspace and null-space that 

 ( )0meanI ,D T
n s n= U U   (3.12) 

where ( )mean ⋅  evaluates the mean value of all elements in the bracket and ⋅  is 

taking the absolute value. The other damage indicator DIs  based on the subspace of 

0T  is also defined as 
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The denominator is used to normalize the DIs . In this research, the vector space of 

WN1 is set as reference state and the other cases at each time instance are treated as 

current states. Base on Eq.(3.12) and Eq.(3.13), the damage indicators are shown in 

Figure 3-18 and Table 3-2. As the structure suffering from seismic loading between each 

white noise case, the damage indicator of DIn  and DIs  got larger and larger. The 

reason why the indicator between WN1 and WN2 is more significant change than other 
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cases may refer to the natural frequency result of the SSI-COV. The system state had the 

largest difference during the excitation of RCF6-1 (600 gal). After that, the system state 

just changed slightly. The other information from Figure 3-18 is that DIn  is not 

sensitive for this analysis. But it also tells the change of system state. 

3.5 Local Element Motion Analysis 

After global system characteristics have been identified, this section would like to 

analysis the local element motion properties from the mesh of these sensor locations. 

The configuration of meshes can refer to Figure 3-28. There are ten elements marked on 

the central column with a rectangular shape and numbered from bottom to top. By 

applying methodologies introduced in Section 2.3, these elements’ principal motion, 

displacement non-continuity, and strain variation during the series of excitations are 

examined. These analyses are based on the geometric properties. The extracted features 

will compare between elements, therefore damage location may be determined. 

3.5.1 Local element principal motion by SSA 

According to previous introduction, the SSA has the ability to decompose 

multivariate signal into mutual trend, harmonic wave, and noise term. Following the 

property, this research applies the SSA on the optical signals acquired from seismic 
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excitations of each mesh element (neglect central elements B5 and B6) defined in 

Figure 3-28. The SSA parameter L  is selected as 400. By examining the singular 

spectrum of decomposed result, the reconstruction focuses on the dominant eigentriple 

defined in Eq.(2.35). Then the reconstruct signals are treated as the element principal 

motion. One assumption is made that the principal motion along longitudinal axis x  is 

different from vertical axis y  according to the orthogonality of axes. Therefore, they 

are separated into two categories and need to be analysis apart. 

In this research concept, the principal motion of each concrete element should 

move like a rigid body motion. But while crack occurs, the element principal motion 

will act with a significant difference. By detecting the difference between two axes, the 

crack location and direction may be discoverable. This idea assumes the influence of 

rigid body rotation is small enough that can be neglected. The scheme of this concept 

can refer to Figure 3-30(a) and (b). The analysis procedures are as follows: 

1. Apply SSA on displacement data of each element nodes according to the axes, 

and reconstruct the dominant eigentriple as element principal motion. 

2. Examine the motion difference along edges based on Figure 3-30(a) and (b). 

The difference of edge P1-P3 and P2-P4 are for y  direction, and edge P1-P2 

and P3-P4 are for x  direction. Definition of nodal order is in Figure 3-29. 
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3. Calculate the square-sum of the signals of difference, and observe the result. 

The square-sum is defined as ( ) ( ) ( )2 2
, 1, 2,y i y i y iS t s st t= +  for i -th element y  

direction, where the ( )1ys t  and ( )2ys t  are the motion difference along two 

edges. The same process is set for x  direction. 

The analysis results show from Figure 3-39 to Figure 3-52 for total 7 seismic excitation 

cases. We select two cases for detail discussing the analysis procedure (Figure 3-31 to 

Figure 3-38), and the same concepts are also capable for other cases. The selected cases 

are RCF6-1 (600 gal) for first excitation and RCF6-4 (1200 gal) as largest excitation. 

For the element principal motion along x  and y  axis at analysis Step1, the 

results of RCF6-1 are shown in Figure 3-31 and Figure 3-32 and RCF6-4 are in Figure 

3-35 and Figure 3-36. These subfigures are arranged according to their position along 

the column. By examining the singular spectrum and the 4 nodes principal motions, we 

can easily found out that the principal motion of each element is reflected a trend. This 

tells us the principal motion is the element’s permanent deformation. One will doubt 

that the motion of RCF6-1 x  direction top side elements didn’t reflect this situation. 

This is related to the element dominant motion properties and the SSA techniques. For 

this series of analyses, the elements, which reflected this condition, are listed in Table 

3-4, and we will neglect these data for further analyses. Detail examine the trend 
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components, we can discover that the 4 nodes principal motions of an element are 

behaved in two groups. For x  direction, the two groups are P1-P2 and P3-P4. And for 

y  direction, they are P1-P4 and P2-P4. The different behavior of these group may 

induced by element rotation or shear deformation. But in some cases, for example 

RCF6-1 y  direction element B2 and RCF6-4 x  direction element B1 to B3, the 

grouping behavior is not consist. This inconsistent situation may refer to a crack 

presents (Figure 3-30(a) and (b)). We perform Step2 to examine the difference. The 

results of RCF6-1 are in Figure 3-33 and Figure 3-34; for RCF6-4 are in Figure 3-37 

and Figure 3-38. The healthy elements should come out a line along zero in these 

figures and the damaged elements are not. Finally, compute the square-sum in Step3. 

Therefore, we can determine the time instant and severity between elements from 

Figure 3-39 to Figure 3-52. 

In this three steps analysis, it eliminates the directions of difference (elongation or 

shortening) because of the square-sum. If considering these directions of difference and 

computing bending effect as Figure 3-30(c), the element motion can be estimate more 

detail. This research selects the element B2 y  direction difference for the analysis. 

The analysis result is shown in Figure 3-53 with the rotation angle and left side 

difference plotting together. It reflects that element B2 was bending in positive z  axis 



 

51 

 

and elongating along the y  axis in first four cases. After that, it recovered back some 

bending angle with shortening along y  axis in remaining excitations. 

3.5.2 Displacement non-continuity by CWT 

The CWT in this research is used to detect the signals’ non-continuity. For each 

control element, we can calculate the displacement difference follows the geometric 

detection concept in Figure 3-30(a) and (b). If the crack acted, the signals of difference 

may present a non-continuous behavior. Therefore, the application of CWT can detect 

this non-continuity, that the scalogram shows a high energy concentration in some time 

instances. This information will tell element nonlinear motion occurrence time and may 

consist with the crack occurrence. 

In this research, we selected the element B2 y  direction for the analysis result. 

The reason is that the element B2 has the most severity damage and the cracks are lies 

on x  axis. The results of left and right edge differences are shown from Figure 3-54 to 

Figure 3-67 with time-scale plane and the analysis signals plotting together. These 

figures give the energy concentration time instance which is also the time where the 

non-continuous signals acted. The identified time instances are mostly lies on 30 sec, 38 
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sec, 40 sec, and 47 sec. These time instances will be confirmed, that they match with the 

element nonlinear behavior, with other methods in Section 3.5.4. 

3.5.3 Local element strain by FEM 

Because the discrete elements defined in Figure 3-28 are like a finite element mesh 

grid and the elements orientation can be directly measured using optical sensors, the 

concept of two dimensional finite element analysis may applied on this kind of data. 

First we consider a case that the dimension of each element is already known at the 

initial stage (design dimension), therefore the Jacobian matrix eJ  in Eq.(2.49) is 

obtained based on this information. At every time instant, the displacement vector ed  

in Eq.(2.42) is acquired from the optical measurement. Thus, the strain field ε  of each 

element can be derived. The analysis results are shown from Figure 3-68 to Figure 3-70 

with all cases (RCF6-1 to RCF6-7) plotting together. The three figures represent xxε , 

yyε , and xyγ . The dash line in each figure indicates the strain value at 303 1 −± × , and 

the time interval within two ticks represents a seismic excitation. Follow the same 

concept as Figure 3-30, we found out that the element with most notable variation, 

which are B1-B3 of xxε , B1-B3, B7, B9 of yyε , and B1-B3, B7 of xyγ , will match to 

the crack location. The different between these three groups may due to the crack 
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direction. In these figures, the yyε  variation is much larger than xxε  and xyγ  since 

most of the cracks are located along x  axis. 

The other case considers that the analysis is without pre-knowledge about the 

structure design. Therefore the element orientation can only be extracted from the 

optical measurement. This case is to simulate installing the optical measuring system to 

a structure already under service. The seismic excitation RCF6-4 with highest intensity 

level (1200 gal) is selected to perform this research, and the resulting strain fields are 

shown from Figure 3-71 to Figure 3-73. The result is different from the previous at time 

270-360 sec (interval of RCF6-4), since the strain values are initialized at zero 

according to the case conditions. Even though the initial condition is different, the 

identified crack location can also be obtained from the variation of stain value. The 

signal of elements with crack always has an unrecoverable trend component. And if we 

detail examine these element strain about yyε , there are spikes occur at some particular 

time instant (30 sec, 38 sec, etc.). These spikes may indicate the damage action. As 

contract, the elements without trend have no spike presents. It also has the same 

condition as first case that xxε  variation is not so significant than yyε  , but the crack at 

B1 and B2 are still detectable. This approximate element strain result will be compared 

with other signal analysis methods in next section. 
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3.5.4 Connection between Local Analysis Methodologies 

The previous three sections have introduced three kinds of approaches to obtain the 

element properties. In this section, the connections between these analysis results are 

discussed. First is the strain field trajectory. 

The approximate strain field has been derived from the FEM, and the result with 

non-zero trajectory has discovered that it may consist with crack location. But the FEM 

strain only obtains an approximate result. This analysis would like to use the SSA 

principal motion to acquire the strain trajectory following more simply concept. The 

concept is treating the mesh element as a tiny control volume. Therefore the strain 

definition can be obtained (Figure 2-5) with the principal motion as 
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This analysis selects the element B2 to perform this analysis. The resulting figures are 

shown from Figure 3-74 to Figure 3-76. The dash line indicates the strain trajectory 

obtained from FEM and solid line is result from the SSA principal motion. It can be 
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seen that they have the same tendency during the time interval, though tiny 

inconsistence is present within the strong motion duration. 

The other is the crack movement time instance identification. The CWT and FEM 

both can detect the crack movement time instance; the CWT examines the energy 

concentration of scalogram, and the FEM detects the spike occurrence. This section will 

check the consistence of detected time instance. It is achieved by plotting the two results 

together and examining the identified time. The element B2 is also selected to perform 

this analysis, and the result is shown from Figure 3-77 to Figure 3-80. From the figures, 

the spike of strain yyε  is match to the time instance of energy concentration of CWT. It 

means the detection may be reliable. 

3.6 Chapter Summary 

In this chapter, an experiment about a one-story two-bay RC frame is examined. 

This experiment consists of a series of seismic excitation with different intensity level 

apply back to back. Two measurement systems are installed on this specimen. One is the 

normal measuring system and the other is the optical measuring system. This research 

focuses on the data acquired from the optical measuring system. Signal analysis 

methodologies introduced in Chapter 2 are applied to identify the global system 
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characteristics and perform damage assessment. The results show well behavior to 

reflect system condition and local damage occurrence. It can also be compared with the 

identified characteristics from normal measuring system analyzed by other researchers. 

The summary of this analysis is as follows: 

1. The seismic ground motion started at about 30 second for ensemble rounds, 

and these excitation levels are selected as 600 gal, 800 gal, 1000 gal, 1200 gal, 

1000 gal, 800 gal, and 600 gal applied back to back.. 

2. The structure had already got into nonlinear behavior in first excitation, 

though no significant crack occurs in the central column. Due to the nonlinear 

behavior, permanent deformation is presented in all cases. 

3. This research performs analysis based on the optical sensing system which 

can measure the three dimensional displacement. Before using it, coordinate 

correction is needed. Moreover, the mean value of Sensor1 and Sensor17 at 

the bottom of column is defined as the ground motion since most of the 

analyses are performed using relative displacement. 

4. The system natural frequency and damping ratio between seismic excitations 

can be identified using SSI-COV. Optical sensors located in central column 

are used for analysis. The stability diagram just shows single mode due to an 
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almost SDOF system in global point of view, and the natural frequency got 

smaller following the cases. For a more stable identification, the number of 

row i  should select around 100. 

5. The variation of natural frequency and damping ratio during seismic can be 

detected by RSI. The output data of RSI is selected the same as the SSI-COV 

and input is the ground displacement. The parameters of RSI are window 

length 5 sec, shift length 0.1 sec, 0.9svdC = , 0.9omacC = , and 100i = . 

Analysis results reflect that the most significant frequency reduction occurs at 

30 sec, and then another reduction at about 38 sec. If we compare between 

cases, the reduction at first case (RCF6-1) is more significant than others. The 

identified natural frequency can compared with SSI-COV using white noise. 

Though there is slightly difference between them, the trend of frequency 

decrease is the same. 

6. The system mode shape can be briefly obtained by PCA. Relative 

displacement of seismic data in central column is also used in this analysis. To 

stand out normal mode, modal contribution computed by SVD is combined 

with it as effective modal shape. The modal contribution of the first mode 

became larger and larger along the series of excitation. 
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7. Damage assessment can detect by the SSI-COV vector space variation. Two 

damage indicators are employed in this analysis. For the analysis result, the 

damage indicator variation at first case (RCF6-1) is significant. After that, the 

indicators just enlarge a little during the remaining seismic cases. 

8. Optical targets can be meshed into a group of elements. The identified 

element characteristics should consist with system local information. 

9. The SSA applies on the element displacement data and reconstruct the 

dominant eigentriple will obtain the element permanent deformation. This 

deformation will consist while element remain rigid. If the motion get a 

different tendency, there might crack occurs at this element. 

10. The element crack action time instance can be detected by CWT. This is 

achieved by examining the signal non-continuity from the time-scale 

scalogram. The non-continuous time instance will come out a high energy 

concentration with a wide scale band. 

11. The local element strain variation can be derived by FEM. For the health 

elements, the strain value vibrates along zero. For damage elements, there are 

an unrecoverable component include in the strain history. There are spikes 

occurrences in the yyε  time history which may indicate the crack motion. 
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12. The strain trajectory obtained from SSA principal motion has the same 

tendency as the finite element approach, though during the strong motion 

region, the approximate strain will have some inconsistence. 

13. The CWT energy concentration time instance can be compared with the FEM 

spikes occurrence time. This condition may tell that the detection of crack 

movement is reliable. 

Both the SSA and FEM can detect system damage location. This is not only 

because of the application of these methodologies but also the large amount of sensors 

provides by the optical measuring system 

. 
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Chapter 4. Conclusions 

4.1 Research Conclusions 

This research studies the application of signal processing techniques on the spatial 

displacement data acquired by optical measuring system. The system has the ability to 

obtain a large amount of target points’ three dimensional motion over time. Therefore it 

can acquire detail structural motion for structural health monitoring (SHM). An 

experiment of one-story two-bay RC frame is selected to perform the analysis. The 

central column of this frame was installed the optical measuring system for the 3D 

motion. The methodologies including system identification and local motion detection 

are applied on this spatial displacement data to see the capability for SHM. The analysis 

results have been discussed in Section 3.6. For this section, some conclusions of this 

research are made. 

1. The coordinate system of measured data is important. Especially for spatial 

displacement signal, the motion direction should be correct; otherwise the 

dynamic calculation result may get wrong answer. The affine transformation 

is a widely used technique for coordinate transform. It can perform 

transformation and rotation in one time. 



 

62 

 

2. The SSI-COV is a powerful system identification technology. It performs 

system identification using output only signals. In most researches, the 

SSI-COV is applied on the acceleration data. In this research, we employed it 

on two dimensional displacement measurement. Based on the state space 

derivation, it should be also capable. The identified result just shows tiny 

different compare to frequency detect by equilibrium linear model. It proves 

the method is capable. 

3. While according to the different system condition between seismic excitations, 

the damage should be judged. Two indicators of vector space projection 

theory are introduced. There are null-space damage index and subspace 

damage index. Both indicators are well behavior in this research that can 

detect the system change, and the value of subspace index is much smaller 

than null-space index. This highly value difference may because of the 

projection complexity. The null-space is more complexity than subspace. 

4. For structural dynamic system identification, the RSI is used. Since the 

derivation is based on the state space model. The spatial displacement data 

should be removed the trend component before applying the analysis. 
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5. A brief system normal mode can be approached by sensor distributed. So, the 

spatial displacement data of dynamic motion analyzed by PCA is considered. 

The result shows that while system changed, the modal contribution will be 

also differs. In this case, the contribution of first mode has a tendency that’s 

get larger and larger. 

6. The mesh method of optical sensors can be judged following the element 

shape. For a more widely used and easily meshed element, quadratic four 

element is better for mesh grids 

7. The SSA has the ability to extract element principal motion. While the system 

got into nonlinear behavior. The element principal motion is the permanent 

deformation. For an idea element, the element principal motion should move 

as rigid body. The rack may present in specific element since its 4 nodes 

motion have significant inconsistence that different from rigid body. 

8. The signal inconsistence of the element edge may refer to the crack present. If 

calculating the signal difference, the non-continuity of it may consist with the 

crack occurrence time instance. The CWT has the ability to extract the 

non-continuity time instance form the signal. 
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9. FEM is an outstanding method for mesh-type element. Since the dynamic 

motion is measured from optical signals, the approximate strain field can be 

directly calculated without solving boundary value problem. The strain value 

also shows great behavior for damage localization, and can be compared with 

SSA approach. 

10. The element strain trajectory can be approached by SSA principal motion. The 

calculated result is consisted with FEM trend. This means the approaches are 

reliable and the optical sensor arrangement is feasible for detail analysis. 

This research has proved the capability of system identification using the spatial 

displacement data and performs damage assessment and localization. These identified 

results also show that they can be compared with the results obtained from normal 

measuring system. This means the sensing technique is a good system to measure data 

for SHM. But some issue also needs to be mention. First is the capability of SSA. It has 

been proved that the element principal motion should be a permanent deformation while 

structure got into nonlinear behavior. But in some cases, we are hard to extract the 

element permanent deformation. This is because the SSA decomposition is based on the 

decomposed signals energy. If the energy of permanent deformation is not significant 

than oscillation wave, the permanent deformation will be hard to extract. The other is 



 

65 

 

the damage quantify. The judgment of damage detects by the vector space damage 

indicator and other local analysis methods need to be established. 

4.2 Recommendations for Future Work 

The spatial displacement measurement has been proved the capability for the 

system identification and damage assessment. However, the optical measuring system 

used in this analysis is a total integrated system provides for experiment, which is not 

suitable for normal condition. To establish a sensing system with more widely capability 

for SHM, we can go detail about how to extract the three dimensional displacement data 

from the image. And apply this technique to the monitors installed in the structure. 

Another idea is to long term measuring the structural motion through monitors, and 

performing system identification over time. It may become a good measuring system for 

SHM. For the local damage assessment applied in this research. The local element crack 

can all be detected. But the damage condition of elements without crack is hard to be 

quantified. The better indices should be established to quantify the damage condition 

and perform early warning. These are all hard issues. Further study is needed for these 

problems. 
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Table 3-1 Physical parameters of shake table test (Freq. refer to Mao) 

Case ID. 
Excitation 

Type 
PGA (gal) 

Max Absolute 

Accel. (gal) 

Max. Story 

Drift Ratio 

Equivalent Linear System Freq.

Start Freq. (Hz) End Freq. (Hz) 

WN1 White Noise 29 24 0.06 5.82 

RCF6-1 TCU082 622 1225 1.35 5.87 2.87 

WN2 White Noise 30 18 0.04 3.12 

RCF6-2 TCU082 800 (expected) - - - - 

WN3 White Noise 32 13 0.05 2.47 

RCF6-3 TCU082 1041 1368 2.69 2.6 2.45 

WN4 White Noise 30 15 0.06 2.67 

RCF6-4 TCU082 1103 1271 2.94 2.35 2.35 

WN5 White Noise 32 14 0.05 2.57 

RCF6-5 TCU082 1004 1261 2.87 2.35 2.36 

WN6 White Noise 27 15 0.07 2.57 

RCF6-6 TCU082 803 1059 2.45 2.36 2.39 

WN7 White Noise 30 13 0.06 2.52 

RCF6-7 TCU082 582 806 2.01 2.42 2.43 

WN8 White Noise 32 13 0.06 2.49 

 

Table 3-2 White noise analysis result by SSI-COV (ܥ௦௩ௗ = 0.9) 

WN Case ID. Natural Freq. (Hz) Damping ratio 
Subspace Damage 

Indicator 

Null-space Damage 

Indicator 

WN1 5.76 0.04 0 0 

WN2 3.07 0.08 0.79 3.317 × 10ିଷ 

WN3 2.88 0.09 0.85 3.354 × 10ିଷ 

WN4 2.62 0.08 0.91 3.357 × 10ିଷ 

WN5 2.52 0.07 0.93 3.383 × 10ିଷ 

WN6 2.46 0.07 0.94 3.373 × 10ିଷ 

WN7 2.44 0.07 0.95 3.366 × 10ିଷ 

WN8 2.44 0.07 0.95 3.411 × 10ିଷ 
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Table 3-3 Seismic analysis result by RSI and PCA 

Seismic Case ID 
RSI Frequency PCA Modal Contribution 

Start Freq. (Hz) End Freq. (Hz) First Mode (%) Second Mode (%) 

RCF6-1 5.78 3.08 99.22 0.74 

RCF6-2 3.10 2.65 99.64 0.34 

RCF6-3 3.16 2.5 99.52 0.47 

RCF6-4 2.58 2.36 99.82 0.16 

RCF6-5 2.58 2.28 99.95 0.02 

RCF6-6 2.36 2.22 99.96 0.02 

RCF6-7 2.43 2.35 99.95 0.03 

 

Table 3-4 Element with oscillation principal motion by SSA 

Seismic Case ID ࢞ Direction Element ࢟ Direction Element 

RCF6-1 ܤ଻, ,଼ܤ ,ଽܤ  - ଵ଴ܤ

RCF6-2 ܤଵ - 

RCF6-3 - - 

RCF6-4 - - 

RCF6-5 - ܤଵ଴ 
RCF6-6 - - 

RCF6-7 - - 
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Figure 3-7 Absolute acceleration response of the series of excitations 
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Figure 3-8 Absolute acceleration Fourier spectrum of the series of excitations 
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Figure 3-9 Relative displacement of the series of exciations 
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Figure 3-10 Inter story drift ratio of the series of excitations 
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Figure 3-11 Hysteresis behavior of the series of excitations 
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Figuree 3-14 Systeem natural f
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Figuree 3-16 Systeem natrual f
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Figure 3-17 Scheme of space difference (a) reference, (b) current, and (c) compare 

 

 

Figure 3-18 Damage indicators of space projection 
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Figure 3-21 System natural frequency compare diagram 

 

 

Figure 3-22 Instantaneous phase analysis 
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Figure 3-23 Effective mode shape (a) 

 

 

Figure 3-24 Effective mode shape (b) 

0 500 1000
0

200

400

600

800

1000

1200

1400

1600

1800

Longtudinal Direction (mm)

V
er

tic
a

l D
ir

ec
tio

n 
(m

m
)

RCF6-1 (600gal): PCA

 

 

Mode1
Mode2

0 500 1000
0

200

400

600

800

1000

1200

1400

1600

1800

Longtudinal Direction (mm)

RCF6-2 (800gal): PCA

 

 

Mode1
Mode2

0 500 1000
0

200

400

600

800

1000

1200

1400

1600

1800

Longtudinal Direction (mm)

V
er

tic
a

l D
ir

ec
tio

n 
(m

m
)

RCF6-3 (1000gal): PCA

 

 

Mode1
Mode2

0 500 1000
0

200

400

600

800

1000

1200

1400

1600

1800

Longtudinal Direction (mm)

RCF6-4 (1200gal): PCA

 

 

Mode1
Mode2



 

93 

 

 

Figure 3-25 Effective mode shape (c) 

 

 

Figure 3-26 Effective mode shape (d) 
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Figure 3-27 Variation of modal contribution 
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Figure 3-29 Nodal order for a particular element 
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Figure 3-31 RCF6-1 X Dir. element four nodes principal motion 
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Figure 3-32 RCF6-1 Y Dir. element four nodes principal motion 
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Figure 3-33 RCF6-1 X Dir. unrecoverable element principal motion 
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Figure 3-34 RCF6-1 Y Dir. unrecoverable element principal motion 
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Figure 3-35 RCF6-4 X Dir. element four nodes principal motion 
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Figure 3-36 RCF6-4 Y Dir. element four nodes principal motion 

0 10 20
0

10

20

30
Singular Spectrum

(%
)

20 30 40 50 60 70 80
-1

0

1
RCF6-4 (1200gal): Bottom Side Y Dir. Pricipal Motion

B
4

 

 

0 10 20
0

10

20

30

(%
)

20 30 40 50 60 70 80
-1

0

1

B
3

0 10 20
0

10

20

30

(%
)

20 30 40 50 60 70 80
-1

0

1

B
2

0 10 20
0

10

20

30

(%
)

Number of SV
20 30 40 50 60 70 80

-1

0

1

B
1

Time (sec)

P1
P2
P3
P4

0 10 20
0

10

20

30
Singular Spectrum

(%
)

20 30 40 50 60 70 80
-1

0

1
RCF6-4 (1200gal): Top Side Y Dir. Pricipal Motion

B
1

0

 

 

0 10 20
0

10

20

30

(%
)

20 30 40 50 60 70 80
-1

0

1

B
9

0 10 20
0

10

20

30

(%
)

20 30 40 50 60 70 80
-1

0

1

B
8

0 10 20
0

10

20

30

(%
)

Number of SV
20 30 40 50 60 70 80

-1

0

1

B
7

Time (sec)

P1
P2
P3
P4



 

102 

 

 

Figure 3-37 RCF6-4 X Dir. unrecoverable element principal motion 
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Figure 3-38 RCF6-4 Y Dir. unrecoverable element principal motion 
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Figure 3-39 RCF6-1 X Dir. square -sum of unrecoverable signals 

 

 

Figure 3-40 RCF6-1 Y Dir. square-sum of unrecoverable signals 
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Figure 3-41 RCF6-2 X Dir. square-sum of unrecoverable signals 

 

 

Figure 3-42 RCF6-2 Y Dir. square-sum of unrecoverable signals 
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Figure 3-43 RCF6-3 X Dir. square-sum of unrecoverable signals 

 

 

Figure 3-44 RCF6-3 Y Dir. square-sum of unrecoverable signals 
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Figure 3-45 RCF6-4 X Dir. square-sum of unrecoverable signals 

 

 

Figure 3-46 RCF6-4 Y Dir. square-sum of unrecoverable signals 
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Figure 3-47 RCF6-5 X Dir. square-sum of unrecoverable signals 

 

 

Figure 3-48 RCF6-5 Y Dir. square-sum of unrecoverable signals 
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Figure 3-49 RCF6-6 X Dir. square-sum of unrecoverable signals 

 

 

Figure 3-50 RCF6-6 Y Dir. square-sum of unrecoverable signals 
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Figure 3-51 RCF6-7 X Dir. square-sum of unrecoverable signals 

 

 

Figure 3-52 RCF6-7 Y Dir. square-sum of unrecoverable signals 
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Figure 3-53 Element B2 Y Direction bending angle analysis 
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Figure 3-54 RCF6-1 CWT analysis of element B2 lef edge difference 

 

 

Figure 3-55 RCF6-1 CWT analysis of element B2 right edge difference 
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Figure 3-56 RCF6-2 CWT analysis of element B2 lef edge difference 

 

 

Figure 3-57 RCF6-2 CWT analysis of element B2 right edge difference 
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Figure 3-58 RCF6-3 CWT analysis of element B2 lef edge difference 

 

 

Figure 3-59 RCF6-3 CWT analysis of element B2 right edge difference 

25 30 35 40 45 50 55 60 65 70 75 80
-0.1

0
0.1
0.2

RCF6-3 (1000gal): CWT Analysis on the Signal Dirrerence of Left Edge

Scalogram 
Percentage of energy for each wavelet coefficient

Time (or Space) b

S
ca

le
s 

a

 

 

30 40 50 60 70 80
 1
 4
 7

10
13
16
19
22
25
28
31
34
37
40
43
46
49
52
55
58

1

2

3

4

5

6

7

x 10
-3

25 30 35 40 45 50 55 60 65 70 75 80

0

0.5

1
RCF6-3 (1000gal): CWT Analysis on the Signal Dirrerence of Right Edge

Scalogram 
Percentage of energy for each wavelet coefficient

Time (or Space) b

S
ca

le
s 

a

 

 

30 40 50 60 70 80
 1
 4
 7

10
13
16
19
22
25
28
31
34
37
40
43
46
49
52
55
58

0.005

0.01

0.015

0.02



 

115 

 

 

Figure 3-60 RCF6-4 CWT analysis of element B2 lef edge difference 

 

 

Figure 3-61 RCF6-4 CWT analysis of element B2 right edge difference 
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Figure 3-62 RCF6-5 CWT analysis of element B2 lef edge difference 

 

 

Figure 3-63 RCF6-5 CWT analysis of element B2 right edge difference 
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Figure 3-64 RCF6-6 CWT analysis of element B2 lef edge difference 

 

 

Figure 3-65 RCF6-6 CWT analysis of element B2 right edge difference 
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Figure 3-66 RCF6-7 CWT analysis of element B2 lef edge difference 

 

 

Figure 3-67 RCF6-7 CWT analysis of element B2 right edge difference 
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Figure 3-68 Strain field variation from RCF6-1 to RCF6-7, ߝ௫௫ 
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Figure 3-69 Strain field variation from RCF6-1 to RCF6-7, ߝ௬௬ 

0 90 180 270 360 450 540 630

-10

0

10

Bottom Side Strain Evolution ε
yy

×10-3

B
4

0 90 180 270 360 450 540 630

-10

0

10

B
3

0 90 180 270 360 450 540 630

-10

0

10

B
2

0 90 180 270 360 450 540 630

-10

0

10

B
1

Time (sec)

0 90 180 270 360 450 540 630

-10

0

10

Top Side Strain Evolution ε
yy

×10-3

B
10

0 90 180 270 360 450 540 630

-10

0

10

B
9

0 90 180 270 360 450 540 630

-10

0

10

B
8

0 100 200 300 400 500 600

-10

0

10

B
7

Time (sec)



 

121 

 

 

Figure 3-70 Strain field variation from RCF6-1 to RCF6-7, ߛ௫௬ 
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Figure 3-71 RCF6-4 Strain field trend of ߝ௫௫ 
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Figure 3-72 RCF6-4 Strain field trend of ߝ௬௬ 
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Figure 3-73 RCF6-4 Strain field trend of ߛ௫௬ 
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Figure 3-74 Normal strain ߝ௫௫ tendency approach by principal motion 
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Figure 3-75 Normal strain ߝ௬௬ tendency approach by principal motion 
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Figure 3-76 Shear strain ߛ௫௬ tendency approach by principal motion 
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Figure 3-77 Local
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analysis ressult comparrison (a) 

 



 

 

Fiigure 3-78 EElement B2
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 local analyysis result coomparison ((b) 

 



 

 

Fiigure 3-79 EElement B2
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2 local analyysis result coomparison ((c) 

 



 

 

Fiigure 3-80 EElement B2
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 local analyysis result coomparison ((d) 

 


