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ABSTRACT. In this dissertation, we study Griess algebras generated by Ising vectors.
We consider two different cases. In the first case, we study Griess algebras generated by
3 Ising vectors with a common central 2A axial element. In the second case, we consider
Griess algebras generated by two 3A-algebras with a common 3A axial element. In both
cases, we classified all possible Griess algebras, up to isomorphism, and related them the
McKay’s F7 and Eg observations about the Baby Monster and the Fischer group.

Key words: vertex operator algebra, Griess algebra, Ising vector, Virasoro algebra.






CHAPTER 1

Introduction

The notion of vertex operator algebras (VOA) is mainly motivated by Frenkel-Lepowsky-
Meurman’s construction [FLM] of the Moonshine module V# conjectured by McKay and
Thompson. In addition, vertex operator algebra is also related to conformal field theory
(CFT). In fact, the definition of vertex operator algebra is essentially the same as that of
chiral algebra in physics literature. Therefore, many algebraic aspects of conformal field
theory can be studied by using the representation theory of vertex operator algebras.

By definition, a vertex operator algebra V' contains a distinguished element, called
the Virasoro (some article called conformal) vector, which makes V' into a module of the
Virasoro algebra. On the other hand, Frenkel and Zhu [FZ] showed that an irreducible
highest weight module L(c, 0) of the Virasoro algebra of central charge ¢ and highest weight
0 has a natural VOA structure (c.f. Remark 2.16). This VOA is often referred to as simple
Virasoro VOA. In [DMZ], Dong, Mason and Zhu initiated a study of VOA as a module of
simple Virasoro VOA. They showed that the famous Moonshine VOA V¥ has a full sub-
VOA isomorphic to a tensor product of 48-copies of the simple Virasoro VOA L(1/2,0).
Partially motivated by [DMZ] and Conway’s work [Co], Miyamoto [Mil] introduced the
notion of simple conformal vectors of central charge 1/2, which we call Ising vectors. He
also developed a method to construct involutions in the automorphism group of a VOA
V' from Ising vectors. These automorphisms are often called Miyamoto involutions (see
Section 2.10 for detail). When V is the famous Moonshine VOA V¥ Miyamoto [Mil] also
showed that there is a 1 — 1 correspondence between the 2A-involutions of the Monster

group and the Miyamoto involutions in V¥ (see also [H&]). This correspondence turns out



to be very important for the study of the Monster group. In particular, many mysterious
phenomena associated with the 2A-involutions of the Monster can be interpreted using
the theory of VOA [HLY1, HLY2, LYY1, LYY2, Sal.

Another important class of VOA is the lattice VOA constructed in [FLM]. Given an
even positive-definite lattice L, one can construct a VOA Vi, := M (1) ®c C{L}, where
M (1) is an irreducible module of the affine Lie algebra b with h = C ® L and C{L}is a
twisted group algebra of L (see Section 3.1). When the lattice is doubly even, i.e., (o, a) €
47 for all a € L, the twisted group algebra C{L} is isomorphic to the usual group algebra
C[L] (c.f. (3.2.1)) and the structure will then be much simpler. In particular, we will focus
on the doubly even lattice v/2R for a root lattice R. In [DLMN], many conformal vectors
are constructed explicitly in the lattice VOA V5, when R is a root lattice of A, D, E-type.
These conformal vectors are used in [LYY1, LYY2] to study McKay’s Eg-observation on
the Monster simple group. Along with other results, several sub-VOA of the lattice VOA
V. ag, generated by 2 Ising vectors were constructed and studied. There are 9 such sub-
VOA. Because of their relations to the 6-transposition property of the Monster group,
these VOA are denoted by U,x for nX € {1A4,2A,2B,3A,3C,4A,4B,5A,6A}, where
1A,2A,2B,3A,3C,4A,4B,5A,6A are the labels for 9 conjugacy classes of the Monster
group. We will review the construction and some basic properties of U, x in Chapter 3.

Let V =@, , Vi, be a VOA such that dim(Vj) =1 (Vp = Span{1}) and V; = 0. It is
well known [FLM] that the weight two subspace V; has a commutative (non-associative)
algebra structure with the product a - b = a()b for a,b € V5. It also has a bilinear form
(a,b)1 = ag)b. This form is invariant in the sense that (a-b,c) = (a,b-c) for all a, b, c € V5.
This algebra is often called the Griess algebra of V' (c.f. Section 2.7). An element e € V5
satisfying e - e = 2e is called an Ising vector if the sub-VOA generated by e is isomorphic
to the simple Virasoro VOA L(3,0) of central charge 3 (c.f. 2.9). In [Sa], Griess algebras

generated by 2 Ising vectors are classified. He showed that there are exactly 9 Griess
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algebra structures and they are isomorphic to the Griess algebras GU,,x of the VOA U, x,
nX € {1A,2A,2B,3A,3C,4A,4B,5A,6A}, constructed in [LYY1, LYY2]. Based on
[LYY1] and [Sal, one obtains a natural explanation of McKay’s Es-observation using the
theory of VOA. We will reviewed Sakuma’s work in Chapter 4.

Following the same approach of [LYY1, LYY?2]|, McKay’s F; and Eg-observations
on the Baby-Monster and the largest Fischer 3-transposition group Fiyy were studied in
[HLY1, HLY?2]. In particular, certain sub-VOA generated by Ising vectors are con-
structed as a commutant sub-VOA of the lattice VOA V 5y . In [HLY1], certain VOA
containing two 2A-algebras U, 4 which have a common Ising vector were considered. There
are 5 such VOA and they are denoted by Vi(,x), n.X € {14,2B,2C,3A,4C} (see (3.4.11)),
where 1A,2B,2C,3A,4C are 5 conjugacy classes of the Baby Monster group B (c.f. Sec-
tion 3.4.2). In addition, VOA containing two 3A-algebras Uss with a common confor-
mal vector of central charge 4/5 were studied in [HLY?2]. Three commutant sub-VOA
Vimx),nX € {1A,24,3A}, of V 55, were constructed (see (3.4.13)), where 14,24,3A
denote 3 conjugacy classes of the Fischer group Fisy (c.f. Section 3.4.3). Motivated by
the result of Sakuma [Sa], it is natural to ask if the Griess algebras of Vimx) and Vix)
exhaust all possible cases. In Chapter 5 and Chapter 6, we will confirm that the answer
is “Yes”. In Chapter 5, we will study Griess algebras generated by three Ising vectors
e, f, and g such that the sub-VOA generated by e and f and the sub-VOA generated
by e and g are both isomorphic to Us4. We will show that there are only 5 possible
structures of Griess algebras and they correspond exactly to the Griess algebras GV, x)
of the five VOA Vi(x), nX € {14,2B,3A,45,2C}, constructed in [HLY1]. In Chap-
ter 6, we study Griess subalgebras generated by two 3A-algebras U and U’ such that
UnuU =2 W(4/5) = L(4/5,0)® L(4/5,3). We will show that there are only 3 possibilities,
up to isomorphism and they are isomorphic to the Griess algebras of Vg4, Vir2a), and

Vp3a) constructed in [HLY2].



The main idea of our classification is to analyze various Griess subalgebras generated
by 2 Ising vectors using Sakuma’s Theorem and to analyze the symmetric structure from
Miyamoto involution 7. and o-involution o, for an Ising vector e. The invariant condition
(a-b,c) = {a,b-c) is used extensively in our computation. Norton inequality (see Section
2.12) is also essential to our analysis.

The organization is as follows: In Chapter 2, we review some basic definitions and
results about vertex operator algebra (VOA). The definition of VOA, modules, dual mod-
ules, Ising vectors, Griess algebras, Miyamoto involutions and o-involutions will be re-
viewed. Several important results such as Norton inequality will also be recalled. In
Chapter 3, we recall the construction of lattice VOA from a even positive-definite lat-
tice. We will specialize it to doubly-even lattices and to the root type lattices v/2E; and
V/2Es. The construction of the VOA U, x, VBnx), and Vpx) in [HLY1, HLY2] will be
explained also. In Chapter 4, we recall the result in [Sa]. There are exactly 9 structures
of Griess algebra generated by 2 Ising vectors. We will describe their basis and their Ising
vectors. The product rule, inner product, Miyamoto involutions, and o-involutions will
also be reviewed. In Chapter 5, we classify all Griess subalgebras generated by 2 Griess
subalgebras isomorphic to the Griess algebra GUs4 of Uy4 with a common Ising vector.
We show that there are exactly 5 such structures and they are isomorphic to the Griess
algebras of Vi(,x). In Chapter 6, we first introduce an order 3 automorphism associated
to a conformal vector of central charge 4/5. With the help of the automorphism symme-
try, we classify all Griess subalgebras generated by 2 Griess subalgebras isomorphic to the
Griess algebra GUsa of Usa with a common conformal vector of central charge 4/5. We
conclude that there are exactly 3 such structures and they are isomorphic to the Griess

algebras of Vi, x).
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CHAPTER 2

Preliminary

In this chapter, we recall the basic notion of VOA and Griess algebras.

2.1. Formal power series

Let V' be a vector space over a field F of characteristic 0 (usually F = C or R). Denote

V2] = {D _v'#| v € V for all i}.
=0

Viz,27Y] = {Z v'2'[v' € V for all i}.
1€EZ

Vilze, 21t 2 20 ] =1 Z Vg [0 € Vo for all iy, - - iy € Z)

n n
i1, yin €L

V((2)) := {Z v'2'|n€Z,v' eV forall i}.

Usually, the vector space is an endomorphism ring End(V).

2.2. Virasoro algebra

Virasoro algebra is an important Lie algebra. It is the central extension of the Lie
algebra of the Lie group of small holomorphic motion of a unit circle. Equivalently,

Virasoro algebra is a central extension of the Lie algebra
Spang{L, := z"“i‘ n € Z}.
S dz

It is well-known that the central extension is unique up to isomorphism.

11



DEFINITION 2.1. A Virasoro algebra Vir is a Lie algebra with a basis {c, L,|n € Z}
satisfying the bracket rules
[c, Vir] = 0,

m3—m

[Lm, Ln] = (m — n)Lern + (5m+n’OTC.

Moreover, Vir has the triangular decomposition
Vir = Vir™ @ Vir® @ Vir™,
where
Vir® := Spang{L,|n € Zso}, Vir~ := Spang{L,|n € Z.o}, Vir’ := FL, @ Fe.

2.3. Formal definition of VOA

Next we recall some basic definitions and notations of VOA (c.f. [FHLI).

DEFINITION 2.2. A vertex operator algebra (VOA) over a field F is a quadruple
(V)Y, 1,w), satisfying the following conditions:
(V1) V = D,,c;, Va is a Z-graded vector space over F; forv € V,,, n = wtwv, the weight
of v;
(V2) dim 'V}, < oo;
(V3) V,, =0 for n sufficiently small;

(V4) Y (-, 2) is a linear map
Y(,2): V. — (EndgV) [z, 27"

v = Y(v,2) :Zv(i) z7
i€z
where Endg is F linear endmorphism, and vy (or Y (v,z)) is called the vertex

operator associated to v;

12



(V6) Y(a,2)1 € V[[2]], and lim,cY (a,2)l = a for alla € V;

(VT) L; := w1y satisfy the Virasoro algebra relations:

i3 —i

12

[Li, Lj] = (i — 7) Livj + dit0

¢,

where ¢ € F is some constant, which is called the rank of V;
(V8) Lov = (wtv)v =nv forv € V,;
d
(V9) Y(L_1v,2) = —Y (v, 2);
dz
(V10) the Jacobi identity holds:
321 — 22,20)Y (a, 21)Y (b, 22)v — 6(—29 + 21, 20)Y (b, 22)Y (@, 21 )v

= 0(z1 — 20, 22)Y (Y (a, 20)b, 22)v € V[[20, 25 1, 21, 21 1, 20, 25 1]

for all a,b,v € V', where

o + o) = 3 (2E2) =55 (ataty

1EL 1€Z j=0

The element 1 € Vy s called the vacuum element, and w € V5 is called the Virasoro

element.

REMARK 2.3. Our notation d(z; + z2,y) follows that of [Kac| and it is the same as

the notation y~'0(*-/#2) in [FHL].

From the definition of VOA, we have the following corollaries.

m .
(aemb)my =) ( : )(—1)Z<a<mi>b(n+z'> - (—1)mb<m+n71>a<i>>a

13



v =ex,V, Vo =FL, V; =0, then for a,b,c € V3,
amb=bma, aEb=>bga, (aw)b)Ec=apbdac.

From the definition, it is easy to show that a@mb € Vita—m—14wts, and hence we
say wtau, = wta —m — 1. Note also that Y(a,z)v € V((z)) although Y(a,2) €

(EndpV)[[z, 27 1]

2.4. Module

By the definition of VOA, v(;) acts on V for v € V and i € Z. The concept of V-
module is similar to modules of rings in usual algebra. A vector space M is a V-module

if v;) acts on M and satisfy the similar properties as v(; acts on V.

DEFINITION 2.4. Given a VOA (V,Y,1,w), a V-module (M,Yyr) (or briefly (M,Y))

15 a F-graded vector space M such that

M1) M = P, cp M, is a F-graded vector space over F; for m € M,, n = wtm;

M2) dim M,, < oo;

(M1)
(M2)
(M3) For any h € F, My, = 0 for sufficiently small n € Z;
(M4) Y,

M4) Yy (-, 2) (or Y (-, 2)) is a linear map

Yau(,2): Vo = (BEnd;M) [z, 271
v = Yy(v,z)= Zv(i) 2L
i€z
(Mb) Yu(1, 2) = idypy;
(M6) for any m € M and v € V, vmym = 0 for n sufficiently large;
(MT7) L; := wt1y € End(M) satisfy the Virasoro algebra relations:
3

10 —1

2

[Li, L) = (i — §) Livj + 0irj0

where ¢ is the rank (central charge) of V;
14



(M8) Logm = (wtm)m = nm form € M,;

(M9) Yy (L_qv,2) = diYM(v,z);

z
(M10) the Jacobi identity holds:

0(z1 — 2o, zO)YM(vl, Zl)YM(UQ, zo)m — 6(—2za + 21, ZO)YM(UQ, ZQ)YM(vl, z1)m

= 0(21 — 20, 22) Yar (Y (v}, 20)0%, 22)m € M[[z0, 25", 21, 21, 22, 25 1]
for all v',v?> € V and m € M.

It is clear from definition that Y (v, z)m € M((2)) for v € V,m € M.

2.5. Dual module

DEFINITION 2.5. For f(z) € F[z, 27|, the operator
F@™ Ve 27— Ve, 7]

is defined by vz" — v f(2)¥*2" for homogeneous v and extended linearly. It is well defined
since for homogeneous v, wtv € Zsq and f(z)"*" € Flz, 2.
Let f(z) € Flz], ¢ € EndgV such that for allv € V, ¢"v = 0 for n large (n may

depend on v). Define

el V2,27 = Vg, 27l

by v2" — Z M and extended linearly. That is well defined since it is finite
i!
i=0
sum for each v.

DEFINITION 2.6. Given a VOA (V,Y,1,w) and a V-module (M,Y)), the contragre-

dient module (M’',Y)y) is is defined as

° M/ — @M;” where MT/L = (Mn)* = HOII]F(Mn,F>;
nelf
15



e form' € M', Yy (v,2)m' € M'[[z,27]] is defined by
(Yar (v, 2)m/,m) = (m', Yas(e?1 (=27 %) 0n, 27 Hm),

which is well defined since L?v = 0 for n large and e*11(—272)loy € V]z, 271

(finite sum) by Definition 2.5.

THEOREM 2.7. (c.f. [FHL, section 5.2]) The structure (M',Yy) defined in Definition
2.6 15 a V-module.

2.6. Morphism

The definition of homomorphism, isomorphism, and automorphism of VOA and of

VOA-module are as usual.

DEFINITION 2.8. Let (V,Y,1,w) and (V, Y, 1,&) be VOA. A homomorphism ¢ : V —
V is a linear map satisfying (1) = 1, p(w) = &, and ¢(Y (v*, 2)v?) = Y (6(v1), 2)d(v?) for
allvt, v? in V. Anisomorphism is a homomorphism which has an inverse homomorphism.

An automorphism is an isomorphism from a VOA to itself. We denote the set of all

automorphisms of (V,Y,1,w) by Aut(V).

DEFINITION 2.9. Let (V,Y,1,w) be a VOA. (M',Yypn) and (M?,Yy2,1,) be V-
modules. A module homomorphism is a linear map ¢ : M — M? (hence extended to a
linear map M*([z, 27Y]] — M?([z, 27Y]]) satisfying ¢(Yap (v, 2)mt) = Yy (v, 2)p(mt). An
1somorphism is a homomorphism which has an inverse homomorphism. An automorphism

1s an isomorphism from a module to itself. We denote the set of all automorphisms of

(M, YY) by Auty (M) or simply by Aut(M).

If (M,Y)y) is isomorphic to (M’ Yy) with the isomorphism ¢, then there is an bi-
linear form (-,-) on M defined by (m!, m?) = (¢(m'), m?) satisfying (Yas(v, z)m', m?) =

(m*, Yas(e*lr (—272)koy, 271 )ym?) € F((z)) for m!, m? in M.

16



2.7. Griess algebra

DEFINITION 2.10. A bilinear form ((-,-)) on 'V is said to be invariant (or contragredient,

see [FHL]) if
(2.7.1) (Y(a, 2)u,v)) = (u, Y (e (=27 a, 27 o))
for any a, u, v € V. That is, V as a V-module is isomorphic to its dual module.

DEFINITION 2.11. A VOAV =@, ., V,, is said to be of CFT type if V,, =0 forn <0

neZ

and dim Vy = 1.
The following theorem is proved in [Li].

THEOREM 2.12. ([Li, Theorem 3.1]) Let (V,Y,1,w) be a VOA of CFT type with
Vi = 0. Then there is a unique symmetric invariant (Definition 2.10) bilinear form ((-,-)

of (V,Y, 1,w) satisfying (1,1)) = 1.

Let V be a VOA of CFT type. It is well known [FLM] that the weight 1 subspace V}

has a natural Lie algebra structure defined by
[a, 0] == a@)b

and has a invariant (in the sense of Lie algebra) symmetry bilinear form given by
(a,b)1 = an)b.

If V1=0, then it is also well known that the weight 2 subspace V5 has a commutative

(non-associative) algebra structure.

THEOREM 2.13 (Theorem 8.9.5 of [FLM|). Let (V,Y,1,w) be a VOA of CFT type

such that Vi = 0. Then the weight 2 space G := V5 has a commutative (non-associative)

17



algebra structure defined by the product,

(2.7.2) a-b:=anb (= bya).

Moreover, there is a symmetric bilinear form (-,-) defined by
(2.7.3) (a,b)1 := a@yb (= bya), a,be Vs

The bilinear form is invariant in the sense that for all a, b, c € V3,
(2.7.4) {(a-b,c)={a,b-c).

In addition, the bilinear form (-,-) agrees with the invariant form defined in Theorem

2.12, i.e., {(a,b) = {(a,b)) for all a, b € V5.

DEFINITION 2.14. The algebra G = Gy = (Va, -, (-,+)) in Theorem 2.13 is called the
Griess algebra of V. An automorphism of G is an automorphism of linear space that
preserves the product and the bilinear form. The group of all automorphisms of G is
denoted by Aut(G). By Definition 2.8 and Theorem 2.13, it is clear that f € Aut(V)

implies f|g € Aut(G).

2.8. Virasoro VOA

DEFINITION 2.15. For constants ¢, h € F, define an one dimensional Virt @ Vir®-

module
Fep =F1
by
c-1:=cl,
Ly-1:=hl,
and
Virt - 1:=0.

18



Let
M (c, h) := Indyit, o yyoFen.

By Poincaré-Birkhoff-Witt Theorem, M(c, h) has basis
{Lon - Log 1k € Zsg,ny > -+ >y > 1 € L}

Let L(c,h) be the irreducible highest weight Vir-module of central charge ¢ and highest

weight h. Then

L(c,h) = M(c,h)/I(c, h),

where I(c, h) is the mazimal proper sub-module of M(c,h).

REMARK 2.16. It is known in [FZ, p.163] that the Vir-module L(c,0) has a natural
simple VOA structure. This VOA is often called the simple Virasoro VOA of central

charge c.

2.9. Ising vectors

DEFINITION 2.17. Let (V,Y,1,w) be a VOA of CFT type with Vi = 0. An element
e € Vs is called a conformal vector with central charge c.c.(e) = ¢ € F if L, = €(n+1)

satisfy Virasoro algebra relation with central charge c,

[f/my I—Jn] = (m - n)f/ern + 5m+n,0m _ T

When Vir(e) = L(c,0), we call e a simple conformal vector.

THEOREM 2.18. (Lemma 5.1, [Mil]) An element e € V, is a conformal vector with

central charge c if and only if

2.9.1 eme =2e and ege:EIL.
1) (3) 5

19



DEFINITION 2.19. For F = C or F = R, a conformal vector e is called an Ising
vector if c.c.(e) = & and the sub-VOA (Vir(e),Y,1,e) generated by e is simple, that is,

Vir(e) 2 L(2,0).

27

REMARK 2.20. Let e € V be an Ising vector. Then the sub-VOA Vir(e) = L(%,0)

29

is a rational VOA (i.e., all Vir(e)-modules are completely reducible) and it has exactly 3

irreducible modules L(3,0), L(3,3), and L(3, 15) (cf. [DMZ, Mil, Mid]).
2.10. 7-involution and o-involution

For an Ising vector e € V5, one can define a certain involutive automorphism 7, from

e. If 7, = id, then one can define another automorphism o..

DEFINITION 2.21. For a given VOA (V,Y,1,w), an Ising vector e € V', and a constant
he{0,5, 5}, let Vo(h) be the sum of all irreducible Vir(e)-submodules of V' isomorphic

to L(3,h). Then we have the decomposition (see [Mil])
V= V(0) @ Va(=) @ Vi(-2)
N oW e
Define a linear map 7. : V —V by

1L on Ve(0) & Ve(3),
(2.10.1) Te 1=
-1 on Vi(35)

Let V7 be the fized point subspace of 1. in 'V, i.e.

1
(2.10.2) Ve .={v eV ) =v}=V(0) & VE(E)
Define a linear map o, : Ve — V7™ by

1 on V(0),
(2.10.3) Oe 1=

—1 on V.(3).

It was proved in [Mil] that 7. and o, are automorphisms of V' and V™, respectively.
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THEOREM 2.22. (Theorem 4.7 and Theorem 4.8 of [Mil]) Let e be an Ising vector of a
VOA V. Then the map 7. defined in Definition 2.21 is an automorphism of V. Moreover,
for any p € Aut(V'), we have prep™" = Ty

On the fized point sub-VOA V™, we have o, € Aut(V™). In addition, for any o €

Aut(V™), we have po.0™ = 0,().
2.11. Eigenspace decomposition

Let V be a VOA of CFT type with V; = 0 and denote G = V5.

Let e € G be an Ising vector. Then e(;) acts semisimply on the Griess algebra G
and the eigenvalues of e(;y are 0,2,1/2, or 1/16 only (see Remark 2.20). Since 7 and o
involutions are defined via the eigenspace decomposition, we can express the product in

the Griess algebra by using these involutions.

ProprosITION 2.23. (cf. [Ma, Mil, Sa]) For any Ising vector e € G, we have an

orthogonal decomposition

G=G 00801073,
where Gi = {a € G|le-a = ha}. Moreover, GNV,(0) = G5 ® G5, GNV.(3) = gg,
GNVe(3) =G4 .

16

The next lemma follows immediately from the definitions of 7, and o..

LEMMA 2.24. Let e be an Ising vector of VOA V. For any x € G, we have the
= %(x — Te(:v)),

decomposition * = xg + To + T1t+ T, where xp, € Gr. Then, T

1 =13 (x+7(2)) — 0c(3(z + 7e()))), and x5 = 4{e, x)e. Moreover,

1
2

1

l(x + 7(x)) — ae(%(x + Te(ZL‘)))) + —(x — Te(l')).

— 8(e,2)e +
e-x=8e,x)e 5 5

92
If Te(x) = z, then we have

e-x=8{e x)e+ % (z —0e()).
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2.12. Norton inequality

From now on, we will assume the following condition.

ASSUMPTION 1. Let (V)Y,1,w) be a VOA of CFT type over R. Suppose that V} =0

and the invariant bilinear form defined in Theorem 2.12 is positive definite.

REMARK 2.25. Let V be a VOA satisfying Assumption 1. Then the bilinear form
(-,-) defined on G = V5 (see Theorem 2.13) is also positive definite. In particular, the
Cauchy-Schwartz inequality holds: (a,a){(b,b) > (a,b)?, and (a,a)(b,b) = {(a,b)? if and
only if @ and b are linearly dependent, i.e. a = rb for some r € R or b = 0. In particular,

if a and b are conformal vectors such that (a,b) = (a,a) = (b, b), then a = b.

REMARK 2.26. Note that the involution 7. (and o, if it is well-defined) also acts on

G =V, for an Ising vector e.

The next theorem is important to our discussion. The proof can be found in [Mil,

Theorem 6.3].

THEOREM 2.27. (Norton inequality) Let V' be a VOA satisfying Assumption 1. Then

for all a, b in G = V3, we have
(a-a,b-b) > {a-bya-b).
In particular, if a, b are idempotents in G, then {(a,b) = (a-a,b-b) > (a-b,a-b) > 0.

By Norton inequality, we know that the norm of the product a - b is constrained by

the norm of @ - a and b - b.
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CHAPTER 3

Dihedral algebras and McKay’s observation

In this chapter, we will recall the construction of the lattice VOA in [FLM]. Then
we will review McKay’s Fg, E; and FEg observations. In addition, the dihedral VOA

constructed in [LYY1, LYY?2] and [HLY1, HLY?2] will be reviewed.

3.1. Lattice VOA

We will recall the construction of lattice VOA from [FLM].

Let F be a field of characteristic 0. Let R™ be the R inner product vector space
generated by n orthonormal basis {ej, - ,e,}. A lattice in R" of rank m is a free Z-
module (i.e. free abelian group) generated by m linearly independent elements in R™
with the restriction positive definite inner product (-,-). We say L is a integral lattice if
(a,b) € Z for all a, bin L. We say L is an even lattice if (a,a) € 27Z for all a in L. Clearly
an even lattice is an integral lattice since (a,b) = ((a + b,a +b) — (a,a) — (b, b)).

Let L C R™ be a (positive-definite) even lattice of rank m. We will construct a VOA
V1, associated to L.

Let b be the F (field of characteristic 0) vector space

hi=L@,F

and we view it as an abelian Lie algebra.

Let

h:=he Clt,t '|©Fc, and b:= h & Fd
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be Lie algebras with the bracket defined by

(3.1.1) [h @t h' @t™] := Spymr0 nlh, B)c,

d,h ®t"] :=nh®t",

for h,h' € h,n,n’ € Z. We also define a (non-degenerate) bilinear form (-,-), on b by

<h & tn, h/ & tn/> = 6n,n’ <h7 hl)a

(c,h) =0,
(d,h) =0,
(c,d) =1,
(d,d) := 0.

It is direct to check that 6 is a Lie algebra and the form (-, ) is invariant , i.e.

([z,y],2) + (y,[2,2]) =0 forall z,y,z € h.

Define the associated Heisenberg algebra,

b :=[h,h] = Fcad @ het"

neZ\{0}

We can decompose the Heisenberg algebra as Lie subalgebras
h'=b" @ Fcoh™,

where p't = @nez>0 hot", b= @nez<o bt

For \ € F, define the one dimensional Fc & b"+t-module

FA =F1
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cl=\1, ht-1=0.

Then we can define the Verma module M()) to be the induced b’-module
(3.1.2) M(\) = Indgc@6,+FA = U(H) @y geaivs) P,

where U([) is the universal enveloping algebra of the Lie algebra [. Denote the operator

a®t™ on M(\) by a(n). As vector space, we have
(3.1.3) M(X) = Spang{ai(—n1) - - a(—np)1| k € Zso, ; € b, n; € Zsy Vil

Define the weight (energy) on M(\) by

wt (a1 (—nq) -+ ap(—ng)l) == (ng + -+ - + ng).

We have wt (a(n) - a1 (—ny) - - - ag(—ng)1) = —n + wt (g (—nq) - - - a(—nyg)1), i.e. the

weight
wt (a(n)) = -,

as an operator, for n € Z.

Let L be a central extension of an even lattice L by the cyclic group (k) with x? =1

and the commutator map
co(a, B) = (a, f) mod 2.

That means we have an exact sequence

~

1= (k) = (L,")—>(L,+) =0,

and

l
S
~

(3.1.4) aba~ bt = k@
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for all a, b in L. Note that such an extension L exists and is unique up to isomorphism
by [FLM, Proposition 5.2.3].

Define the F-algebra

~

(3.1.5) F{L} :=F[L]/(x + 1) = F[L]

Kk——1’

A

where F[L] is the group ring, (k + 1) is the (two sided) ideal generated by x + 1. Let

v F[L] — F[L)/(r + 1) = F{L}

be the natural projection morphism. Define the weight on F{L} by

fora € L.

Now we can define the lattice VOA Vj,. As vector space,
(3.1.6) Vi =MQ1)epF{L},
which is both a left §’-module and a left L-module by

h(m ® (b)) = (hm) ® (D),

a(m ® (b)) = m ® (ab)

for he b, ae L, me M(1),beF{L}. As vector space,
Vi, = Spang{ai(—n1) - - ap(—np)1 @ 1(a)| k € Zso, 0 €hyng > -+ >y > 1€ Z,a € L}.
The Z grading (weight) of V,, comes form the weight of M (1) and of F{L},

(3.1.7) wt (ag(—ny) - ap(—nk)l @ v(a)) =ng + -+ ng + %(a, a).

Then

Vi= @ Vi,

TLEZZO
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where (V7),, := {v € V| wt (v) = n}. Clearly we have
(3.1.8) (Vz)o =FL,

where 1 :=1® ¢(1).

Extend V;, from b’-module to h-module by defining the «(0) and d action,
(3.1.9)  a(0)(ag(—nq) - ap(—nr)1l ® t(a)) = (o, a) (a1 (—nq) - - ag(—ng)1 ® t(a)),

{a,a)
2

d(ai(—nq) - ap(—np)1l @ 1(a)) = ( —ng = — Ny — )al(—nl) s ap(—nE)l ® ua).

It is straightforward to check it is well-defined h-module.

For a € h, a(—1)1 ® ¢(1) = a(—1)1 € V, define
(3.1.10) Y(a(-1)1,z2) ==Y (a;2) := Za(n)z‘"‘l.

For simplicity, we often use Y («, z) to denote Y (a(—1)1, 2).

Define the normal-ordered product

Zal(nl) e 'Oék:(”k)z =, (ngy) - - 'Oéik(”ik)

on End(Vy) with {iy,--- i} ={1,--- ,k}and n;;, <--- <n,;,. Note that ag(ni)as(ng) =
as(ng)ai(ny) unless ny + ny = 0 by (3.1.1). Then we can define Y (1 ® w(a),z) €

Homs(Vz, Vi[[z, 27']]) = (Ends(VL))[[z, 2~']] by

(3.1.11) Y(1®u(a),z) = Y(al,z) == Y(a, 2)
= 2exp ( / (Y(@,2) — a2 ™) dz ) Saz"
=cem (Y @z—");aza

neZ\{0}
a(_n> n C_L(TL) —-n a
(3.1.12) :exp( Z —z )exp( Z z )az ,
TLGZ>0 n n€Z>0 —-n
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where the operator a means left multiplication and the operator 2% is given by
2o (—ny) - ap(—np)1 @ o)) == ay(—n) - - - ap(—ng)1 @ o(b) 2P

Note that (3.1.12) is well-defined since

exp <n§ gz_"> v

is a finite sum for each v € V.

We have

Y(1,2)=Y(1®(l1),2) =1 (=id2?).

For ai(—ny) -« - agp(—ng)1 ® (a) € V7, define

Y(ai(—=n1) - ap(—=mp)1 @ e(a), 2) == ¢ (ﬁ (%)nl_lY(al, z)) _

(e )

’I’Lk—l

and extend the definition to Y (v,z) for v € V, linearly. Note that this definition is
compatible with (3.1.10), (3.1.12).
For v € Vi, define v,y € End(Vy),n € Z by
Y(v,2) = Zv(n)z_”_l.
nez

REMARK 3.1. From (3.1.10) we have

(@(=D)1)m) = a(n),
and we can embed b into V;, by @ — «(—1)1. Similarly, from (3.1.12) we can embed
F{L} into Vi by

t(a) = 1® ua).
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The Virasoro element w in V is defined by

where {hq,- - h,,} is an orthonormal basis of h. Note that the definition of w is indepen-
dent of the choice of the basis.

Define L, := wgi1). Then wt (L,) = —n and Lo(v) = wt (v)v for any homogeneous
element v. It is shown in [FLM] that (V7,Y,1,w) is an VOA with the central charge
c=rank(L) =m.

There is an order 2 automorphism 6 € Aut(Vy) (c.f. [FLM]) defined by
Blon(—m) o =ma) @ 1(@) = (~an)(—ma) -+ (=) (—s) @ ofa™) (~1) @2

The fixed space
Vi ={v eV, 0(v) =}

is a sub-VOA. If L is doubly even, then (V7); = Span{h(—1)1 | h € h} and hence we

have
(3.1.13) (Vi =0.

3.2. /2 times root lattices

For an even lattice R, V2R is an doubly even lattice, which means
(a, ) € AZ

for all & € v/2R. In this case, (o, 8) € 2Z for a, f € v/2R and the central extension v2R
splits and hence
(3.2.1) F{V2R} = F[V2R] = (P Fe">,

a€ER
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where {e\/io“ « € R} is the multiplicative abelian group isomorphic to the additive group

V2R.
In this case, h = (V2R) @z F = R@zFif F=R or C.

The lattice VOA
V ar = Spangp{a;(—nq) - - ak(—nk)1®eﬂ5| k€Zso,c; €hyng>--->n >1€Z, € R}

Suppose R = R; © Ry is an orthogonal decomposition. Then V. 5, =V 55 @ V. 55, If
R’ C R is a sub-lattice, we have a natural inclusion V 55 <V, z5.

The automorphism 6 € Aut(V, 55) is given by
O(cn(—m) - ap(—ng) ® V%) i= (—a)(—=m) - (—au)(—ng) @ eV,
By (3.1.8) and (3.1.13) we have
(V\;%R)l = 0 (V\—/%R)O =F1.

3.3. V\/ER for a root lattice R

If R is generated by its roots, i.e. norm-2 vectors, then the Virasoro element of V, 5,

is given by

acdP(R)

where h is the Coxeter number of R and ®(R) is the root system of R. In [DLMN], it

was shown that the vector defined by

2 1
3.3.1 g = V2a
( ) WR h+2wR+h+2 Z e
ac®(R)

is a conformal vector (cf. Definition 2.17), where ¢” := 1 ® e” (c.f. Remark 3.1).

PROPOSITION 3.2. [c.f. [DLMN]] The central charge of W is 2%, 1, ¢, &, and 5

when R is of type A,,, D,,, Es, E7, and Eg respectively .
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REMARK 3.3. When R = Fj, the conformal vector wg, € V, 5, has central charge
1/2 and hence is an Ising vector. The Ising vectors in the lattice VOA V! associated to
the Leech lattice A are classified in [LSh]. It is shown that if e € V," is an Ising vector,

then there exists a sub-lattice £ < A isomorphic to v/2Eg such that e = Qg € Vi§ C V.

3.4. McKay’s observation

In the late 1970’s, John McKay [McK] observed that there is an interesting corre-
spondence between the affine Eg diagram and the 6-transposition property of the Monster

group as follows.

3C

(3.4.1) T

1A 2A 3A 4A H5A 6A 4B 2B

It is known that 2A-involutions of the Monster simple group satisfy a 6-transposition
property, that is, |zy| < 6 (i.e. (zy)" =1 for some 1 < n < 6) for any two 2A-involutions
x,y € M. In addition, the product zy belongs to one of the following nine conjugacy
classes 1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B, or 3C. If we remove the alphabets from the
labels, then the nine numbers 1,2,3,4,5,6,4,2,3 are the usual numerical labels of the
affine Dynkin Fg-diagram, which are the multiplicities of the corresponding simple roots
in the highest root in the Ejg root system. There are similar relations that associate the
Baby Monster to the E7-diagram and Fischer’s largest 3-transposition group F'igy to the

Eg-diagram as follows.

Er-observation. Let s, t be 2A-involutions of the Baby Monster. It is known that the
product st belongs to one of the Baby Monster conjugacy classes 1A, 2B, 2C, 3A or 4B.

McKay noticed [McK] that the order of these elements coincide with the numerical labels
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of the affine F; Dynkin diagram and there is a correspondence as below.

20
(3.4.2) T

O O

1A 2B 3A 4B 3A 2B 1A

In this case, the correspondence is no longer one-to-one but only up to the diagram

automorphism.

Eg-observation. Similarly, for the Fischer group F'ioy, the products of any two 2C-
involutions of Fipy belongs to one of the conjugacy classes 1A, 2A or 3A of Figy. It was
again noted by McKay [McK] that the order of these elements coincide with the numerical

labels of the affine Fg Dynkin diagram and there is a correspondence as follows:

o 1A

24
(3.4.3)

(e, O

1A 2A 3A 2A 1A

This correspondence is again not one-to-one but only up to diagram automorphisms.

3.4.1. FEg-case. In [LYY1, LYY2], McKay’s Eg observation has been studied using
the VOA V g, . Certain VOA generated by 2 Ising vectors were constructed explicitly
inV gp. There are 9 different cases and these VOA are denoted by Uja, Usa, Usg, Usy,
Usc, Usa, Usp, Usa, and Ugs. An explanation for McKay’s Eg observation has also been

proposed.

Next we will recall the construction of U, x from [LYY1]. We assume that F = C.
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For each node nX € {1A4,2A,3A,4A,5A,6A,4B,2B,3C}, we assign a root a,x to

the McKay Fy diagram as follows.

a3c
(3.4.4) |
e, O
a1a Q24 Q34 Qg4 Qsh QOga  OQyup  Oiap
That means (a,x,a,x) = 2 and for nX # mY, (a,x,®,y) = —1 if the nodes are
connected by an edge and (o, x, @ny) = 0 otherwise. Then, {ag4, asa, ..., azc} forms a

set of simple roots for Fg and a4 is the negative of the highest root. Moreover,
(345) apa + QOZQA —+ 30[3,4 + 4064A -+ 50é5A + 6066,4 -+ 40(43 —+ 20&23 -+ 30(30 =0.

For any nX € {1A,2A4,3A4,4A,5A,6A,4B,2B,3C}, let Eg(nX) be the sublattice
generated by {aj4,...,asc} \ {anx}. Then Fg(nX) is a rank 8 sublattice of Fg. In fact,
Es(nX) is the root lattice associated with the Dynkin diagram Eg\ {nX-node} obtained
by removing the corresponding node n.X from the affine Eg diagram. Note that the index
[Es : Eg(nX)] is equal to n.

The subdiagram Ej \ {nX-node} breaks down to several disjoint components. Let
Ei(nX) C Eg(nX),i = 1,---,¢ be the sublattices of Eg associated to the connected
components of Eg \ {nX-node}. It is clear that the lattice Fy(nX) is an orthogonal sum
of E{(nX) fori=1,...,¢.

Since [Eg : Eg(nX)] = n, we have the decomposition

n—1

Eg = U(’I”CYnX + Eg(nX))

r=0
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The lattice VOA V 55, can be decomposed as

n—1

V\/iEs = @ V\/i(TOénx-i—Es("X))’
r=0

where V50,0, i+ memx) = Dacvitra,y+msmxy M(1) @ Ce* is a V 55, x)-module. The

quotient group Fg/FEg(nX) also induces an automorphism p,x on V 55 defined by

(3.4.6) pux(u) =& u  foru€ Vg, cimmxy) "=0",n—1

where &, := €2™/" is a primitive n-th root of unity.
Let
1 1

f= (;)Es > EwEs ‘l‘@ : )e\/ia

acd(Fsg

be the Ising vector defined as in Section 3.3 (see (3.3.1)) and f" := p,x(Wg,).

LEMMA 3.4 (see [LYY2]). As an automorphism of V. s , we have
(3.4.7) TiTp = Py € Aut(V g, ).

Consider the commutant sub-VOA,

¢
(3.4.8) Unx = ComVﬁE8 (Vir(wE8 — Z@Eé(nX)))’

=1

where
Comy (V') :={v € V|v, V' =0 for all n € Z>o}
denotes the commutant sub-VOA of V’ in V. By definition, it is clear that the Virasoro

element of U,y is 3¢_, Wi (nx)- The following result can be found in [LM, LYY2] (see

also [GL]).

PROPOSITION 3.5. Let U,x, f and f' be defined as above. Then

(1) the sub-VOA U,x is generated by f and f';
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(2) the sub-VOA U, x can be embedded into the VOA V& < V* (the Moonshine VOA).

Moreover, the product T¢7f defines an element in the conjugacy nX of M.

REMARK 3.6. It is known [FLM, Mi4] that the Moonshine VOA V% has a real sub-
VOA V¢ such that V? = Vﬂg ®r C and the invariant form on Vﬂg is positive definite. The
VOA U, x also has a positive definite real form U, x g [LYY2]. Proposition 3.5 still holds

if we restrict V¥ and U, x to their real forms.

3.4.2. E;-case. In [HLY1], the {3,4}-transposition property of the Baby Monster
simple group and McKay’s Er-observation were studied. The main idea is to consider a
certain commutant sub-VOA in the Moonshine VOA V.

Let e be an Ising vector in V® Then 7. defines a 2A-involution of M and thus
Caut(vay(7e) is a double cover of the Baby Monster simple group B, where Cy vy (7e) :=
{g € Aut(V?)| greg™! = 7.} is the centralizer of 7,.

Define
VB := Comy:(Vir(e)),

which is called the Baby Monster VOA in [HLY1]. Since Cpyv)(7e) fixes e, it also
stabilizes VB? and hence we have the restriction map ¢, : C Aut(ve)(Te) = Aut(VB*) such
that ¢c(9) == g -

In [H&] (see also [Y]), it is shown that the automorphism group of VB?, Aut(VB?), is

isomorphic to the Baby Monster B, and thus we have an exact sequence of groups
0 = (7e) = Cau(rn (7e) % Aut(VB?) — 0.

For any 2A-involution a € B, the inverse image o, !({a)) is a Klein’s 4-group Zy x Z,
such that all involutions belongs to the conjugacy class 2A. By Miyamoto’s correspon-

dence, the group . 1({(a)) corresponds to a sub-VOA U < V# with U = Uy, and e € U.
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Recall that the 2A-algebra Us, is isomorphic to

L oye L, O)@L(— YerL,3,

L
<2 10° 2 1072

and hence we have

Comy (Vir(e)) = L(—,0).

X
10
That means a 2A-involution of B determines uniquely a conformal vector of central charge
7/10 in VB-.

Similar to the case of Ising vectors, one can also define some automorphism with a
simple conformal vector of central charge 7/10. Recall that the simple Virasoro VOA

7 03 3 1 .3
15-h) with h=0,3, 5, 2, 3, or .

L(55,0) has 6 inequivant irreducible modules, L(

THEOREM 3.7 ([Mil]). Let V be a VOA and x € V a simple conformal vector with
central charge 7/10. Denote by V,.|h] the sum of irreducible Vir(x)-submodules isomorphic

to L(%,h) for h=0,3, L 2 L orZ. Then the linear map

1 on V0oViBle Ve V[d],

-1 on Vx[%]@‘/x[%],

defines an automorphism of V.

DEFINITION 3.8. A simple conformal vector u of central charge 7/10 is said to be of

o-type on V if V[35] = Valg5] = 0.

LEmMMA 3.9 ([Mil, HLY1)). Let x € V be a simple ¢ = 7/10 Virasoro vector of

o-type. Then one has the isotypical decomposition

AL

A EVAE EVARS EYAE ]

10
36



Moreover, the linear automorphism o, € End(V') defined by

1 on V,[0] @ V,[2],
(3.4.9) Oy 1=

-1 onV,[3|® V:’c[%]

1s an automorphism of V.

REMARK 3.10. In [HLY1], it is shown that there is a 1-1 corrrespondence between

the 2A-involutions of the Baby Monster group and the simple ¢ = 7/10 conformal vectors

of o-type the Baby Monster VOA VB!.

3.4.2.1. Commutant subalgebras Ug,x) and Vg,x). Next we will recall the construc-
tion of certain conformal vectors of central charge 7/10 and the commutant subalgebras

Us(nx) and Vi(,x) from [HLY1]. Similar to the Eg case, we will first define an automor-

phism pp,x) € Aut(V 55 ).

For each node n X, nX € {14,2B,3A,4B,2C}, of the McKay E;-diagram (cf. (3.4.2)),
let Fr(nX) < E; be the root sublattice associated with the Dynkin diagram E; \ {nX —

node} obtained by removing the corresponding node n.X. We also denote the simple root

associated to the node nX by B,x. Then E; = '~ (rBux + E7(nX)) and
n—1

Vg, = @ V\/i(rﬁnXJrE?(nX))'
r=0

The automorphism pg.x) : V55, — V.5, is defined by
PBmx) (W) =& u for u € V5,6, c+Brnxy: 7 =0, ,n—1L
In fact
211
(3.4.10) PB(nX) = €XP (7 nX(O))

for some 0, x € (V2E7(nX))* C b (c.f. (3.1.9)) as an automorphism (see [HLY1, LYY1]).
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REMARK 3.11. Strictly speaking, the root [,x is not well defined since there are
more than one nodes with the label nX. However, the isometry type of E7(nX) and the

conjugacy class of the automorphism pg(,x) are uniquely determined by the label nX.

NOTATION 3.12. Let f := Qp, be the conformal vector defined as in (3.3.1) with

R =FE; and § := prmx)(f). Then f and § are conformal vectors of central charge 7/10.

Similar to the Ey case, we denote the sublattices associated to connected components

of E; \ {nX-node} by Ei(nX),i=1,...,¢ and define the commutant sub-VOA
¢
Upnx) = ComVﬁE7 <Vir(wE7 — Z(Z)E;(RX))).
i=1

In [HLY1], it is shown that f, g are contained in Ug(nx) but in general, the VOA (or
the Griess subalgebra) generated by f and § is not equal to Ug(,x) (or the Griess algebra
of Ug(nx)). Therefore, we will consider some bigger sub-VOA.

First we fix an embedding of E; into Es. Then
AnnEg(E7) = {Oé € E8| <OC,E7> = O} = Al

and we obtain an embedding of A; @ E7 into Fg. Note that such an embedding is unique
up to an automorphism of Fs.

Now define

~

(3.4.11) VIB(nX) = COIIlV\/iE8 (Vir(wE8 wAnnEs (E7) Z 7(nX )

Then the Virasoro element of Vg(,x) is @AnnEg(Eﬂ + Zle (IJE% (nx) and by definition, it is

clear that
UB(nX) & COHIV]B(”X) (Vir(CDAnnES(Eﬂ))‘

Since Anng,(E7) = Ay, the central charge of WAnng, (Br) 18 % by Proposition 3.2.
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NOTATION 3.13. Let
€= cDAnnEB(E7) and = Qg,.

Then both e and f are Ising vectors in Vemx) (c.f. [LYY1, LYY2]). By (3.4.10), we
have pgnx) = exp(%(SnX(O)). It also defines an automorphism of V. s by the embedding

of 7 to Eg. Define
g = p]B(nX)(f)

Then g is also an Ising vector. Moreover, VOA(e, f) = VOA(e, g) = Usa.
The following results are proved in [HLY1].

PROPOSITION 3.14. Let e, f,g be defined as in Notation 3.13 and let f, g be defined

as in Notation 3.12. Then

(1) Comyon(e,p)(Vir(e)) = Vir(f) and Comyoa(eq (Vir(e)) = Vir(g);
(2) the VOA Vi(nx) can be embedded into Vi~ < Vi and Ug@nx) can be embedded into
VB® for any nX = 1A,2B,3A,4B,2C. Moreover, ¢ (;7,) = oo belongs to the

conjugacy class nX of the Baby Monster.

REMARK 3.15. As in the FEjs case, we can also consider the (positive definite) real

forms of VBY, VB(nx), etc. The conclusion in Proposition 3.14 will still hold.

In Chapter 5, we will study Griess-algebras generated by three Ising vectors e, f,
and ¢ such that the sub-VOA generated by e and f and the sub-VOA generated by e
and ¢ are both isomorphic to Usy. We say that such a configuration is of central 2A-
type. Under this assumption, we will show that there are only 5 possible structures of
sub-Griess-algebras and they correspond exactly to the Griess algebras of the five VOA

VB(nx), nX € {1A, 2B,3A,4B, 20}
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3.4.3. R = Eg case. The above method can also be used to study McKay’s Fjg-
observation [HLY2].

For each node nX, nX € {1A,2A4,3A}, of the Fg-diagram (cf. (3.4.3)), let Eg(nX) <
Eg be the root sublattice associated with the Dynkin diagram FEg \ {nX-node} obtained
by removing the corresponding node nX. We also use 7,x to denote the simple root

associated to the node nX. Then Eg = |J'—, (rynx + Es(nX)) and

n—1

V\/§E6 = @ V\/i(T'VnX"FEG(nX))‘
r=0

We also obtain an automorphism ppax) : V, 5p, — V. 5p, defined by

prmx)(uw) =&, u for u € Vs, v momxyy " =0, ,n— 1.
Note that
2m ,
(3.4.12) PR(X) = eXp(Té’LX(O))

for some & € (V/2Es(nX))* as an automorphism [HLY?2, LYY1].

NOTATION 3.16. Let u := &g, be the conformal vector defined as in (3.3.1) and u' :=

prmx)(u). Then w and v’ are conformal vectors of central charge 6/7.

As in the Eg and E; cases, we use Ej(nX) to denote the sublattice associated to
the connected components of the Dynkin diagram FEg \ {nX-node}. We also define the
commutant sub-VOA

¢
Urmx) = Comvﬁ% <Vir(wE6 — Z@Eé(nx))>.

i=1
Fix an embedding of Eg into Es. Then Anng, (Eg) := {a € Eg| (o, Eg) = 0} = Ay and

we obtain an embedding of Ay @ Fjg into Eg.
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Similar to the E; case, we also consider the commutant sub-VOA

0
(3.4.13) Vi) = Comy,, (vn (e — Danngy 0 — > @EW))).
=1

Since Anng,(FEg) = A,, the central charge of WAnnp, (Es) 18 4/5 by Proposition 3.2. More-

over, Upnx) = ComVF(nx> (Vir(&)AnnES (Ee))>'

From now on, set /i := Wannp, (1) = Wa,- Recall that the quotient group Eg /(Ay @ Eg)

induces an automorphism p := p34 € Aut(V 55, ) (cf. (3.4.6)). Let
ap = Wy and ay := p(ag).

Then both ag,a; are Ising vectors in Vpp,xy (c.f. [LYY1, LYYZ2]) and the sub-VOA
VOA (ag, ay) generated by ag, a; is isomorphic to Uss. Moreover, u = @wa, € VOA(ag, a;)
and is fixed by 7,,7,, (see [LYY2]).

By (3.4.12), the map ppx) = exp(22:4,,x(0)) also defines an automorphism on Vg .

Define
by = pF(nX)(ao) and by = PF(nX)(al)-
Then by, b are also Ising vectors and they generate a 3A-algebra in V 5, .
Since ppnx) fixes V, V2Ann g, (Eo) pointwisely, it fixes the conformal vector p and the
sub-VOA Comy, (Vir(wa, — p)), which is isomorphic to the Ws-algebra W(4/5) =

L(4/5,0) & L(4/5,3) (cf. [HLY?2, SY]).
The next result can be found in [HLY?2].

PROPOSITION 3.17. Let U = VOA(agp,a1) and U" = VOA(by,b1). Then
(1) the VOA Vipx)y is generated by U and U’ and

4 4 4
UNU"=W(z) = L(z.0) & L(z.3).
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(2) w is the Virasoro elemnent of Comy (Vir(u)) and v’ is the Virasoro elemnent of

Comyr (Vir(p)), where u and v’ are defined as in Notation 3.16.

3.4.3.1. The VOA VF*. Next we will recall the properties of a commutant sub-VOA
VF% from [HLY2).

Let g be a 3A-element of the Monster M. Then the normalizer Ny ((g)) is isomorphic
to 3.Fiy and acts on V% A character theoretical consideration in [Co, MeN] indicates
that the centralizer Cy(g) = 3.Fi,, fixes a unique simple conformal vector p of central
charge 4/5 in V¥, where Fiy, := (aba=*b~!|a, b € Fiyy) is the derived subgroup. In fact, it
was also shown that Ciy(g) actually fixes an extension W = W(2) = L(2,0) @ L(3,3) of

Vir(u) in VA
DEFINITION 3.18. Define the commutant sub-VOA
VEF" := Comy: (W) = Comy:(Vir(p)).
The VOA VF% is called the Fischer group VOA in [HLY2].

A simple observation shows that Ny ({g)) acts naturally on VF'% = Comy: (V). In fact,

the Fischer group Fiy, can be realized as a subgroup of Aut(VF?).

THEOREM 3.19 ([HLY2]). Let ¢, : Nu({g)) — Aut(VF") be the natural restriction
map. Then the image of ¢, is isomophic to Figs. Therefore, the automorphism group
Aut(VE®) of VE® contains Fiyy as a subgroup. Moreover, let X be the full-subalgebra of

VF*® generated by its weight 2 subspace. Then Aut(X) ~ Fiy,.

By the theorem above, we have an exact sequence

0 — (9) = Nauve)((g)) — Figg — 0.
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Let ¢ be a 2C-involution of Fiyy. Then the inverse image ¢, '((t)) is isomorphic to the
symmetry group S3 and is generated by two 2A-involutions of the Monster [ATLAS].
Therefore, 90;1( (t)) corresponds to a 3A-subalgebra U in V* with p € U by the Miyamoto
correspondence. In addition, we have

6 6

Comy (Vir(p)) = L(?, 0)&® L(?, 5)

(see [ HLY2, LYY2, SY]). In other words, a 2C-involution of Fiys determines an extended

Virasoro VOA L(£,0) & L(£,5) in the Fischer group VOA VF*

DEFINITION 3.20. A simple conformal vector u € V' of central charge 6/7 is said to
be of o-type in 'V if V,[h] = 0 unless h =0, 5, 1/7, 5/7, 12/7, 22/7. The subspace V,,[h]

is defined to be the sum of all irreducible Vir(u)-modules of V' isomorphic to L(6/7,h).

LEMMA 3.21. Let u € V be a simple ¢ = 6/7 conformal vector of o-type. Then the

linear map o, given by

1 on V[0] @ Vi[2] @ Va[%],
(3.4.14) gy =

-1 on V,[5] @ V,[2] & V,[3].

1s an automorphism of V.
The next theorem is also proved in [HLY?2].

PROPOSITION 3.22 (Proposition 5.15 and Theorem 5.16 of [HLY?2]). For any nX =
1A, 2A or 3A, the VOA Vpux) can be embedded into the Moonshine VOA V% and the
VOA Up(,x) can be embedded into VF* = Comy:(Vir(p)). Moreover, 0,0 = ©,(TayT,)

defines an element of the conjugacy nX in Figy.

In Chapter 6, we will study Griess-algebras generated by two 3A-algebras U and U’

such that their intersection contains a sub-VOA isomorphic to W(4/5). We will show that
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there are only 3 possibilities, up to isomorphism and they are isomorphic to the Griess

algebras associated to Vi), Vr@a), and Visa.

44



CHAPTER 4

Griess algebra generated by 2 Ising vectors

From now on, all VOA and their Griess algebras are over R unless otherwise stated.
We also assume every VOA satisfies Assumption 1, i.e., a VOA of CFT type with V; =0
and the invariant form on V' is positive definite.

In [Sa], Griess algebras generated by 2 Ising vectors in a VOA satisfying Assumption 1
are classified. There are 9 cases and the structures of these Griess algebras are determined

(see also [IPSS, Table 3]).

NOTATION 4.1. For g1, go € Aut(G), define Gp{g1, g2) to be the subgroup genmerated
by g1 and go. For g € Aut(G), S C G, define g - S to be the subset {g(z)|z € S} C G.

For any G < Aut(G) and S C G, set G- S :={g(x) |z € S,g € G} CG.

NOTATION 4.2. Let V be a VOA satisfying Assumption 1. Let xqy, x1 be Ising vectors
in Va. Let D := Gp(Ty,, Ts,) be the dihedral group generated by Tpy, T, and p := Ty Tay-

Set In =D - xg, I = D -z (Notation 4.2), and I = Iy U I;.

LEMMA 4.3. (¢f. [Sa, Lemma 4.1, 4.2]) Let V, o, x1, Iy, 11 and I be defined as in

Notation 4.2. Then
(1) [lo| = [Ll;
(2) Io = I, if and only if n = |Iy| is odd. In this case, x1 = p™+1/2(z0);

(3) |I| <6 and (74,7e,)!! = 1 as an automorphism of V.

THEOREM 4.4. [cf. [Sa] and [IPSS]] Let V' be a VOA satisfying Assumption 1. Let

Zo, x1 be Ising vectors in Vo and let Iy, Iy and I be defined as in Notation 4.2. Then
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the Griess subalgebra G generated by xg and x1 in Gy = Vs is isomorphic to one of the
following 9 algebras: GUia, GUsa, GUsp, GUsa, GUsc, GUsa, GUsp, GUsa, and GUga.
Moreover, I = IyU I is the set of all Ising vectors in G unless G = GUya, GUyp, 0r GUg4.
If G = GUsa, GUyp, or GUga, then the number of Ising vectors in G is equal to |[IyUI1|+1.

The structures of the 9 algebras can be summarized as follows.

G{zo, 21} | GU1a | GUasa | GUsp | GUsa | GUse | GUya | GUsp | GUsa | GUsa

1 1 13 1 1 1 3 5
(To,21) | = | » | 0 | 55 | & | & | & | » | a0

[\

4.0.4. GUya. In this case, xo = x1, and hence G = Spang{xo} and dimG = 1.

Therefore, I = Iy = Iy = {xo}. The multiplication and the bilinear form are given by

_ 1
To - xo = 20 and (T, To) = 5.

4.0.5. GUyu. In this case, Ty (1) = @1, Ty (X0) = To, (To, 1) # 0. Let g := 04, (21).
Then G = Spang{zo, 1,22} and dim G = 3. In addition, Iy = {zo}, I, = {x1} and there

are 3 Ising vectors in G. The multiplication and the bilinear form are given by
1 1 .
(4.0.1) T T = ?(% +a;—xp) and (x;,xj) = % for {i,j,k} ={0,1,2}.

Note also that 1,, = id on G and o,,(x;) = x), for {i,j, k} = {0,1,2}. We call the ordered

set (xg, 21, 22) a normal GUsy basis.

4.0.6. GUyp. In this case, T, (v1) = 1, To(x0) = To, and (xg,z1) = 0. Then
G = Spang{zo,x1} and dimG = 2. In addition, Iy = {xo}, I, = {x1}, and there are

exactly 2 Ising vectors in G. The multiplication and the bilinear form are given by
(4.0.2) zi-x; =0 and (r;,x;) =0 fori#j.

Note that both 7., and o,, act trivially on G. We call (zo,x1) a normal GUsp basis.
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4.0.7. GUsa. In this case, 1, and 1., generate a symmetric group Ss3 and (xg,x1) =

6 .
21%. Let xg := 1,y (21) and u := %(2%—1—23:1—1-:62—24:60'3:1). Then, u is a conformal vector

of central charge %, G = Spang{zo, x1,z2,u} and dimG = 4. For {i,j,k} ={0,1,2}, the

multiplication and the bilinear form are given by

1 135

2 5
(4.0.4) Ti-u = §(2x2 —x; — X)) + o1t
(4.0.5) TP
and

13 1 2

(4.0.6) (wi, ;) = 107 (@i, u) = 51 (u,u)y = o
Moreover, we have
(4.0.7) To () =2,  and Ty (u) = u.

For i € Z3, the fized point subalgebra G™:i has dimension 3 and is spanned by x;, x; + xj,

and w. Moreover we have

3r;  wj+xp  135u
+ +

(408) Oz (xj + xk) == 24 22 97

2z,  8(z;+xk) wu
(4.0.9) 0z, (u) = T JT -5

I =1Iy=1 = {xg,x1, 22} is the set of all Ising vectors in G.

We call the ordered set (zg,x1,Te,u) a normal GUsu basis.
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1

4.0.8. GUsc. In GUsc, T, and 7., generate a symmetric group Ss and (xg, 1) = 58 -

Let xo := 7,,(x1). Then, G = Spang{zg, z1,22} and dimG = 3. The multiplication
and the bilinear form are given by

1 1
(4.0.10) zi- 15 = (et oy —w),  and  (2i,15) = o,

where {i,j,k} = {0,1,2}. In this case, we also have 7,,(x;) = xx and [ = Iy = I; =
{zo, 1,22} is the set of all Ising vectors in G.
The fized point subalgebra G™:i has dimension 2 and is spanned by x; and x; + xy.

Moreover we have o,,(x; + xi) = x; + x. We call (xg, x1,2) a normal GUsc basis.

_ 1

4.0.9. GUya. In GUyya, T4, and 7, generate a Klein's 4-group and (xo, 1) = 5.

Let x5 = 74, (x0), T3 1= Tuo(21) and p := xo + 1 + %xz + %373 — %xo ~x1. Then u is a
conformal vector of central charge 1 and G = Spang{zo,x1,x2, x3,u}. The dimension of
G is 5 and the multiplication and the bilinear form are given as the following.

For k = i+ 2 (mod4), the pair (x;,x) forms a normal GUyp basis. The product
structure and the bilinear form between x; and xj are then shown as in GUsp.

For j=i+1 (mod4), {i,7,k, 1} ={0,1,2,3}, we have

1 1
(4.0.11) T Ty = 2—5(320, +3%;+xp+x —3p) and (v, x;) = 7

For k=1i+2 (mod4), {i,5,k, 1} ={0,1,2,3}, we have

1 3
(4.0.12) T = ﬁ(fml —2xj —xp —2x;+3pn) and  (x;,p) = %

We also have

1
(4.0.13) e =2 and {(u,p) = 3
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Moreover, 1,,(x;) = 21, Ty, () = z; for j = i+1 (mod4), | =i—1 (mod4) and 7,,(1) = p
fori€{0,1,2,3}. In this case, Iy = {xg,x2}, I = {x1, 23}, and there are exactly 4 Ising
vectors in G.

The fized point subalgebra G™: has dimension 4 and is spanned by x;, xy, p and x;+;,

where k =1+ 2 (mod4), j =i+ 1 (mod4) and | =i — 1 (mod4). In addition,

Ty X x;+x; 30

S22 92 2 22’

Oz, (Tj + 71) =

Z; Tl
on(p) = 5 + 5 (25 +w) -

STh=

We call the ordered set (xg,x1, 2, x3, 1) a normal GUyy basis.

4.0.10. GUyp. In GUsp, Ty, and 7., generate a Klein’s 4-group and (xy,x1) = 2% Let
Ty =T, (T0), T3 1= Tpy (1), and x := —xg — T1 + To + T3 + 2°7¢ - 1. Then z is an Ising
vector and G = Spang{zy, 1, 2, x3,x}. The dimension of G is 5.

The multiplication and the bilinear form are given as the following.

For k =i+ 2(mod4), the triple (z;, g, x) forms a normal GUsa basis for G{z;, vy},
and hence the product structure and the bilinear form between x;, x), x are shown as in
GUsa.

For j =i+ 1(mod4), {i,5,k, 1} ={0,1,2,3}, we have

1

1
vorj=—=(x;+x;—x,—x+x), and (v,z;) = %

925
Moreover, we have T,,(z;) = xy, Tp,(2;) = x; for j =i+1 (mod4), | =i—1 (mod4) and
Te; () = x fori € {0,1,2,3}. In this case, Iy = {xo,x2}, Iy = {1,235} and there are 5
Ising vectors in G.

The fized point subalgebra G™i has dimension 4 and is spanned by x;, xy, © and v+,
where k =1+ 2 (mod 4), {i,j,k,1} ={0,1,2,3}. Moreover we have

T i

oy (xj+a) = (x;+2;) + 52 T o2
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We call the ordered set (xg,x1, T, x3,x) a normal GUyp basis.

4.0.11. GUsx. In GUsyu, 1o, and 7., generate a dihedral group of order 10. Let xo :=
Toy (T0), 3 := Tpo (1), 4 = Tpy(21), and v := —x9 — 21 + T2 + 3 + 2520 - 11. Then
G = Spang{xg, z1, %2, T3, 24,v} and dAimG = 6. In this case, the vector v is fized by
Tz, for all i € {0,1,2,3,4}. The multiplication and the bilinear form are given as the
following.

For j =i+ 1(modb), {i,7,k,I,m} ={0,1,2,3,4},
T T = %(33:7;‘*’3‘%]' — X — X — Tpy) + 20
For k =i+2(modb), {i,j,k,l,m}=1{0,1,2,3,4},
1
T X = %(Bxi 2o Bre\=% =) — 2v.
For j=i+1(mod5), m=i—1(modb5), k =i+ 2(modb), | =i—2(mod5),

{

xi-yzﬁ(a:j—xk—xl—l—xm)—i—?z/.

We also have

527
V-V—W(QS0+ZE1+1'2+ZB3+$4).
For j # i, we have
5.7
<£Ci,.77j> = ?’ <.CI?1',I/> = O7 <V, I/> = 921 .

Moreover, T,,(x;) = T, for j+m = 2i(mod5) and 7,,(v) = v fori € {0,1,2,3,4}. In
this case, I = Iy = I} = {xo,...,x4} and there are exactly 5 Ising vectors in G.

The fized point subalgebra G™: has dimension 4 and is spanned by x;, v, x; + %, and
xp+x; where j =i+1(mod5), m =i—1(modb), k =i+2(modb) and ! =i—2 (modb5).
Moreover we have

ri+x, (rp+x
O, (T + T) = 323 + (k23 l)—161/,
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T(xj+xm)  xp+x
53 + 53 + 16v,

O, (T + 1) =

—7(33j +.Tm) 7($k —|—£Ul)
29 + 29

3
04, (V) = i

We call the ordered set (xg,x1, To, T3, x4,v) a normal GUs4 basis.

4.0.12. GUsa. In GUsa, (TuuTs,)® = 1, and 7uy7e, (v0) # x1. Let 19 = 74, (10),
T3 = Tu,(T1), Ty := Tuy(12), T5 := T (T1), T 1= Tg + T3 — 2230 - 2 and p := 323—2(2m0 +
2ry + x4 — 220 - 22). Then x is an Ising vector and u is a conformal vector of central
charge %. Moreover, we have G = Spang{xo, 1, T2, T3, T4, T5,x, i} and dimG = 8. The

multiplication and the bilinear form are given as the following.

o fork=1i+2(mod6), m =i—2(mod6), the quadruple (x;, Tx, Tm, i) forms a
normal GUs4 basis. Hence their structures are shown as in GUs4.

e Forl =i+ 3(mod6), the quadruple (z;,x;,x) forms a normal GUyy basis. In
particular, we have x; - x; = i(mz + 1z — ).

[ J FOTj =1+1 (m0d6)7 {iaja k,l,m,n} = {07 172’3’4’ 5}7 we have

1 45
(4.0.14) :clwxj:§($i+xj—xk—xl—xm—xn—%x)—l—ﬁu.
We also have
(4.0.15) x-p=0, (x,p) =0,
and
5 .
(4.0.16) (wi,z;) = 510 for j =i+ 1(mod6).
Moreover, fori,j € Zg, we have
(4.0.17) 7o (%) = 22i-j.
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The fized point subalgebra G™i has dimension 6 and is spanned by x;, x;, T, [, Tj + Tp,
T+ Ty, where l =i+ 3 (mod6), j =i+ 1(mod6), n =4—1(mod6), k =i+ 2(mod6),
m =i — 2(mod6). Moreover we have

Ty X T+ T, x  45u
ami(xj+xn):§+§+(xj+xn)+7—§—7.

We call the ordered set (xg,x1, T2, T3, T4, T5,x, 1) a normal GUgy basis.

REMARK 4.5. By Sakuma’s Theorem (Theorem 4.4), it is easy to see that a = b if

and only if (a,b) = 2% for any 2 Ising vectors a, b.
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CHAPTER 5

Griess algebras generated by 3 Ising vectors of central 2A-type

Since Griess algebras generated by 2 Ising vectors are classified. We may want to
classify Griess algebras generated by 3 Ising vectors. However, a group generated by
3 involutions can be very large and the situation could be very complicated. Here we
concentrate on Griess algebras generated by 3 Ising vectors of central 2A-type (Definition
5.2). In this case, we can classify all possibilities and each has the corresponding VOA

constructed in [HLY1].

NOTATION 5.1. Let S be a subset of G = Vi, we use GS to denote the (Griess)
subalgebra generated by S. For example, G{x,y} denotes the (Griess) subalgebra generated

by x and y.

DEFINITION 5.2. Let V' be a VOA satisfying Assumption 1 and let e, xg,x1 be Ising
vectors in Vo. The set {e,xo,x1} is said to be of central 2A-type if G{e,zo} = G{e,z1} =

GUsx. In this case, T, commutes with T,, and T, .
The following lemma can be found in [HLY1], which is proved by Matsuo [Ma].

LEMMA 5.3. Suppose that V' is a VOA satisfying Assumption 1. Let xq, x1, o and
e be Ising vectors of V' such that (xo,x1,x2) forms a normal GUyy basis (recall 4.0.5).

Then it is impossible that G{e,x;} = GUay for alli =0,1,2.

In [HLY1], certain VOA generated by 3 Ising vectors of central 2A-type are con-
structed. There are 5 cases and they are denoted by Vi), Veen), Va@a), Veus), and

Ve2c). We denote their Griess algebras by GVi(,x).
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The next theorem is the main theorem of Chapter 5, which shows that there are only

five possible structures for Griess algebra generated by 3 Ising vectors of central 2A-type.

5.1. Main theorem

THEOREM 5.4. Let V' be a VOA satisfying Assumption 1 and let e, xq, x1 be Ising vec-
tors of central 2A-type. Then the Griess subalgebra G generated by e, xo, x1 is isomorphic

to one of the following algebras.

(1) GVeaay. In this case, G{e,x0} = G{e,x1}. Then G is generated by e and xy. By
our assumption, G is isomorphic to GUs 4 in the previous chapter and dim G = 3.

(2) GVeap). The algebra GVyap) is isomorphic to the Griess algebra of VjiA2. In
this case, G = GVgp) = Spang{e, f, f',9,9', h} and dimG = 6, where (e, f, f'),
(e,9,9"), (h,f,g), and (h, f',g") form normal GUyys bases of G{e,xo}, G{e,x1},
G{f,g}, and G{f', ¢'} respectively. In addition, (e,h), (f,q'), and (f',g) form
normal GUsp basis for G{e,h}, G{f,q'}, and G{f’, g} respectively. The multipli-
cation and the bilinear form can be obtained via the structures of GUsa and GUsp
(c.f. Figure 1).

(3) GVi@oy. In this case, xy and x, generate GUyp and G = GU,p in the previous
chapter with e = x. The dimension of G is 5 (c.f. Figure 3).

(4) GVgay. In this case, xo and x; generate GUsa or GUsy and G is isomorphic to
GUga as described in the previous chapter with e = x and dimG = 8 (c.f. Figure

(5) GViup)- In this case, o and xy generate GUya. Let (w0, 21, T2, 23, 1) be a nor-
mal GUya basis and y; = 1(x;). Then yo € G™0 and let ' = o0,,(y2). The

subalgebra G{xg, 1} is also isomorphic to GUys. Let p' € G{xg, 11} such that
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(xo, Y1, T2, Y3, ') forms a normal GUyy basis. Then,

g = SpanR{€7 6/7 Lo, L1, T2, 23, Yo, Y1, Y2, Y3, W, :u/}

with an extra relation To+x1+To+x3+Yo+y1+yatys—e—e' —3pu—3)/ = 0. The
dimension of G is 11. FElements e, €', xg, x1, X2, T3, Y0, Y1, Y2, Y3 are Ising vectors
and p, i’ are conformal vectors with central charge 1.
The structures can be summarized as follows (c.f. Figure /).
e The ordered sets (xq,x1, T2, x3, 1), (Yo,Y1,Y2, Y3, 1), (Zo,Y1,T2,ys, 1), and
(Yo, x1, Y2, x3, 1t") form normal GUya bases.
o The triples (e, x;,y;) and (€', z;,y;) form normal GUa4 bases fori € {0,1,2,3},
Jj =i+ 2(mod4).
o The pair (e, e') forms a normal GUsp basis.

e The remaining structures are listed below.
poe=0,pu-e=0p-e=0py-e=0 p-pu =0,
and
(noe) =0, (u,e') =0, (p',e) =0, (i, €e") =0, (u,p') = 0.
In addition, we have

Te(p) = p, (1) = s Ter (1) = g, T (1) = 44,

and

oe(pt) = p, oe(p) = i, oo (p) = p, oo (i) = 1"
55



5.2. Proof of the main theorem

In the following, we will give a proof for Theorem 5.4.

NOTATION 5.5. Let xjy := o.(xg) and 2 := o.(x1). Then (e, xg,z,) and (e, xy1,z))

form normal GUsa bases for G{e,xo} and G{e,x1}.

By Theorem 4.4, there are 9 possibilities for G{x¢,x1}. We will analyze each case in

details.

5.2.1. Case 1. G{xg,21} = GUja. In this case, zg = x;. Then G{e, zg, 21} =

G{e,xo} = GUy4. This algebra is isomorphic to GVi 4).

5.2.2. Case 2. g{ZL'Q,ZL’l} = QUQA.

LEMMA 5.6. Let h := 0,,(x1) = @ + 21 — 2220 - 21 (by (4.0.1)). Then (e,h) =0 or

1
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PROOF. Since 7, is trivial on G{zg, x1, e} = G, we have 7.(h) = h and Gp(7., ) -{h} =
{h}. Hence G{e, h} is isomorphic to GUy4, GUsa or GUsp by Theorem 4.4.

Since (xg, x1, h) forms a normal GUsy basis for G{zg, x1} and G{e, 2o} = G{e, 21} =
GUs4 by our assumption, G{e, h} cannot be isomorphic to GUy4 by Lemma 5.3. Hence

we have G{e, h} = GU,p or GUy4, ie. (e,h) =0 or . =

LEMMA 5.7. We have (z,2}) = (e, h). Hence (o, z}) =0 or 5.

PROOF. Since 7} = 0.(x1) = e + 21 — 2%¢ - 21 (by (4.0.1)), we have

(xg,2]) = (x0,6+ 71 — 2%¢ . x1) = (o, €) + (xg, x1) — 22<I0,6 )
1 1 1 1
= ﬁ—i—?—?(e,xo-xﬁ:¥+2—5—(e,x0+x1—h>
1 1 1 1
= —+ - —=—-= + (e, h) = (e, h)
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as desired. O

PROPOSITION 5.8. (1) If {e,h) = o5, then G{e,xq, 21} = GUsy.

(2) If {e,h) =0, then dim G{e, xo, 21} = 6 and G{e, o, 11} = GViap).

PROOF. (1) When (e, h) = (¢, x}) = 55, we have e = h and zy = 2} by Remark
2.25. Therefore G{e, zo, x1} = G{e, 2}, 21} = GUs4.

(2) When (e, h) = (xo,2}) = 0, we have G{e,h} = G{zo, 2|} = GUsp. Set [ :=
xg, g = x1, f = xp, ¢ := z}. We have a normal GU,, basis (f,g,h) for
G{zo, 21} = G{f,g} and normal GU,p bases (e,h) and (f,g’) for G{e, h} and
G{f,q'} respectively. Since 7, is trivial on G, we can apply o, to the normal
GUs 4 basis (f,g,h) to get another normal GUs 4 basis (f’,¢’, h) and apply o, to
the normal GUsp basis (f, ¢') to get a normal GUsp basis (f’, g). Therefore, there
are 4 normal GU; 4 bases and 3 normal GUsp bases. The structure is summarized
in Figure 1. In Figure 1, any three collinear points form a normal GU;4 basis
and any 2 points not joined by a line form a normal GU;p basis.

Hence G = Spang{e, h, f, ', g, ¢'} is closed under multiplication. This algebra
is isomorphic to GVg(2p).

FIGURE 1. Configuration for GVg2p)

e

To prove that {e, h, f, ', g, ¢'} is linearly independent, we can compute det({a;,
9,9 Yy

a;)) for a; € {e,h, f,f',g,9'}. By computer, we verify that det({a;,a;)) = 3
J J 2

0. Hence GV(2p) have dimension 6.
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5.2.3. Case 3. G{zg, 21} = GUyp. In this case, we have

(xo, 7)) = (0,6 + 11 — 2% - 21) = (W0, €) + (W0, 71) — 2%(w0, € - T1)

1 1
= 2—5+O—22<e,x0-m1>:ﬁ.

That is to say, G{xg, x|} is isomorphic to GUs 4. Moreover, it is easy to see that G{e, zo, z1}
= G{e, xo, 2 } since G{e, z1} = G{e, x|} = GUsya. Hence, by Case 2, we have G{e, xg, z1} =

G{e, xo, 21} = GVi2p)-

5.2.4. Case 4. G{xg,x1} = GUsa. Let 29 := 7,,(21) and u := 3§—Z(2x0 + 221 + 29 —

2424 - z1). Then (xg, x1, T2, u) forms a normal GUs4 basis and

Hence G{e,xo} = GUsa. Let @, := 0.(x3). Then (e, z9,24) forms a normal GUs, basis.

LEMMA 5.9. We have 7,0, = 0.7, and 7., = T for anyi=0,1.

PROOF. Since 7., fixes e, we have 7,,0.7,, = Orp (e) = Ocs which implies 7,0, = 0.7,
Therefore, 7,, = 0.74,0c = Ty (xy) = To;. Similarly we also have 7,,0. = 0.7, and
Tug = Ta)- 0

LEMMA 5.10. The set Gp(Tz,, Tar) - {70, ¥ } = {0, T1, T2, T(, T, 75}
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PROOF. By Lemma 5.9, 7 (70) = Ta, (T0) = T2, Tuo (72) = 21, and Gp(7y,, Tt ) {0} =

{zo, x1,22}. Moreover,

Gp<T$07Tx’1> ’ {1:/1} = Gp<7-33077—13'1> ’ {O’e<$€1>}

= ¢ (GP(Tap, T) - {71})
(5.2.1)

= 0O0¢ {x07x17 1'2}

- {‘IED xlla 11,2}

and thus we have the desired result. O

LEMMA 5.11. For any i,j € {0,1,2}, x} # x;.

PRrROOF. Clearly, x; # x} since G{z;,z;} = GUya. Suppose z; = z; for some i # j.
Then G{z;,z,} = G{z;,x;} = GUsa by our assumption. It is absurd since G{x;, 2} =

GUsa. O

PROPOSITION 5.12. We have G{xo, z1, e} = GUsa = GVi(34).

PROOF. By Lemma 5.10 and 5.11, there are at least 6 distinct Ising vectors in G{zo, ] }
and hence G{x¢, ]} = GUgsa by Theorem 4.4. By Lemma 5.10, we have {x¢, x1, xo, z(, 2}, 25} C
G{xzo,x}} and thus e € G{zy,2)} C G{zo,z}}. Hence the Griess algebra G{z, 2|}
contains G{xg, z1,e} and G{xg,x1,e} = G{xo, |} = Spang{wo, 2}, ra, T, x1, 4, €, u} =
GUga. This algebra is isomorphic to GVg34). The structure is shown in Figure 2, where
three collinear points joined by a solid line form a normal GU;4 basis and the vertices of

a dotted triangle form a normal GUs,4 basis with w. O
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FIGURE 2. Configuration for GVg3a)

Xy X0

5.2.5. Case 5. G{zg, 71} = GUsc. Let vy := 7,,(20), Ty := 0c(T2) = e+ 19— 2% 15.

As in (5.9), we also have 7,, = 7,y for i = 0,1,2. Then,

(zo, ) = (z0,e+ 31 — 2% 17)

= (xo,€) + (xg, 1) — 22(e,x0 - 21)

1
= §+§—22<6,$(I0+$1—I2)>

It implies G{xo, 2]} is isomorphic to GUs4, and we have 7,/ (z9) = zo. On the other hand,
ot (T0) = Ty (To) = @2 # x0. That is a contradiction. Hence there is no such Griess

algebra.

5.2.6. Case 6. G{xg, 1} = GUsa. Let (xg, 1, 22,23, 24,v) be a normal GUs4 basis.
Since 7, - {e,x0} = {e, x2}, G{e, x2} is isomorphic to G{e, xo} = GUs4. Similarly G{e, z;}

is isomorphic to GUs 4 for all © = 0, 1,2, 3, 4.

LEMMA 5.13. Let y; = o.(x;) = e+ x; — 2%x; - e. Then Gp(Tuy, 7)) - {w0} =

{$0,$1,9€2,$37$4}; and Gp<7-xoa7—y1> : {yl} = {90791792793794}'
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PROOF. As in Lemma 5.9, we have 7,, = 7, for i = 0,1,2,3,4. Hence Gp(7y,, 7y,) -
{370} = Gp<7—zoy7—x1> : {.',Uo} = {x07x17$27x37x4}7 and Gp<7—$077-y1> : {yl} - Gp<7—33077—11> :

{Ue(xl)} = O¢ (Gp<7—x077_x1> : {331}) = 0O¢ - {$0,l’1,l‘2,$3,$4} = {yan17y27y3ay4}- U
LEMMA 5.14. Fori,j € {0,1,2,3,4}, we have y; # x;.

PROOF. Suppose y; = x; for some ¢, j. Then G{z;,y;} = G{z;,z;}. Since G{w;,y;} =
GUsa and G{z;,x;} =2 GUs4 for i # j, we must have ¢ = j and G{z;,z;} = GUya. It is

also absurd. O

Therefore, G{xg, 2|} has at least 10 distinct Ising vectors. That is impossible by

Theorem 4.4. Hence there is no such Griess algebra.

5.2.7. Case 7. G{xg, 1} = GUsa. Let (xg, z1, 29, X3, T4, T5,€,u) be a normal GUga

basis of G{xo, z1}. Since 7, fixes zg and x1, it also fixes all elements in G{x, z1}.

LEMMA 5.15. Set y; := o.(x;). Then

(1) <x07y1>a <$073/2> € {QIT%) 2%} and

(2) (z0,s) € {35, . 0}.

PRrROOF. Asin (5.9), we have 7,, = 7, for i = 0,1,2,3,4,5. Hence Gp(7y,, 7y, ) - {x0} =
{0, x2, x4}, which has 3 elements. So by Theorem 4.4, G{xq, 31} is isomorphic to GUs4,
GUsc or GUga. However, G{xg, 11 } 2 GUsc because G{zo,y1} D G{xo, 2,24} = GUsa (or
by Case 5).

Similarly, Gp(7.,7y,) - {0} = {0, 22, 4} and G{zo, y2} is also isomorphic to GUsy4 or

GUg4. Hence by Theorem 4.4, we have

13 5
(5.2.2) (o, y1), (w0, 92) € {575, 5}
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On the other hand, Gp(7y,, Tys) {0} = GP(Tay, Tus) - {T0} = {x0}, which has 1 element.

Therefore, G{xo, y3} is isomorphic to GUy4, GUsa or GUyp by Theorem 4.4 and we have

0}.

(wo,y3) € { !

LEMMA 5.16. Let €' be defined as above. Then (e, e

PRroOF. By direct calculation, we have

<370,y1>

(xo,e +x1 — 2% - 1)

1 b}

= 2_54_%—22(6,350-:101)
= 2_15+%—22<e,2l5(x0+x1—x2—$3—$4—$5+@/)
- %—%(e,e')—l—i—?(eﬂ%
(x0,y3) = (w0, e+ w3 —2% - x3)
— %+%—Q2<e,xo-x3)
= ;1—22<e,%(x0+$3—6/)>

(5.2.4)

2% and hence e = €.

45
+ —u

510 > by (4.0.3)



and

(zo,y2) = (To,e+ o — 2% - T2)
1 13
= $+ 510 A R )
1 13 1 45
= % + om0~ 2? <e, §(2x0 + 2mg + x4) — ﬁu>
45 1 1 1 1 45
5 45
= ﬁ §<€7u>
So we have
5 45 45 1 45 1
510 (o, y2) = §<67U> = (zo, Y1) — 210 + §<€>€,> = (xo, 1) — 510 + §<$oyy3>-
Therefore, we have
50
(T, y3) = —2°(wo, Y1) + 3T 2°(o, y2)
Since <13073/1>, <$an2> € {21T37 2%}7
50 1
—2°(xo, Y1) + 57 2°(x0, y2) 51520 O o1

Thus, we have (zo,y3) = 35 by (5.2.3) and (e, €’) = (zo,y3) = 3z by (5.2.4). That implies

e =€ and xy = y3 by Remark 2.25. O

In the proof above, we also proved the following.
LEMMA 5.17. Fori=0,...,5 and j =4+ 3 mod 6, we have y; = x;.
PROPOSITION 5.18. The Griess algebra G{e, xo, x1} is isomorphic to GUga = GVi(3a4)-

PROOF. Since G{e, xg,x1} = G{e',xp, 21} = G{xo, 71} = GUsa, we have the desired
result (see Figure 2). O
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5.2.8. Case 8. g{IL‘O,ZEl} = QU4B.

NOTATION 5.19. Set xo := 7,,(x0), X3 := Tuo(x1). Then by the structure of GUsp
(Theorem 4.4), we have G{xy, 1} = Spang{xo, 1, X2, x3, €'} where (xg, x1, o, x3,€") forms

a normal GU,p basis.

LEMMA 5.20. Let b; := o.(x;) = e + x; — 2%¢ - x;. Then Gp(Tay, To,) - {T0, 01} =

{zo,x9,b1,b3}. Therefore, G{xg, b1} = GUya or GUsp and (xy,by) = 2% or QLS

PrOOF. By Lemma 5.9, we have 7,,, = 7,, for i = 0,1,2,3. Hence fori = 1,3, 7, (z0) =
T, (To) = X2, and b; # xg, vo. Moreover, Gp(Tyy, To,) {21} = GP(Tug, 7wy ) {21} = {71, 23},
and Gp(Tag, 7,) - {01} = GP(Tags 7o) - {0e(21)} = e - (GP(Tag, 7o) - {21}) = 0 - {1, 23} =
{b1,b3}. Thus Gp(Ts, ;) - {x0,01} = {x0,T2,b1,b3}, which have 4 distinct elements.

Hence by Theorem 4.4, we have the lemma. 0

LEMMA 5.21. Let ¢ be defined as in Notation 5.19. Then (e,e’) € {5, 55,0}

PROOF. Since 7, is trivial on G, Gp(7., 7/) - {€¢'} = {€’} and G{e, ¢’} is isomorphic to

GUya, GUsa or GUsp by Theorem 4.4. Hence (e, €') € {2%, 2is,()}. O

LEMMA 5.22. Let € and by be defined as in Notation 5.19 and Lemma 5.20. Then

1

e=¢ and (rg,b1) = 5.

PRrOOF. By definition,

<I0,b1> = <$0,€+ZC1—226'SL’1>

1 1

= g—l—ﬁ—?(e,xo-xl}
1 1 1

— ﬁ_}—ﬁ_22<6’§(l’0+x1_$2_$3+6/)>
1 1 1 /1 1 1 1 ,

Sty w\n iy o op e
9 1

= 3 opled
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Then, by Lemma 5.21, we have (z,b1) = % —55(e,¢) € {55, 55, 2 } and thus (2o, b;) =

5 and (e, ¢’) = 55 by Lemma 5.20. It implies e = ¢’ by Remark 2.25. O
PROPOSITION 5.23. The Griess algebra G{e, xo, x1} is isomorphic to GUsp = GVi(ac).

PROOF. Since e = €', we have G{e, xg,x1} = G{€', 29,21} = G{x, 21} is isomorphic
to GUyp. This Griess algebra is GVgac). The configuration is given in Figure 3, where
three collinear points form a normal GUs4 basis and the 4 vertices of the dotted square

and e form a normal GU,p basis. O

FIGURE 3. Configuration for GVgc)

X4

5.2.9. Case 9. g{{L‘O,Il} = QU4A.

NOTATION 5.24. Let (xq,x1, T2, X3, fiz) be a normal GUya basis for G{xg,x1}. Since
Te 1s trivial on G, Te(pz) = pe and oo(py) is well-defined.
Set = 0.(ps) and let y; := o.(x;) = e+x; —2%e-x;. We can apply o, to the normal

GUya basis (zg, x1, T2, T3, f1z) to get a new normal GUya basis (Yo, Y1, Y2, Ys, Hy)-
As in Lemma 5.9, we have
(5.2.5) OeTy, = Tp0e and 7, =7, fori=0,1,23.

LEMMA 5.25. We have G{xo,y1} = GUsa and G{yo,x1} = GUy4.
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PRrOOF. For i = 1,3, 7, (z0) = 7s,(z0) = 22, and thus y; # x¢,22 for i = 1,3. In
addition, Gp(Tsy, 7y,) - {21} = GP(Tug, Tuy) - {1} = {21, 23}, and Gp(ry,, 7)) - {1} =
GDP(Tags Tay) - {0e(1)} = 0 - (GD(Tug, Tuy) - {11}) = 0 - {21,235} = {v1,y3}. Thus
GP(Tags Tyr) - {®0, 11} = {0, T2, y1, y3}, which have 4 distinct elements. Hence by Theorem
4.4, G{xg,y1} is isomorphic to GUy4 or GU,p and

11
277 28

).

(wo, 1) € {

By Norton inequality (Theorem 2.27), we have

1 1
<€7/v‘m> = Z<€'€7/v‘m 'ﬂx> > Z<e',u:]cae'/~bx> > 0.

Therefore,

(o, 1) = (zo,e+ a1 —2%€- 1)
1 1
= ﬁ_‘_? —2%(e, xo - 1)
o1 a1
= xtxm X2 e,$(3x0+3x1+x2+x3—3ugg)
1 1 1 3 3 1 1
- sty mlEtE ety o den
1
1
> o7
Hence we have
1
(5.2.6) (xo,y1) = > and (e, ) = 0.
Thus G{xg, y1} is isomorphic to GUy4. Similarly, G{yo, 21} = GU,a, also. O

NOTATION 5.26. By (5.2.5), Tuo(y1) = Tug0e(T1) = 0eTuy(x1) = 0c(x3) = y3, and
Ty (T0) = 7o, (x0) = 2. Therefore, by the structure of GUya, there is a conformal vector

o of central charge 1 such that (xo,y1, T2,Ys, fto) forms a normal GUy4 basis for G{yo, x1}.
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Similarly, there is a conformal vector py of central charge 1 such that (yo,x1, Yo, T3, ft1)
forms a normal GUyys basis for G{yo,x1}. Note that 1.(u;) = p; for all i € {0,1,z,y}

since 1, 1s trivial on G.
LEMMA 5.27. We have o.(p1) = po, and oc(po) = p1-

PROOF. By the structure of GU,4, we have

1
—(3x0 + 3y1 + 2 + Y3 — 3po)-

e(Yo - 21) = 0e(y) - 0e(11) = 20 - Y1 = 5

On the other hand,

oe(yo-r1) = <25(3y0+3x1 + Yo + 23 —3M1)>

1
= 55(3%0 + 3y1 + 2 + y3 — 3o (1))

It implies o.(p1) = po and e (o) = pi1- O
LEMMA 5.28. We have (e, ;) = 0 fori € {0,1,z,y}.

PROOF. To compute (e, p;), we use the equation

3 3 1 1
F ity Ty den

3
- ?(Q /’1/0>
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1
(e,xo-1h) = < 2—3$0+3y1+$2+93—3ﬂo)>
1
25
1
27



By associative rule,

(e,xo-11) = (e-xo,v)

It implies 57 — 35 (e, to) = 5= and (e, o) = 0. Similarly we have (e, 1) = 0. Combining

these results with (5.2.6), we have the lemma. O

LEMMA 5.29. The subalgebras G{zo,y2}, G{x1,y3}, G{za,y0} and G{x3,11} are iso-

morphic to GUs 4.

PROOF. We first note that

(z0,72) = (20, € + 1o — 2% - 25) = % +0—2%e,mp - 29) = ;—5
Similarly we have
(5.2.7) (o, y2) = (21,3) = (22, %) = (T3, 91) = 2_15
Hence, G{zo,vy2}, G{x1,y3}, G{x2,y0o} and G{x3,y;} are isomorphic to GUs 4. O

LEMMA 5.30. For alli € {0,1,2,3},7 € {x,y,0,1}, we have

3 3
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ProOOF. We compute

(o Yo, y1) = <

B 1
= %
and
(o~ Yo, y1) = (Zo,Yo Y1)
1
= ( Zo, ﬁ(?)yo +3y1 + Y2 + ys — 3y
ATl 3 1 1
= F\EtatE g deom
a 3
| S0\ §<$0aﬂy>-
Therefore, 5% — 25 (o, pty) = —55 and (o, p1,) = 2.
By the same calculations, we have
1
(o * Yo, T1) = 98’
(To - Yo, 21) = (w0, Yo - 1) = 210 ﬁ<x07,ul>a
and then (xg, p1) = 2% The other equality can be proved by the same method. 0

NOTATION 5.31. Set e := 0,,(y2) and ey := 04, (y3)-

PROPOSITION 5.32. The triples (eg, o, y2), (€0, Yo, T2), (€1, x1,y3), (€1,y1,23), (€, 0, Yo),

(e, x1,11), (€,22,92) and (e, x3,y3) form normal GUyy bases. Moreover,

(5.2.8) (x;,e0) = (x4,e1) = (x;,€) = (yi, e0) = (yi, e1) = (yi, €) = % fori € {0,1,2,3}.

69



PROOF. By definition, (e, x;,y;) forms a normal GUs4 basis for i € {0,1,2,3}. More-
over, (e, To,y2) and (e1,x1,ys3) also form normal GU,4 bases.

Since Ty, (Y1) = Y1, 0z (y1) is well-defined. Because x5 = 7, (x1) and y; = 74, (y3), we
have 0., (y1) = 07, (21)(Tao (Y3)) = Tig0uy (Y3) = Tu(€1) = e1. Therefore, (ey,y1,x3) forms
a normal GUs4 basis. Similarly, we can also show that (e, yo, z2) forms a normal GUs4
basis using 7., (yo) = yo and o, (yo) = €.

It remains to show (z;, e0) = (y;, e0) = (xj,€1) = (y;,e1) = 55 fori =1,3 and j = 0,2.

Since the calculation is similar, we only prove one case. For example,

<330, €1> = <-T07 1+ Ys— 22ffl : y3>

1 1
1 2

= ﬁ_Q (wo - 1, Y3)

_ 1 22 i 3 3 3

— ﬁ_ ﬁ( XTo + 3T + Ty + Ty — ,ua:)ayS
1 1 /3 3 1 1 3

= %_ﬁ(?+§+?+$_3.§) by Lemma 5.30
1

T

as desired. O

PROPOSITION 5.33. For each i € {0,1}, (e, e;) is a normal GUsp basis, i.e.,

(5.2.9) (e,e1) =0 and (e, e9) = 0.
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PRrROOF. We note that

(e,er) = ({e,x; +ys — 2%w1 - y3) by Proposition 5.32
1 1
= % +¥ —2%(e - 1, ys)
1 2
= i 2 pletri—u)ys

Similarly, we also have (e, ey) = 0.

By Lemma 2.24, Lemma 5.27 and (5.2.6), we have

1
e',ux = 8<67,U/w>6+ ?(MI _Ue(ﬂx))
1

(5.2.10) = (= ).

Similarly, we have

e- o = 8(e,po)e+ %(%(Mo - Ue(ﬂO)))

(5.2.11) = lHo— )
and
1
(5.2.12) ey = ﬁ(,ul — o).

LEMMA 5.34. We have i, = p,, and po = fi1.
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Proor. We will compute (p,, f1,) and (po, p11). First we note that
0 = (e, 2uy)
= <67 oz /4%>
= (e~ pa, i)
1
= <§(ﬂm - ,uy)v ,um>
1.1

= §(§ - <Mz,uy>)-

It implies (pz, p1y) = 3 and thus p1, = p1,, by Remark 2.25 and (g, p1a) = {1y, p1y) = 3-

Similarly, we can also proved that {(u, 1) = 3 and po = 1. O
NOTATION 5.35. Set p:= pip, = p, and p' == o = f11.
The next proposition is clear from the definition.

PROPOSITION 5.36. (5E07$17$27$37H)a (y07y17y27y37l1’)7 ($0791,$2793aﬂl); and (y())xlvaa

x3, 1) form normal GUyy bases.
Since 7, (21 + x3) = T3 + 21, 04y (21 + 3) is well-defined.

LEMMA 5.37. We have

1
(5.2.13) O (21 + 23) = ﬁ(—l‘o + 221 — 29 + 223 + 3p),
and

1
(5214) azo(yl + yg) = ﬁ(—mo -+ 2y1 — X9 + 2y3 + 3//)

PRrOOF. By (4.0.11),

1 1
xo (21 +23) = 2—5(3560 + 3z + x9 + 23 — 3pu) + 5(3:1:0 + 3x3 + 29 + 21 — 3p)
1
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By Lemma 2.24, we also have
1
zo - (v1+x3) = 8o, 1 + T3)T0 + 2—2(($1 + x3) — Oy (71 + 73))

1 1 1
= 8 (? -+ ?> Zo + ﬁ((xl -+ $3) — 0'330(371 —+ 1’3))

1
= ﬁ@o + 221 + 223 — 20, (1 + 73)).

Hence we have o (3zg + 221 + 22 + 223 — 31) = 55 (20 + 221 + 205 — 20, (21 + 23)) and
get (5.2.13). (5.2.14) can be proved by a similar method. O
LEMMA 5.38. For alli € {0,1,2,3},

/

(5.2.16) To, (1) = 1 7y, (1) =t 7o, () = g, 7y, (1) = 1.

Hence o,, (1), 0y, (1), 04,(1') and oy, (1) are well-defined and we have

1

(5.2.17) O (1) = 5(1:0 + 221 + 29 + 223 — ).
/ 1 /

(5.2.18) 0o (1) = 5 (w0 + 2y1 + @2 + 2y3 — 1),
/ 1 !/

(5.2.19) o () = 5 @1+ 20 + 73+ 2y — 1),

PROOF. First we note that
1
Tgm(:IIO . (131 + LE3>) = Tz (ﬁ(?)l’g -+ 2%1 + 2%3 + Ty — 3,LL>> by (5215)
1
= ?(on + 223 + 221 + x9 — 374, (1))
and
Tuo(To - (11 +23)) = Tuy(T0) - Ty (21 + 73)
= X9 (SL’g -+ .Tl)

1
= 2_4(31’0 +2w3 + 221 + 22 — 3p) by (5.2.15).
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Thus, 57 (320 + 23 + 221 + 22 — 374, (1)) = 57 (3x0 + 223 + 221 + T2 — 3p) and 74, (1) = p.
By similar computations, we have (5.2.16).

We use a similar method to compute o,,(u) and o, (1').

1
Ozo(To - (X1 +23)) = 04 (?(on + 2z, + 223 + 19 — 3,u)) by (5.2.15)

1 1
= ? (3270 + 5(—1’0 + 2331 — T2 + 2.1’3 + 3,u)

Sty — 3%0(@) by (5.2.13).

Moreover,
Ouo(To - (21 +x3)) = 0ae(T0) - Oy (21 + 73)
1
= %0 (—zo + 221 — x3 + 223 + 31) by (5.2.13)
1
= ?(xg —2ry — x5 — 223+ 3p) by (4.0.2, 4.0.11, 4.0.12).

Hence we have

1 1 1
? (35(70 -+ 5(—1‘0 —+ 2271 — I9 + 233‘3 —+ 3/1) + X9 — 30':130(#)) = ?(560—2271 — X2 —2.T3+3/,L>

and obtain (5.2.17). (5.2.18) and (5.2.19) can be obtained by the same method. O

LEMMA 5.39. Let eq and ey be defined as in Notation 5.31. Then G{ey, €1} is isomor-

phic to GU1 4, i.e., ey = €.
PRroOF. First, we note by Proposition 5.32 that
Tey (60) = Te (xO + Y2 — 221'0 ’ Z/2>

= 20+ 2 — 2%20 - Yo

= €.

Thus, by Theorem 4.4, G{eg, €1} is isomorphic to either GU; 4, GUy4 or GUsp .
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Case 1. Suppose G{ey,ep} is isomorphic to GUss. By Proposition 5.32, G{e;, x0} and
G{e1,y2} are both isomorphic to GUsz 4.
Since (eq, xg, y2) also forms a normal GU,4 basis by Proposition 5.32, such a Griess

algebra doesn’t exist by Lemma 5.3.

Case 2. Suppose G{eg,e1} = GUyp. Then (eg,e;) = 0. By Proposition 5.32, G{eg, z1}

and G{eg, z3} are both isomorphic to GUsa. Set x1g := 0¢,(z1). Then we have

(5.2.20) (0,210) = {0e0(0), Oeo(10)) = (32 72) = o7,
(5.2.21) (T2, 710) = (0¢y(T2), 0co(710)) = (Y0, 21) = %

By Proposition 5.33 and (5.2.19), we also have

(52.22) (y1,m10) = (04,(41), 04, (710)) = (e, e0) =0,
(5.2.23) (y3,710) = (0u,(¥3), 00, (710)) = (e1,€0) =0,
(W 210) = (00, (1), 00, (720)) = <%($1 + 2yo + 3 + 2y — 1), €0>
3

(5.2.24) = &

Since 19 = 0, (1) = 04, (€9) and y; = oc(x1) = 04, (€), we have

(y1, 10) = (04,(€), 04, (e0)) = (e,e9) =0 by (5.2.9).
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Thus G{y1,x10} = GUsp and hence 1o - y; = 0. Therefore,

o
I
—~

Oa/i/> = <5C10 : ?/1,MI> = (91710a3/1 'MI>

1

Z10, §(5y1 — 21‘0 — 2[E2 — Y3 + 3u')> by (4012)

I
/\

(—143-2%(xy0, 1)) by (5.2.20, 5.2.21, 5.2.22, 5.2.23)

| — 2] —

3
= (1432 5) by (5.224)

\V)

3] =

which is a contradiction. Therefore, G{eg, €1} 2 GUsp and hence G{eg, €1} = GU; 4 is the

only possible case. O

NOTATION 5.40. Set €' := ey = eg. Then € = 0,,(y2) = 0,(y3) by Notation 5.51.

LEMMA 5.41. Let p, i’ be defined as in Notation 5.35. Then

(5.2.25) (e uy="(,u)y=0 and € -p=¢- - =0

PROOF. Recall that €' = 0,,(y2) = 04, (y3). Then by the same argument as in Lemma

!/

5.27, one can show that o (u) = p and oo (') = .

To determine (¢, i/'), we compute (€', zo - y3) in two different ways. First, we have

1 1 3
(20 ys) = <6/7 55 (320 + 3ys + 22 + 41 — 3MI)> =7~ st H)-
By associative rule,
1 1
(€', 0 - y3) = (€' - w0, y3) = <§(@/ + 0 — y2)7y3> —or

Thus, we have 57 — 2%(6’, 'y = 2% and (¢/, 1) = 0. By the similar argument, one can also

show that (¢/, u) = 0 by using (¢’, zg - z1).
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By Lemma 2.24, we have

1
¢y =8 i) + o5 (W —ou()) =0

since (€¢/, /) = 0 and o (u') = p/. Similarly, €’ - = 0 also. O

PROPOSITION 5.42. We have (u, 1) = 0 and p-p' = 0. Moreover, we have the relation

3 3
(5226) $0+$1+$2+$3+y0+y1+y2+y3—6—€/— 5/,/— 5[@:0
ProoF. To compute (i, i), we note that
/ 1 /
(o, x1 - 'y = <x0, §(5x1 — 2y — 2ys — x3 + 3 )> by (4.0.12)
1 1 1 1 1 3 .,
= §<5 o7 T 2 - 5 ] 2 - 5 o +3- $> by Propositions 5.32, 5.36
3
-7

Moreover,

1 3
(o, 21 1) = (2o - 21, 1) = <¥(3$0 + 321 4 @ + T3 — 3#)7M'> = 57 (1= 4, u0)).

Hence we have (1 —4(u, 1)) = & and (u, 1) = 0.

To get the relation of {e, €/, xo, 1, T2, T3, Y0, Y1, Y2, Y3, i, /' }, We use

1 1
(o)) = o (gl tem )+ gploate—m)

1
. ?(20900(6) + 0o (21 + 3) — 040 (Y1 + ¥3))
1

1
= 5 (290 + Z(—% + 221 — Ty + 223 + 1)

1
5 (w0 + 21— w2 + 2y + 3,/)) by(5.2.13, 5.2.14)

1
= ?<8y0 + 221 + 223 — 2y1 — 2y3 + 3 — 3“’)
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and

O'xo((ﬂﬁl + 1’3) : 6) = O’IO(.’L'l + 1'3) . 0'330(6)

1
= (%020 —wy+ 205 +3u) -y by (5:2.13)

1 /-1 2 )

= ﬁ(ﬁ(m%—yo—@)*'§(3$1+390+I3+y2—3u)
—1 , 2 )
+§(x2+yo—€)+§(3$3+3y0+$1+y2—3u)

3
+§(5x0 — 221 — 225 — T9 + 3u)>
1
= g(—2x0 + 211 — 2w9 + 223 + 14y — 6y — 2y — 6y3

+2e + 2¢' — 3"+ 9u).

Hence we have 2%(—23:0 + 221 — 229 + 223 + 14yo — 6y; — 2y — 6ys + 2e +2¢' — 3p/ +9u) =
5 (8yo + 231 + 225 — 2y; — 2ys + 3 — 3p’) and get the relation (5.2.26).

To obtain u - p' = 0, we simply multiply (5.2.26) by © and simplify it. O

To summarize, we show that G = Spang{e, €', xg, x1, 2, 3, Yo, Y1, Y2, Y3, 14, i’} is closed

under multiplication with the relation

3 3
:c0+:1:1+x2+x3+yo+y1+y2+y3—e—e’—Qu—é,u’:().

This algebra is isomorphic to GVg4p). The structure is summarized in Figure 4. Three
points joined by a solid line (curve) form a normal GUs4 basis while the 4 vertices of a
dotted square form a normal GU4u basis with p and the 4 vertices of a dotted diamond

form a normal GU, 4 basis with '

REMARK 5.43. To see {e, €, xg, 1,29, 23, Y0, Y1, Y2, Y3, pt} is linear independent, one
can compute the determinant of their Gram matrix. By computer, we verify that the

determinant is ;’TZ # 0 and hence GV(4p) have dimension 11.
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FIGURE 4. Configuration for GVgup)

e'

Therefore, there are only five possible structures for G{e, z¢, x1} and we have proved

Theorem 5.4.
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CHAPTER 6

Griess algebras generated by two 3A-algebras with a common
axis

In this Chapter, we study Griess algebras generated by two pairs of Ising vectors
(ap,ay) and (bg, by) such that each pair generates a 3A-algebra Us4 and their intersection
contains the Ws-algebra W(4/5) = L(4/5,0) & L(4/5,3). We show that there are only
3 possibilities, up to isomorphisms and they are isomorphic to the Griess algebras of the
VOA Vp14), Vra), and Vpza) constructed in [HLY2].

In addition to the symmetry of 7 and o involutions, we need the help of another order

3 automorphism associated to the Ws-algebra W(4/5).

6.1. An order 3 automorphism induced by W(4/5)

We will describe an order 3 automorphism associated to the Wj-algebra W(4/5) =
L(2,0) ® L(%,3) over the real field R.

Let L(2,0)c be the Virasoro VOA of central charge 4/5 over the complex field. It is
known (see [KMY] and [LLY]) that the sum We(4/5) = L(%,0)c & L(3, 3)c has a unique
structure of a simple VOA over C. This VOA is rational and has exactly 6 irreducible

modules, namely,

We0) = LG 0c @ L(3 8)e, We(2/5) = L3, e ® L3, D)
We@/3,4) = Lz, 2)e, We(2/3,-) = Lz, 3)e,
W(C(l/157 +) = L(%? %5)@, WC(1/157 _> = L(%a 1_15)(C

Its fusion rules has a Zs-symmetry and one can define an automorphism as follows.
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THEOREM 6.1 ([Mi2], Theorem 5.1). Let Vi be a VOA over C containing a sub-VOA

Xc isomorphic to We(4/5). Then a linear endomorphism gx. of Ve defined by

/

1 on the isotypic components of W¢(0) and We(2/5)

9xc = 4 2™/3  on the isotypic components of We(2/3,+) and We(1/15,+)

et™/3  on the isotypic components of Wc(2/3, —) and We(1/15, )

\

s an automorphism of V.

In [Mi2], the real form of Wc(4/5), i.e. a real sub-VOA Wy such that Wi @ C =

We(4/5), has been studied.

PROPOSITION 6.2 ([Mi2], Theorem 6.1). There is a unique real sub-VOA Wyg of
We(4/5) which possesses a positive definite invariant bilinear form over R and Wi @ C =

We(4/5). This VOA Wy is rational.
The automorphism defined in Theorem 6.1 restricts to Vi as following.

THEOREM 6.3. [[Mi2], Theorem 6.2] Assume that a VOA Vi over R contains a sub-
VOA X 2 Wy . Then the automorphism gcx € Aut(CVg) defined by CX as in Theorem

6.1 keeps Vg invariant. In particular, gx = QCX|VR 15 an automorphism of Vg.

Now suppose U =2 Us, is contained in a real VOA V satisfying Assumption 1. Let
(ag, a1, az, ) be a normal GUs4 basis of U. Then U contains a unique sub-VOA X
isomorphic to Wy (see [LYY2, SY]). In this case, the Virasoro element of X is u. By

the theorem above, g = g(CX|VR defines an order 3 automorphism on V and U.

LeEmMA 6.4 ([LYY2, SY]). Let (ag,ai,as, i) be a normal GUsx basis of U and let

9= gexly, - Then 74,7, = g or g~'.
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6.2. Main setting

Let V be a VOA satisfying Assumption 1. Let U = Us4 and U’ = Uz4 be sub-VOA of
V. We further assume that UNU’ contains a sub-VOA X isomorphic to Wy . Let u be the
Virasoro element of Wi. Then u generates a sub-VOA isomorphic to L(4/5,0)g. Since
U = Usa, the Griess algebra of U is of dimension 4 and GU = Span{ay, a1, ag, 1}, where
ap, ay, as are the three distinct Ising vectors in GU. Similarly, GU’' = Span{by, by, b, 1},
where by, by, by are the three distinct Ising vectors in GU’. By Lemma 6.4, we may assume

that
(6.2.1) TaoTar = TooTor = 9X
by reindexing if necessary.
LEMMA 6.5. Let g = gx be defined as in Theorem 6.3. Then
(6.2.2) =" T
and g commutes with 7,1, for any i,j € {0,1,2}.
PROOF. Since g = gx = TayTay = Tby Ty, POth 7., and Ty, invert g. Hence, we have
Ta,To,0 = Ta,g ' To; = §Ta, T,

as desired. 0

In [HLY2], McKay’s Fg-observation and the Fischer group Fligy were studied. Along
with other results, three VOA Vp4), Vi24), and Vpza) generated by two 3A algebras
were constructed. We will denote their Griess algebras by GVr14), GVr2a), and GVp(3a)
respectively. With Assumption 1, we will show that these three cases exhaust all possi-

bilities for Griess algebras generated by GU and GU’. The following is our main theorem.
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6.3. The second main theorem

THEOREM 6.6. Let V' be a VOA over R satisfying Assumption 1. Let U = Usy and
U' = Usy be sub-VOA of V such that UNU’ contains a sub-VOA isomorphic to Wy . Let
(ag, ay, as, p) and (bg, by, b, 1) be normal GUsy bases of GU and GU' respectively and let
G be the sub-Griess algebra generated by GU and GU'. Then G is isomorphic to one of

the following 3 structures.

(1) G = GVpuay = GUsa. In this case, {ag, ar,as} = {by, b1, bs}.

(2) G = GVp@a) = GUsa.

(3) G = GVp(za). In this case, dim G = 12 and it is spanned by 9 Ising vectors x; j,
i,j € Zs and 4 Virasoro vectors o1 = [, f1,0, f11 and pu 2 of central charge 4/5

satisfying the relation

32 Z Tij — 45(poq + a0 + pa1 + p12) = 0.
1,JEL3

Moreover, (Tiy jo, Tiy j1 Tig jos Mij) forms a normal GUsa basis if and only if

(i0, Jo) + (i1, 1) + (2, 52) = (0,0) (mod 3),

(ilvjl) - (i07j0) = i(%]) (mOd 3)

By Theorem 4.4, there are 9 possible structures for G{ag, bp}. We will prove our main

theorem by analyzing these 9 cases in details.
6.3.1. Casel: G{ag, by} = GUja.

PROPOSITION 6.7. Suppose a; = b; for some i,5 € {0,1,2}. Then {ap,a1,a2} =

{bo,b1,bo} and G = GUs4. In particular, G = GUsa if G{ag, by} = GUj4.
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Proor. Without loss, we may assume ag = bg. Then

2 5
(ag - p, by = <§(2a0 —ay —ag) + ik by) by (4.0.4)

2 13 5 1
- ?(2 510 (a1,b1) — (as, b1)) + 51 o1 by (4.0.6).

On the other hand,

(ag - pu,by) = (ag,p-by) by (2.7.4)

2 5}
= (bo, §(251 —bo — ba) + gl@ by (4.0.4)

13 1 13 5 1

= 5@ o g0 taig by (406)

Hence we have

267
(a1,b1) + (ag, by) = 210

which implies max{(ay, b1}, (as,b1)} > % . gilg = 2% Thus, we have by = a; or by = as

since by Theorem 4.4 and Remark 4.5, (a;,b;) < 2% if a; # b;. In either case, we have

{ag, a1, as} = {bo, b1, b2} and G is isomorphic to GUsz4. O

6.3.2. Case2: G{ag, by} = GUs4. In this case, set ¢y = 04,(by). Then by (4.0.1), we
have G{ag, by} = Span{ag, by, co},

1

1
(631) agp bo = ﬁ(ag + bo — Co) and <CLO, b0> = %

PROPOSITION 6.8. Suppose G{ag, by} = GUsa. Then G = G{ap, b1} = G{ap,ba} =

GUga.

Proor. We will first calculate the values of (ao, b;) for j = 1,2. By (6.3.1) and (4.0.6),

we have

13

1 1
(ag - by, by) = <§(ao +by— o), b1) = §<<a0>bl> + 510 (co, b1>)>
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and

(a0 - bo,b1) = (a0, bo - br) = (ao, 21—4<250 2y 4+ by) — %m
= et 0. bi) + {0, b) — o
Combining these two equations, we obtain
(6.3.2) 123 = 2'9( = 2(ao, br) + (ao, ba) + 2%(co, b1)).
and
(6.3.3) (co,bu) = 12273 + (a0, br) - %(mj, b).

Since by Theorem 4.4,

L IANISNER3 5 1
o,

(6.3.4) (a0, b1), (a0, ba), (co, b1) € {??ﬁ 370 590 3107 38"

we have
123 1 1 123 1

1 1
ﬁ+§<a0,bl>——<&0,b2> <——|—§'§<—

<CO> b1> = 92 12 22"

Hence ¢ # by and (o, b1) < 2%

We also note that ag # by and ag # by; otherwise, {ag, a1, as} = {bo, b1, b2} by Propo-
sition 6.7 and G{ag, bo} 2 GUaa. Therefore, (ag,by) < 55 and (ag, bs) < 55.

Now by (6.3.3), we have

(c0,b0) = oy + 5 (a0, Br) — orlan,ba) > ooy — oo = 0y > o
and hence
1
(6.3.5) (e, by) = 5
Therefore by (6.3.2), we have
(6.3.6) 2 (ag, by) = 2'%ag, by) + 5.
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Note that 21 {ag, b;) is an even integer, so 2'%{ag, by) is an odd integer and hence (a, by) =
35 Or a5 by (6.3.4). If (ag,bs) = 315, then (ag,b;) = 3% which is impossible. Hence,
we have (ag, be) = 2% and (ag, by) = 2% That means G{ag, b1} = G{ag, b2} = GUsa and

G{co, b1} = GUsa.
Claim: g = g{ao,bl} = QU6A.

Let (ag, by, 2, T3, x4, x5, €, 1) be the normal GUga basis for G{ag,b;}. We will show

that x3 = by, 15 = by, {72, 74} = {a1, a2}, e = co, ¢/ = pp and G = G{ap, b1} = GUsa.

Since G{co, a0} = G{co,bo} = G{co,a1} = G{co, b1} = GUyy and G is generated by

ap, ay, by, by, the map o, is well-defined on G. Moreover,
(6.3.7) TboOeoTho = Oy, (co) = T
i.e., ,, commutes with o.,. Therefore,
Tay = Toey(bo) = TeoTboOco = Tho
and hence by the structure of 6A-algebra (see (4.0.17)),
Ty = Ta(b1) = Ty (b1) = ba.

Since (b1, x5, x3, 1') is a normal GUsx basis for G{by, bo}, we have

x3 =Ty, (25) = 7, (b2) = by and p' = p.

Note that o and p’ are both determined by by(= x3), b1, ba(= 25) using (4.0.3).
Recall that (ag, by, o, 3, 24, x5, €, ') is the normal GUga basis for G{ag, b1 }. Thus, we

have

e = 0q4(T3) = 04,(bo) = ¢o.
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Finally, we will show that {a1, as} = {x2,z4}. By (4.0.8), we have

3 a; +as 135
0'a0<a1 -+ CL2> = —ﬁao —+ T + 7/1,

3 To+ T 135
O'QO(.I’Q + IL‘4) == —?ao + % ?,u’

Note that p = ¢’ and hence

(a1 + ag, xy + 4)

= (0ao(a1 + ag), 04y (72 + 24))

3 aj + as 135 3 To + Ty 135
TR S T R
3 3 1 1 1352550 3 1 13 13
= —24-—24-—22+—24<a1—|—a2,:1:2+x4>~|— . 2
3 135 1 1 135 1 1
+2 =

g 5 2 g1 plon ton)

B A TR R A TRy
1 8070
= ?(a1+a2,x2+m4>+ 214 5

which implies

269
<a1 + ag, L9 + 3?4) = ?
On the other hand, we also have
1 1 13 269
<CL1+CL2,CL1+(IQ> = §+?+2ﬁ = ?,
and similarly
269
<$2 + T4, T2 + LE4> = ?

Thus, by the Schwartz inequality, we get a1 + as = x9 + 24.

Taking inner product with a;, we get

1 13 77
(a1, x2) + (a1, x4) = (a1, 22 + x4) = (a1,a01 + a2) = 2 T 51 = 3107
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which implies max{(a1,2), (a1,74)} > 3 - 56 > 55. Then by Theorem 4.4, we have

1 13 13 1

({a1, z2), (a1, 74)) = (?7 ﬁ) or (ﬁ,ﬁ).

It implies 9 = a; or x4 = ay. In either case, {2, 24} = {a1,as}. Therefore, G C G{ag, b1}

and thus G = G{ag, b1} = GUga. O

6.3.3. Case3: G{ag,bp} = GUsp. In this case, ag - by = 0 and (ag, by) = 0 by (4.0.2).

Then, we have

0 = (ao-bo, ) = (ao,bo - )

2 5
= (ao, §(250 —br—by )+ ?m
—2 5 1
= §(<a0a b1) + (ao, b2)) + of i

Therefore we have

45
(ao, b1) + (ao, bz) = 29
which implies max{({ao, b1), (ao,b2)} > 3 - % > 35. It means ag = by or ag = by since

(a;, b;) < 2% if a; # b;. It is impossible since (by, by) = (by, ba) = 21% by our assumption.

6.3.4. Cased: G{ap, by} = GUsc. In this case, there is an Ising vector ¢y € G such

that (ag, by, co) forms a normal GUsc basis for G{ag, bp}. Then we have

1
(638) agp - bo = i(ao + b() — Co)
and
1
(6.3.9) (a0,0) = 55



by (4.0.10). Therefore,

1
(ag - bo,b1) = (=zx(ao+ by — co),b1)

25
1 13
= 55 (a0, b1) + o5 = {co, b))

On the other hand,

<a0 : bOa b1> = <Cl0, bO : b1>

1 135
= (ao, ﬂ(%o + 201 +bo) — ﬁ#) by (4.0.3)

1 1 135 1
- ?(2 98 + 2{ao, b1) + <a07b2>> om0 o by (6.3.9)
1 127
= §<2<a07b1> + <CLO, b2>> — ﬁ
Combining these 2 equations we get
267
0= (3<CLO, b1> + 2<a07b2> + <C0,bl>> — ﬁ

By Proposition 6.7, it is clear that ag # by, ag # ba, co # by. Thus, (ag, b1), {(ag, bs), (co, b1) <
5 and hence (3(@0, b1)+2{ag, ba)+{co, b1>> — 27 <695 — 27 = 57 < 0, which contradicts

the above equation. So this case is impossible.

6.3.5. Caseb: G{ag,bo} = GUya. In this case, there exist ¢g, do, and u so that
g{a07 bO} - Span{a()a b07 Co, d07 U}

In addition, 7,,(by) = dy and G{by,do} = GUsp. Applying 7,, to the normal GUs, basis
(bo, by, ba, 1), we get another normal GUs4 basis (do, T, (b1), Tay(b2), ). Since G{bo, do} =

GU,p, this case is also impossible by the analysis of GUsp (see Chapter 6.3.3).
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6.3.6. Caseb6: G{ag,bo} = GU,p. In this case, there exist ¢, do, e € G such that

G{ao, bo} = Span{ag, by, co, do, €}

with G{ag,co} = Span{ag,co,e} = GUsa and G{by,do} = Span{bg,dy,e} = GUsys (see
[IPSS, Table 3]). Moreover,

1
(6310) ao'b(): ﬁ((l(}"‘bo—CO—do—l—e),
1
(6311) <a0,b0) = %’
and

Thy (ao) = Cp

Applying 73, to the normal GU3,4 basis (ao, aj, ag,,u), we get another normal GUs34 basis

(co, Tve(a1), Tho(az), ). Then by Proposition 6.8, we have
G{ao, a1, az, co, Ty (a1), 7o (a2), u} = G{co, ar} = G{ao, my(a1)} = GUsa.

Set xg := ag, 1 = Tp(a1), 3 1= ¢y, x5 ‘= Tp,(az). Then there exists {9, 24} =
{a1, as} such that (xg,x1, x2, x3, 4, 5, €, u) forms a normal GUgy basis for G{co, a;}.
Similarly, set yo := by, ¥1 := Tao(b1), Y3 := do, Y5 := Tay(b2). There exists {y2,y4} =

{b1, b2}, such that (yo,y1, Y2, Y3, Y4, Ys, €, i) forms a normal GUg4 basis for G{dy, b }.

LEMMA 6.9. Fori = 1,2,4,5, G{xo,y;} = G{w3,y;} = GUsa, and hence {(xq,y;) =

<x37yi> - 2% SZleCLT’ly, <xiay0> = <xi7y3> = 2% fO’I"’i - 1727475'

PROOF. Since (g, T2, T4, 1t), (Yo, Y2, Ya, i) are normal GUz4 bases, by Lemma 6.5, the
order 3 element 7,7, commutes with 7,7, for i = 2,4. Since G{zo,y0} = GUap, TyTx,

has order 2 or 4. Hence 7,7y, - Ty, Tz, has order 6 or 12. Since 7,7y, - TyoTwo = Ty;Taos DY
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6-transposition property (Theorem 4.4), 7,,7,, must have order < 6 and hence has order
6 and G{xg,y;} = GUga for i = 2,4.

Since (ag, bo, co, do) = (0, Yo, T3, y3) is a normal GU, g basis, we have G{z¢, y3} = GU,p.
Since (zo, T2, T4, it), (Y1,Y3,Ys, 1) form normal GUs4 bases, 7,,7,, commutes with 7,7,
for i = 1,5 and thus we also have G{xg,y;} = GUsa for i = 1,5 by the same arguments

as before. 0J
PROPOSITION 6.10. It is impossible that G{ag,bo} = GU,p.
PRroOOF. By direct calculation, we have

(1 0, Y0)

1 45
= <§($0 + 1 — Ty — 23— T4 —T5 +€) + S0t Yo) by (4.0.14)

1 /1 ) 5 1 ) 3 1 45 1
_ (ﬁ + 575~ 50 ~ 35 Tow L bl $> — by Lemma 6.9 and (6.3.11)

25 210 " 94
7
= ﬁ’
and
(z1-20,90) = (71,0 Yo)
1
= <$1, ?(370 + Yo — T3 — Y3 + €)> by (6310)
1/5 5 13 5 1
= f(ﬁ + 510 510 510 + ¥> by Lemma 6.9 and (4.0.16)
3
e ﬁ’
which is a contradiction. So this case is impossible. 0

6.3.7. CaseT: G{ag,bo} = GUs4. In this case, 7,7, has order 5.

PROPOSITION 6.11. It is impossible that G{ag, by} = GUs4.
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ProoOF. By Lemma 6.5, the order 3 element 7,,7,, commutes with 7,,7, and hence
TayTag * TagTh has order 15. But 74, Tay * TagThy = TayThy, Which has order < 6 by the

6-transposition property (Theorem 4.4). It is a contradiction. 0]

6.3.8. Case8: G{ap,bo} = GUga. In this case, set xg = ag, 1 = bg. Then there exist
To, T3, T4, Ty, €, ' such that the ordered set (xg, 1, X2, T3, T4, x5, €, 1) forms a normal

GUg basis for G{ag, by}
PROPOSITION 6.12. Suppose G{ag,bo} = GUga. Then G = G{ag, by}

PROOF. Since 7,,(z;) = x9;—; by (4.0.17) and p is fixed by 7,, = 74, and 7,,, = 7,, we
have

(4, 1) = (T, ) = (0 1) = (g, ) = w0, 1) = 37

Similarly, we also have

(5, 1) = (5, ) = (05, 1) = (g1, ) = (01, 1) = 57

Now let h = Tp,Tay = TuyTuo- Then G{h(bo),h(b1)} = G{bo,b1} = GUs, and the

set (h(bg), h(b1), h(ba), h(p)) = (x3,h(b1),h(by), ) will form a normal GUsu basis for
G{h(bo), h(b1)}. Note that h(by) = h(x1) = x3 and h(u) = Tp,Ta, (1) = p-

Since (ag, x3,€) forms a normal GUs 4 basis for G{ag, 23}, by Proposition 6.8, we have

G{ao, ar, 3, h(b1)} = G{ag, h(b1)} = GUsa. Hence (a;,e) = 5 for i = 1,2 and (e, ) = 0.

Similarly we can also prove (b;,e) = 5% for i =1,2.

Finally, we will show that {a1,as} = {2, 24} and {by,bo} = {3, x5}.
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By the structure of the 6A-algebra, we have

(bO'Go7li>
1 45
= (g(wotm —wo —wg —wy—ws+e)+ o'y by (4.0.14)
1.1 1 1 1 1 1 45
= 5(2—44‘?—?—?_2_4_?4‘0)‘*_@(#’/0 by (4.0.6)
1 45
= _§+ﬁ<ﬂvu>’

and

<bo~ao,u) = <boaCL0'M>

2 )
= (b, §(2a0 —a; —az) + ?m by (4.0.4)
2 5 5 1
= ﬁ(z ) 210 <bo,a1> = (bo,a2>) T+ o1 . o by (4.0.16)
50 2
T 98.32 ?((bo,aﬁ + (bo, az2)),
which implies
2
(6312) <,u', M> = (59 — 29<<b0, a1> + <b0, ClQ))).

34.5
Since G{xg, x2} = GUs34, we also have

1 135
(@2~ 2o, ) = (57(220 + 222 + 24) — ﬁ/f’ 1) by (4.0.3)
1 1 1 1 135
= i T2 5t a) - oW
5 135
= 95 ﬁ(ﬂl, 1,
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and

<»’U2'9507ﬂ> = <$2>$0'M>:<$2,@0'M>

2 5
= (22, 75 (200 — a1 — az) + gli)

32
2 13 —
- §(2'ﬁ_<x27al>_<$2,a2>)+§.2_4
58 2
= ovog gl a) +(2,09)),

which implies

2

(6.3.13) Wom =35

( — 13+ 29<<x2, CL1> + <x2, a2>)).

From (6.3.12) and (6.3.13), we get

95
3(b0,a1> + 3(b0,a2> + <£E2,CL1> + <l’2,a2> = ?’
which implies
(6.3.14) max{ (b, a1}, (bo, az), (Tay 0, Crma) Y % .
e 0, &1/, \Y0, W2/, 2,41/, 2, U2 _28(3+3+1+1) 25-

By Proposition 6.7, a; # b; for any 4,5 € {0,1,2} and thus we must have x5 = a; or
To = ag. A similar argument also shows that x3 = by or by. Therefore, G = G{ag, by} =

GUsa. O

6.3.9. Case9: G{ag,bp} = GUsa. By assumption, there exists ¢y and g such that

(ao, bo, co, o) forms a normal GUs4 basis.

LEMMA 6.13. Let (ag, a1, as, i) and (by, by, ba, i) be normal GUs 4 bases and G{ag, by} =

GUs4. Then either

(1) {a0aa17&2} = {607 blabQ} cmd g = gU3A; or

(2) g{ai,bj} = gU3A fm" Z,] € Zg.
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ProoOF. By Lemma 6.5, for ¢ = 1,2, the order 3 element 7,,7,, commutes with 7,,7,,
which has order 3 by assumption. Hence 7,74, * T Thy = Ta,; T, has order 1 or 3 for ¢ =1, 2.

Case 1. 7,7, is of order 1. Then 74,7,y = (TayTs,) ' and we have
A5 = Ta;Tag@0 = ThyTag@0 = Co,

where {0,4,7} = {0,1,2}. Thus, by Proposition 6.7, we have by € {ag,a1,a2} and

{(IOaalaaQ} = {bo, b17b2}-

Case 2. 7,7, has order 3. Then G{a;, by} = GUsa, GUsc or GUgx.
By the discussion in Chapter 6.3.4, G{a;, by} = GUsc is impossible.
If G{a;, b0} = GUga, then by Proposition 6.12, (ag, by) = 3—12 or 2%, which is again

impossible since G{ag, by} = GUs34. Therefore, G{a;, by} = GUs, is the only possible case.

Similarly, we also have G{a;,b;} = GUs4 for any i,j = 0,1, 2. O
From now on, we assume {ag, a1, as} # {bo, b1, b2}, which implies G{a;, b;} = GU;4 for
all 7 # j.
NOTATION 6.14. Let g 1= TyyTa, = TayTay aNd h := T,,T,. Then both g and h are of
order 3 and g commutes with h by Lemma 6.5. Moreover, we have
TasTby = TasTag * TaoTby = 9N,
TaysTho = TayTay * TagToo = - h-
Fori,57=0,1,2, denote
z;; = h'g’(ap).
Note that zo9 = ag, o1 = g(ag) = a1, To2 = g*(ag) = az, and x19 = h(ag) = by. By

definition, it is also easy to see that

hrg (i) = Tivk oo, fori, .k, 0 € Zs.
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NOTATION 6.15. For any (i,7) # (0,0), denote

Then there ezists a conformal vector i, jo of central charge 4/5 such that (zo0, i j, T2i25, i j0)

forms a normal GUs 4 basis of G, jo. For k = 1,2, we denote
Goax :=h(Go10) = h*(Gono)-

Then Go1x = GUsa and there is a conformal vector poay of central charge 4/5 such that

(k0 Th1s Tho2s o1 x) forms a normal basis for Gy 1 .

REMARK 6.16. By our assumption, we have p1,0) = ft0,1,1) = H(0,1,2) = . We use

po,1 to denote pio,1,0) = fh0,1,1) = H(o,1,2)- Note that pg; is fixed by 7., ; for all 4, 5.

NOTATION 6.17. For (i,7) # (0,0), (0,1) and (0,2), we denote
Gijk = gk(gi,j,O)-

Then, G jr = GUsa for any k = 0,1,2. Let p; j 1 be the conformal vector of central charge
4/5 such that (Xok, Tij+ks T2i2i+ks fijk) forms a normal GUsy basis for G; ;1. Note that

Mijk = H2i2jk and gé(ﬂi,j,k) = ijk+e for any i # 0.

We will show p11;; = 1, for all 4, 5, k (Proposition 6.27). This turns out to be the
most complicated part of the proof.

LEMMA 6.18. For any n,i,k, ¢ € Zs, we have

(6.3.15) T mesn (H1,63) = H1,0,—k—i-
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PROOF. By definition, we have by (6.2.2),
Tx; (Ik,g) = hingaog_jh_ihkgé(ao) - h_k+2ig_£+2j7—a0 (ao) = L—i—k,—j—L-
Thus, 7, ,,,, maps the normal GUsx basis (204, 21,44, T2,i42¢, fl1,6,6) tO
(I—n,—né—k—h Tn—1,—nl—k—i—Lls L —n—2,—nb—k—i—20, /7—u'z:TWLg_HrC (Mlj,i))-
Then we have
{x—n,—ne—k—i, X —n—1,—nb—k—i—~l, I—n—z—ne—k—i—%}
= {xo,fkfi, T_1,—k—i—l5 $72,7k7i725}
= {%,—k—i, Lo —k—i+20, $1,—k—i+£}-

Since (2o —k—i, T1,—k—i+e, T2,—k—it+2¢, f1,0,—k—i) forms a normal GUs4 basis, we have that

Tzn,n#&»k (ILLLZ,’L) = /Ll,Z,fk—z'- |:|

LEMMA 6.19. For any i,j € Zs, y € {fto1s f1.0ks P114ks P12k B =0,1,2}, we have

and
(6.3.17) (1,055 tke) = 0, (po, pa,ig) =0
for all i,7, and for k # 1.
Proor. Computing
1 135
(o0, %o - T10) = <$0,0, §(2$o,1 + 2210 + Ta2) — WN1,2,1> by (4.0.3)
1 13 13 13 135
= ?(2 510 T4 50 T ﬁ) - W@?o,o,/ﬁmg)
65 135

= ou " ﬁ(mo,oj f1,2.1)
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together with

<$0,07 Zo,1 '$1,0> = <$0,0 - X1, x170>
1 135
= <§(2x0,1 + 2z + $2,2) - WNOJ, :1:170>
1 13 13 13, 135 1
= g T2 g o) T gw a
65 135 1
P— ﬁ —_— ﬁ . ?7

we can get (o, pt1,2,1) = 57. Similarly, we can get (6.3.16).

Computing
135
(H101,To1 - T10) = (1,01, ?(21'0,1 + 2710 + X22) — WNI,Q,I)
1 1 1 1 135
= ?(2 gt i g) = ﬁ(ﬂl,o,l,ﬂl,u} by (6.3.16)
5 135
= 2% W(M1,0,17M1,2,1>
together with
<M1,0,17l’0,1 : 151,0) = <,u1,o,1 'Io,1,9€1,0>
2 )
= <§(21’0,1 — 21 — T11) + §u1,0,17$1,0>
2 13 13 13 5 1
= ﬁ(zﬁ_ﬁ_ﬁ)—i_?? by(6.3.16)
5)
= &
we can get
(1,01, p1,2,1) = 0.
Similar argument gives (6.3.17).
LEMMA 6.20. We have
(6.3.18) Higj5 M1 ke = 0
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fori #k, and
(6.3.19) foa - i =0
fori € Zs.
PROOF. By Theorem 2.27, Norton inequality, and (6.3.17) we have

|N1,i,j : Ml,k,£|2 = (,Ml,i,j M1 ke, M1 Ml,k,é)
< (Mg gy Mgt © Hke)
= (2u1,i, 201 k) by (4.0.5)
— AR

Since the inner product is positive definite by Assumption 1, we have (6.3.18). Similarly,

we can get (6.3.19). O

LEMMA 6.21. For x € {z;;

4,jt W€ {MO,bﬂl,i,j’ i,7}, we have

1 5 , 4 1
(6.3.20) vopl = grt i+ () — o

PRrROOF. By Lemma 2.24 and (6.3.16) we have

o = 8z, p)r+ 2—12 (%(u’ + (1)) — %(%(M’ + Tz(#’)))) + %(l/ — (1))
= 8ot oy (5 ) — 5ol + ) + o — 7))
b o ) — o ).
]
LEMMA 6.22. Fori € {0,1,2}, we have
(6.3.21) (11,05 114.2) = (1,015 H1,i2) = (14,05 B1,31)-
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PROOF. Since g € Aut(G) preserve the inner product, we have

<M1,i,o,M1,i,1> = <9j(/~L1,i,0)7gj(,u1,z‘,1)> = </~Ll,i,ju,ul,i,1+j>

for any 7 = 0,1, 2. U

LEMMA 6.23. For o = xp, p = p,j, B = 1.(1t'), we have

-1 3
(6.3.22) (oo + 1), 1) = 5 +

5 §<,u/7 ,u”).

PROOF. By (6.3.20), (6.3.16), and (6.3.17), we have

CRYTNTY
— (%x 15 %u’ ﬁ,u” %%(M/ + "), 1)
_ 215 + 2—14 + %W, uy = %wx(u/ +u"), 1)
= % + %W, 4y = 2—13<0x(u’ + u"), 1)

By (4.0.5), we also have

1
(o pl i) = (oo - ) =20, ) = 5.

Hence we get

-1 3
+ 53 <:U’/7 H”>

(oa(l' + 1), 1) = 55 + 53

as desired. 0

LEMMA 6.24. Let p/ = pijp and " = py jo. If (1,75) # (7', §) or (2¢,25'), then we

have

(6.3.23) (o2 (p' + (W), ") = -

for any v = xp,.
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PROOF. By Lemma 6.20, we have p/ - ¢/ = 0 and (¢, p”") = (1.(¢'), ") = 0. Hence

= (x4, 1)
1 5 / 3 / 1 ! / "

= <§ZL‘ + ﬁ/i + ?Tz(u ) — ﬁgaoQU + 7 (1)), 1") by (6.3.20)
1 1 5 3 1

= 3 ﬁ—i_ﬁ' +¥ 0—§<%(N/+Tx(ﬂ/)),,u">,

which implies (6.3.23).

LEMMA 6.25. We have

607501 * p1,11

= 641 — 656(xop + To2) — 576(z12 + X20) + 384(x10 + 11 + 21 + T22)
+810710,1 + 1260p1,1,1 — 135(pe1,1,0 + p1,1,2) + 360(p1,01 + p1,2,1)
+45(p1,0,0 + 1,02 F 11,20 + H1,2.2) — 720020, (11,00 + 1,02 + H1,20 + H1,2,2)
+180(0.0 (111,11 + H1,1,2) + Oago (1,10 + H1,1,1))

= 0.

ProOOF. We will expand both sides of the equality

Ox01 ((%,2 + 200) - (212 + xz,o)) = 0z0,1($0,2 + z00) - Ux0,1($1,2 + 99).

102



First we compute

Oz ((1‘0,2 + 200) - (T12+ xz,o))

1 1
2209 + 2290+ 211) + g@xo,o + 2219 + X21)

1
= Oz, <—(2$0,2 + 2219 + 222) + 24(

24
135
S0 (H102 + g2 + o + M1,0,0)>

1 15 1 1 1 1 1 1

= ato0 27$01+ 24$02+ 26$10+ 26711 + 24$12+ 24$20+ 26

135 135 135 135
+?N0,1 + 9 M1 + i HL0l + oIt 1,21

135 135
(6.3.24) _ﬁaa:o,l(/il,o,o + p102) — WUIOJ(MLZ,O + p122) by (4.0.8).

1
+24(29300+2$20 +210) —

51521-1—26

By (4.0.8), (6.3.20), and (6.3.15), we also have

0-330,1 (IO,Q + x0,0) : 0-1‘0,1 (xl,Q o IQ,O)

-3 1 1 135 -3 1 1 135

= (57%o1 + 55%02 + 55%00 + 5 #01) - (5701 + 5T12 + 55%20 + S H1,11)
2 2 2 2 G 2 2 2
187 33 187 7 7 43 43 7 7
= ﬁ%,o - ?xo,l + ﬁxog AN\ ?xl 27$1 it t 55 =Ti2+ =% 28 51’2,1 — §$22
945 135 135 405
+ﬁﬂo,1 - W(Ml,o,o + p1,02 + H12,0 + f1,22) + 912 oM+ S 51 (110 + p11,2)
135 18225
(6.3.25) ——=(0wpo (1,11 + 11,1,2) + O (1,10 + H1,11)) + “oa Mo M

912
Hence we have by (6.3.19), (6.3.24), (6.3.25),
0 = 6075u01 - p1,1,1
= 6491 — 656(xop + To2) — 576(z12 + 220) + 384(210 + 211 + To1 + T22)
+810p0,1 + 12600111 — 135(p11,0 + p1,1,2) + 360101 + f41,21)
+45(p1,0,0 + 1,02 F H1,2,0 + H1,22) — T20(040, (11,00 + 1,02 + H1,20 + H1,2,2)
+180( 040 (111,11 + 11,1,2) + Oags (110 + H111)),

as desired. O
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LEMMA 6.26. For i, k, ¢ € {0,1,2}, we have

2

(6.3.26) (Higes Hie) = 5

Hence, pix = paig for any i, k, 0.
PROOF. By Lemma 6.25 and (6.3.21), (6.3.22), and (6.3.23), we have

0 = (6075u0.1 - f1.1.15 H1.00)

1 11 11 11 1 1
= 64-?—656(?+?)—576(?+§)+384(?+2—4+§+?)

+810-04 1260 -0 — 135(0 + O) + 360((#1,070, ,u170,1> + 0)

+45(§ + (11,00 f1,01) +0+0) — 720(—% S %(Ml,0,0: Hi01) + %)
+180(% + %)
= 54 — 135(u1,0,0, H1,0,1)-
which implies (10,0, p11,01) = 2. Similarly, one can prove (u1;, fi1,10) = 2, also. O
NOTATION 6.27. Denote
H10 = H1,00 = H1,0,1 = H1,0,2,
M11 = H11,0 = H1,1,10 = H1,1,2,
H12 = H120 = H121 = H12.2-
PROPOSITION 6.28. For any (i,7) # (i, 5'),we have
(6.3.27) P
Moreover,
(6.3.28) o1 +pio+pi+ing = %($0,0+$0,1 + 202+ x10+x11+T12+To o+ To1 +T22).

Therefore, the dimension of G is 12.
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ProoOF. The first assertion follows from (6.3.17) and Lemma 6.26.

To prove (6.3.28), let

= fo1 + pio + pi1 + fa2,

32
I = 4—5(330,0 + To1 + o2+ T10+ 11+ Tia + Tao + Tog + Ta2).

Then by Lemmas 6.19, 6.25, and (i, j, 1 ) = 0 for (4, 7) # (i'5"), we have

and thus i = 7 as desired.

To check the dimension of G, for {ay, as,- - ,a12} = {xi;, po1, 10, 11|, J € Zs}, we
can get det((a;, a;)) = % # 0 by computer. Hence the dimension of G is 12. O

The structure of GVp(34) is summarized in Figure 1.

PULR]

FIGURE 1. Configuration for GVgup)

To summarize, we have proved the theorem.

THEOREM 6.29. Let (ag, a1, ag, i) and (bg, b1, ba, 1) be normal GUsa bases of GU and
GU', respectively. Let G be the sub-Griess algebra generated by {ag, a1, as, bo, by, be, pi}.
Then, it is impossible that G{ag, by} = GUsp, GUsc, GUsa, GUsp and GUs 4.

(1) If G{ao,bo} = GUya, then G = GVpra) = GUsa and {ag, a1, a2} = {bo, b1, b2}
(2) If Glao,bo} = GUsa or GUsa, then G = GVipaa) = GUsa.

(3) If G{ao,bo} = GUsa, then G = GVpisay and dim G = 12.
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