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Abstract. In this dissertation, we study Griess algebras generated by Ising vectors.

We consider two di↵erent cases. In the first case, we study Griess algebras generated by

3 Ising vectors with a common central 2A axial element. In the second case, we consider

Griess algebras generated by two 3A-algebras with a common 3A axial element. In both

cases, we classified all possible Griess algebras, up to isomorphism, and related them the

McKay’s E7 and E6 observations about the Baby Monster and the Fischer group.

Key words: vertex operator algebra, Griess algebra, Ising vector, Virasoro algebra.
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CHAPTER 1

Introduction

The notion of vertex operator algebras (VOA) is mainly motivated by Frenkel-Lepowsky-

Meurman’s construction [FLM] of the Moonshine module V \ conjectured by McKay and

Thompson. In addition, vertex operator algebra is also related to conformal field theory

(CFT). In fact, the definition of vertex operator algebra is essentially the same as that of

chiral algebra in physics literature. Therefore, many algebraic aspects of conformal field

theory can be studied by using the representation theory of vertex operator algebras.

By definition, a vertex operator algebra V contains a distinguished element, called

the Virasoro (some article called conformal) vector, which makes V into a module of the

Virasoro algebra. On the other hand, Frenkel and Zhu [FZ] showed that an irreducible

highest weight module L(c, 0) of the Virasoro algebra of central charge c and highest weight

0 has a natural VOA structure (c.f. Remark 2.16). This VOA is often referred to as simple

Virasoro VOA. In [DMZ], Dong, Mason and Zhu initiated a study of VOA as a module of

simple Virasoro VOA. They showed that the famous Moonshine VOA V

\ has a full sub-

VOA isomorphic to a tensor product of 48-copies of the simple Virasoro VOA L(1/2, 0).

Partially motivated by [DMZ] and Conway’s work [Co], Miyamoto [Mi1] introduced the

notion of simple conformal vectors of central charge 1/2, which we call Ising vectors. He

also developed a method to construct involutions in the automorphism group of a VOA

V from Ising vectors. These automorphisms are often called Miyamoto involutions (see

Section 2.10 for detail). When V is the famous Moonshine VOA V

\, Miyamoto [Mi1] also

showed that there is a 1 � 1 correspondence between the 2A-involutions of the Monster

group and the Miyamoto involutions in V

\ (see also [Hö]). This correspondence turns out
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to be very important for the study of the Monster group. In particular, many mysterious

phenomena associated with the 2A-involutions of the Monster can be interpreted using

the theory of VOA [HLY1, HLY2, LYY1, LYY2, Sa].

Another important class of VOA is the lattice VOA constructed in [FLM]. Given an

even positive-definite lattice L, one can construct a VOA V

L

:= M(1) ⌦C C{L}, where

M(1) is an irreducible module of the a�ne Lie algebra ĥ with h = C⌦Z L and C{L} is a

twisted group algebra of L (see Section 3.1). When the lattice is doubly even, i.e., h↵,↵i 2

4Z for all ↵ 2 L, the twisted group algebra C{L} is isomorphic to the usual group algebra

C[L] (c.f. (3.2.1)) and the structure will then be much simpler. In particular, we will focus

on the doubly even lattice
p
2R for a root lattice R. In [DLMN], many conformal vectors

are constructed explicitly in the lattice VOA V

p
2R when R is a root lattice of A,D,E-type.

These conformal vectors are used in [LYY1, LYY2] to study McKay’s E8-observation on

the Monster simple group. Along with other results, several sub-VOA of the lattice VOA

V

p
2E8

generated by 2 Ising vectors were constructed and studied. There are 9 such sub-

VOA. Because of their relations to the 6-transposition property of the Monster group,

these VOA are denoted by U

nX

for nX 2 {1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A}, where

1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A are the labels for 9 conjugacy classes of the Monster

group. We will review the construction and some basic properties of U
nX

in Chapter 3.

Let V =
L1

n=0 Vn

be a VOA such that dim(V0) = 1 (V0 = Span{ }) and V1 = 0. It is

well known [FLM] that the weight two subspace V2 has a commutative (non-associative)

algebra structure with the product a · b = a(1)b for a, b 2 V2. It also has a bilinear form

ha, bi = a(3)b. This form is invariant in the sense that ha·b, ci = ha, b·ci for all a, b, c 2 V2.

This algebra is often called the Griess algebra of V (c.f. Section 2.7). An element e 2 V2

satisfying e · e = 2e is called an Ising vector if the sub-VOA generated by e is isomorphic

to the simple Virasoro VOA L(1
2
, 0) of central charge 1

2
(c.f. 2.9). In [Sa], Griess algebras

generated by 2 Ising vectors are classified. He showed that there are exactly 9 Griess
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algebra structures and they are isomorphic to the Griess algebras GU
nX

of the VOA U

nX

,

nX 2 {1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A}, constructed in [LYY1, LYY2]. Based on

[LYY1] and [Sa], one obtains a natural explanation of McKay’s E8-observation using the

theory of VOA. We will reviewed Sakuma’s work in Chapter 4.

Following the same approach of [LYY1, LYY2], McKay’s E7 and E6-observations

on the Baby-Monster and the largest Fischer 3-transposition group Fi24 were studied in

[HLY1, HLY2]. In particular, certain sub-VOA generated by Ising vectors are con-

structed as a commutant sub-VOA of the lattice VOA V

p
2E8

. In [HLY1], certain VOA

containing two 2A-algebras U2A which have a common Ising vector were considered. There

are 5 such VOA and they are denoted by VB(nX), nX 2 {1A, 2B, 2C, 3A, 4C} (see (3.4.11)),

where 1A, 2B, 2C, 3A, 4C are 5 conjugacy classes of the Baby Monster group B (c.f. Sec-

tion 3.4.2). In addition, VOA containing two 3A-algebras U3A with a common confor-

mal vector of central charge 4/5 were studied in [HLY2]. Three commutant sub-VOA

V

F (nX), nX 2 {1A, 2A, 3A}, of Vp
2E8

were constructed (see (3.4.13)), where 1A, 2A, 3A

denote 3 conjugacy classes of the Fischer group Fi24 (c.f. Section 3.4.3). Motivated by

the result of Sakuma [Sa], it is natural to ask if the Griess algebras of V
F (nX) and VB(nX)

exhaust all possible cases. In Chapter 5 and Chapter 6, we will confirm that the answer

is “Yes”. In Chapter 5, we will study Griess algebras generated by three Ising vectors

e, f , and g such that the sub-VOA generated by e and f and the sub-VOA generated

by e and g are both isomorphic to U2A. We will show that there are only 5 possible

structures of Griess algebras and they correspond exactly to the Griess algebras GVB(nX)

of the five VOA VB(nX), nX 2 {1A, 2B, 3A, 4B, 2C}, constructed in [HLY1]. In Chap-

ter 6, we study Griess subalgebras generated by two 3A-algebras U and U

0 such that

U \U

0 ⇠= W(4/5) = L(4/5, 0)�L(4/5, 3). We will show that there are only 3 possibilities,

up to isomorphism and they are isomorphic to the Griess algebras of V
F (1A), VF (2A), and

V

F (3A) constructed in [HLY2].
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The main idea of our classification is to analyze various Griess subalgebras generated

by 2 Ising vectors using Sakuma’s Theorem and to analyze the symmetric structure from

Miyamoto involution ⌧

e

and �-involution �

e

for an Ising vector e. The invariant condition

ha · b, ci = ha, b · ci is used extensively in our computation. Norton inequality (see Section

2.12) is also essential to our analysis.

The organization is as follows: In Chapter 2, we review some basic definitions and

results about vertex operator algebra (VOA). The definition of VOA, modules, dual mod-

ules, Ising vectors, Griess algebras, Miyamoto involutions and �-involutions will be re-

viewed. Several important results such as Norton inequality will also be recalled. In

Chapter 3, we recall the construction of lattice VOA from a even positive-definite lat-

tice. We will specialize it to doubly-even lattices and to the root type lattices
p
2E7 and

p
2E6. The construction of the VOA U

nX

, VB(nX), and V

F (nX) in [HLY1, HLY2] will be

explained also. In Chapter 4, we recall the result in [Sa]. There are exactly 9 structures

of Griess algebra generated by 2 Ising vectors. We will describe their basis and their Ising

vectors. The product rule, inner product, Miyamoto involutions, and �-involutions will

also be reviewed. In Chapter 5, we classify all Griess subalgebras generated by 2 Griess

subalgebras isomorphic to the Griess algebra GU2A of U2A with a common Ising vector.

We show that there are exactly 5 such structures and they are isomorphic to the Griess

algebras of VB(nX). In Chapter 6, we first introduce an order 3 automorphism associated

to a conformal vector of central charge 4/5. With the help of the automorphism symme-

try, we classify all Griess subalgebras generated by 2 Griess subalgebras isomorphic to the

Griess algebra GU3A of U3A with a common conformal vector of central charge 4/5. We

conclude that there are exactly 3 such structures and they are isomorphic to the Griess

algebras of V
F (nX).
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CHAPTER 2

Preliminary

In this chapter, we recall the basic notion of VOA and Griess algebras.

2.1. Formal power series

Let V be a vector space over a field F of characteristic 0 (usually F = C or R). Denote

V [[z]] := {
1X

i=0

v

i

z

i

��
v

i 2 V for all i}.

V [[z, z�1]] := {
X

i2Z

v

i

z

i

��
v

i 2 V for all i}.

V [[z1, z
�1
1 , · · · , z

n

, z

�1
n

]] := {
X

i1,··· ,in2Z

v

i1···in
z

i1
1 · · · zin

n

��
v

i1···in 2 V for all i1, · · · , in 2 Z}

V ((z)) := {
1X

i=n

v

i

z

i

��
n 2 Z, vi 2 V for all i}.

Usually, the vector space is an endomorphism ring End(V ).

2.2. Virasoro algebra

Virasoro algebra is an important Lie algebra. It is the central extension of the Lie

algebra of the Lie group of small holomorphic motion of a unit circle. Equivalently,

Virasoro algebra is a central extension of the Lie algebra

SpanF{Ln

:= z

n+1 d

dz

��
n 2 Z}.

It is well-known that the central extension is unique up to isomorphism.
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Definition 2.1. A Virasoro algebra Vir is a Lie algebra with a basis {c, L
n

��
n 2 Z}

satisfying the bracket rules

[c,Vir] = 0,

[L
m

, L

n

] = (m� n)L
m+n

+ �

m+n,0
m

3 �m

12
c.

Moreover, Vir has the triangular decomposition

Vir = Vir+ � Vir0 � Vir�,

where

Vir+ := SpanF{Ln

|n 2 Z
>0}, Vir� := SpanF{Ln

|n 2 Z
<0}, Vir0 := FL0 � Fc.

2.3. Formal definition of VOA

Next we recall some basic definitions and notations of VOA (c.f. [FHL]).

Definition 2.2. A vertex operator algebra (VOA) over a field F is a quadruple

(V, Y, ,!), satisfying the following conditions:

(V1) V =
L

n2Z Vn

is a Z-graded vector space over F; for v 2 V

n

, n = wt v, the weight

of v;

(V2) dimV

n

< 1;

(V3) V

n

= 0 for n su�ciently small;

(V4) Y (·, z) is a linear map

Y (·, z) : V ! (EndFV ) [[z, z�1]]

v ! Y (v, z) =
X

i2Z

v(i) z
�i�1

,

where EndF is F linear endmorphism, and v(i) (or Y (v, z)) is called the vertex

operator associated to v;

(V5) Y ( , z) = id
V

;

12



(V6) Y (a, z) 2 V [[z]], and lim
z!0 Y (a, z) = a for all a 2 V ;

(V7) L

i

:= !(i+1) satisfy the Virasoro algebra relations:

[L
i

, L

j

] = (i� j)L
i+j

+ �

i+j, 0
i

3 � i

12
c,

where c 2 F is some constant, which is called the rank of V ;

(V8) L0v = (wt v) v = nv for v 2 V

n

;

(V9) Y (L�1v, z) =
d

dz

Y (v, z);

(V10) the Jacobi identity holds:

�(z1 � z2, z0)Y (a, z1)Y (b, z2)v � �(�z2 + z1, z0)Y (b, z2)Y (a, z1)v

= �(z1 � z0, z2)Y (Y (a, z0)b, z2)v 2 V [[z0, z
�1
0 , z1, z

�1
1 , z2, z

�1
2 ]]

for all a, b, v 2 V , where

�(x1 + x2, y) := y

�1
X

i2Z

⇣
x1 + x2

y

⌘
i

:=
X

i2Z

1X

j=0

✓
i

j

◆
x

i�j

1 x

j

2 y
�i�1

.

The element 2 V0 is called the vacuum element, and ! 2 V2 is called the Virasoro

element.

Remark 2.3. Our notation �(x1 + x2, y) follows that of [Kac] and it is the same as

the notation y

�1
�(x1+x2

y

) in [FHL].

From the definition of VOA, we have the following corollaries.

(a(m)b)(n) =
X

i�0

✓
m

i

◆
(�1)i

⇣
a(m�i)b(n+i) � (�1)mb(m+n�i)a(i)

⌘
,

[a(m), b(n)] =
X

i�0

✓
m

i

◆
(a(i)b)(m+n�i),

(a(0)b)(0) =[a(0), b(0)],

a(n)b =
X

i�0

(�1)n+i+1(L�1)i

i!
b(n+i)a.
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If V = �1
i=0Vi

, V0 = F , V1 = 0, then for a, b, c 2 V2,

a(1)b = b(1)a, a(3)b = b(3)a, (a(1)b)(3)c = a(3)b(1)c.

From the definition, it is easy to show that a(m)b 2 Vwt a�m�1+wt b, and hence we

say wt a(m) = wt a � m � 1. Note also that Y (a, z)v 2 V ((z)) although Y (a, z) 2

(EndFV )[[z, z�1]].

2.4. Module

By the definition of VOA, v(i) acts on V for v 2 V and i 2 Z. The concept of V -

module is similar to modules of rings in usual algebra. A vector space M is a V -module

if v(i) acts on M and satisfy the similar properties as v(i) acts on V .

Definition 2.4. Given a VOA (V, Y, ,!), a V -module (M,Y

M

) (or briefly (M,Y ))

is a F-graded vector space M such that

(M1) M =
L

n2F Mn

is a F-graded vector space over F; for m 2 M

n

, n = wtm;

(M2) dimM

n

< 1;

(M3) For any h 2 F, M
h+n

= 0 for su�ciently small n 2 Z;

(M4) Y

M

(·, z) (or Y (·, z)) is a linear map

Y

M

(·, z) : V ! (EndFM) [[z, z�1]]

v ! Y

M

(v, z) =
X

i2Z

v(i) z
�i�1;

(M5) Y

M

( , z) = id
M

;

(M6) for any m 2 M and v 2 V , v(n)m = 0 for n su�ciently large;

(M7) L

i

:= !(i+1) 2 End(M) satisfy the Virasoro algebra relations:

[L
i

, L

j

] = (i� j)L
i+j

+ �

i+j, 0
i

3 � i

12
c,

where c is the rank (central charge) of V ;
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(M8) L0m = (wtm)m = nm for m 2 M

n

;

(M9) Y

M

(L�1v, z) =
d

dz

Y

M

(v, z);

(M10) the Jacobi identity holds:

�(z1 � z2, z0)YM

(v1, z1)YM

(v2, z2)m� �(�z2 + z1, z0)YM

(v2, z2)YM

(v1, z1)m

= �(z1 � z0, z2)YM

(Y (v1, z0)v
2
, z2)m 2 M [[z0, z

�1
0 , z1, z

�1
1 , z2, z

�1
2 ]]

for all v1, v2 2 V and m 2 M .

It is clear from definition that Y (v, z)m 2 M((z)) for v 2 V,m 2 M .

2.5. Dual module

Definition 2.5. For f(z) 2 F[z, z�1], the operator

f(z)L0 : V [z, z�1] ! V [z, z�1]

is defined by vz

n ! vf(z)wt v
z

n for homogeneous v and extended linearly. It is well defined

since for homogeneous v, wt v 2 Z�0 and f(z)wt v 2 F[z, z�1].

Let f(z) 2 F[z], ' 2 EndFV such that for all v 2 V , 'n

v = 0 for n large (n may

depend on v). Define

e

f(z)' : V [z, z�1] ! V [z, z�1]

by vz

n !
1X

i=0

('i

v)f(z)izn

i!
and extended linearly. That is well defined since it is finite

sum for each v.

Definition 2.6. Given a VOA (V, Y, ,!) and a V -module (M,Y

M

), the contragre-

dient module (M 0
, Y

M

0) is is defined as

• M

0 =
M

n2F

M

0
n

, where M

0
n

:= (M
n

)⇤ = HomF(Mn

,F);

15



• for m

0 2 M

0, Y
M

0(v, z)m0 2 M

0[[z, z�1]] is defined by

hY
M

0(v, z)m0
,mi = hm0

, Y

M

(ezL1(�z

�2)L0
v, z

�1)mi,

which is well defined since L

n

1v = 0 for n large and e

zL1(�z

�2)L0
v 2 V [z, z�1]

(finite sum) by Definition 2.5.

Theorem 2.7. (c.f. [FHL, section 5.2]) The structure (M 0
, Y

M

0) defined in Definition

2.6 is a V -module.

2.6. Morphism

The definition of homomorphism, isomorphism, and automorphism of VOA and of

VOA-module are as usual.

Definition 2.8. Let (V, Y, ,!) and (V̂ , Ŷ ,

ˆ
, !̂) be VOA. A homomorphism � : V !

V̂ is a linear map satisfying �( ) = ˆ, �(!) = !̂, and �(Y (v1, z)v2) = Ŷ (�(v1), z)�(v2) for

all v1, v2 in V . An isomorphism is a homomorphism which has an inverse homomorphism.

An automorphism is an isomorphism from a VOA to itself. We denote the set of all

automorphisms of (V, Y, ,!) by Aut(V ).

Definition 2.9. Let (V, Y, ,!) be a VOA. (M1
, Y

M

1) and (M2
, Y

M

2
,

ˆ
, !̂) be V -

modules. A module homomorphism is a linear map � : M1 ! M

2 (hence extended to a

linear map M

1[[z, z�1]] ! M

2[[z, z�1]]) satisfying �(Y
M

1(v, z)m1) = Y

M

2(v, z)�(m1). An

isomorphism is a homomorphism which has an inverse homomorphism. An automorphism

is an isomorphism from a module to itself. We denote the set of all automorphisms of

(M,Y

M

) by Aut
V

(M) or simply by Aut(M).

If (M,Y

M

) is isomorphic to (M 0
, Y

M

0) with the isomorphism �, then there is an bi-

linear form (·, ·) on M defined by (m1
,m

2) = h�(m1),m2i satisfying (Y
M

(v, z)m1
,m

2) =

(m1
, Y

M

(ezL1(�z

�2)L0
v, z

�1)m2) 2 F((z)) for m1, m2 in M .
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2.7. Griess algebra

Definition 2.10. A bilinear form hh·, ·ii on V is said to be invariant (or contragredient,

see [FHL]) if

(2.7.1) hhY (a, z)u, vii = hhu, Y (ezL1(�z

�2)L0
a, z

�1)vii

for any a, u, v 2 V . That is, V as a V -module is isomorphic to its dual module.

Definition 2.11. A VOA V =
L

n2Z Vn

is said to be of CFT type if V
n

= 0 for n < 0

and dimV0 = 1.

The following theorem is proved in [Li].

Theorem 2.12. ([Li, Theorem 3.1]) Let (V, Y, ,!) be a VOA of CFT type with

V1 = 0. Then there is a unique symmetric invariant (Definition 2.10) bilinear form hh·, ·ii

of (V, Y, ,!) satisfying hh , ii = 1.

Let V be a VOA of CFT type. It is well known [FLM] that the weight 1 subspace V1

has a natural Lie algebra structure defined by

[a, b] := a(0)b

and has a invariant (in the sense of Lie algebra) symmetry bilinear form given by

(a, b) = a(1)b.

If V1=0, then it is also well known that the weight 2 subspace V2 has a commutative

(non-associative) algebra structure.

Theorem 2.13 (Theorem 8.9.5 of [FLM]). Let (V, Y, ,!) be a VOA of CFT type

such that V1 = 0. Then the weight 2 space G := V2 has a commutative (non-associative)
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algebra structure defined by the product,

(2.7.2) a · b := a(1)b (= b(1)a).

Moreover, there is a symmetric bilinear form h·, ·i defined by

(2.7.3) ha, bi := a(3)b (= b(3)a), a, b 2 V2.

The bilinear form is invariant in the sense that for all a, b, c 2 V2,

(2.7.4) ha · b, ci = ha, b · ci.

In addition, the bilinear form h·, ·i agrees with the invariant form defined in Theorem

2.12, i.e., ha, bi = hha, bii for all a, b 2 V2.

Definition 2.14. The algebra G = G
V

= (V2, ·, h·, ·i) in Theorem 2.13 is called the

Griess algebra of V . An automorphism of G is an automorphism of linear space that

preserves the product and the bilinear form. The group of all automorphisms of G is

denoted by Aut(G). By Definition 2.8 and Theorem 2.13, it is clear that f 2 Aut(V )

implies f |G 2 Aut(G).

2.8. Virasoro VOA

Definition 2.15. For constants c, h 2 F, define an one dimensional Vir+ � Vir0-

module

F
c,h

:= F1

by

c · 1 := c1,

L0 · 1 := h1,

and

Vir+ · 1 := 0.

18



Let

M(c, h) := IndVir
Vir+�Vir0Fc,h

.

By Poincaré-Birkho↵-Witt Theorem, M(c, h) has basis

{L�n1 · · ·L�n

k

1
��
k 2 Z�0, n1 � · · · � n

k

� 1 2 Z}.

Let L(c, h) be the irreducible highest weight Vir-module of central charge c and highest

weight h. Then

L(c, h) = M(c, h)/I(c, h),

where I(c, h) is the maximal proper sub-module of M(c, h).

Remark 2.16. It is known in [FZ, p.163] that the Vir-module L(c, 0) has a natural

simple VOA structure. This VOA is often called the simple Virasoro VOA of central

charge c.

2.9. Ising vectors

Definition 2.17. Let (V, Y, ,!) be a VOA of CFT type with V1 = 0. An element

e 2 V2 is called a conformal vector with central charge c.c.(e) = c 2 F if L̃
n

:= e(n+1)

satisfy Virasoro algebra relation with central charge c,

[L̃
m

, L̃

n

] = (m� n)L̃
m+n

+ �

m+n, 0
m

3 �m

12
c.

When Vir(e) ⇠= L(c, 0), we call e a simple conformal vector.

Theorem 2.18. (Lemma 5.1, [Mi1]) An element e 2 V2 is a conformal vector with

central charge c if and only if

(2.9.1) e(1)e = 2e and e(3)e =
c

2
.
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Definition 2.19. For F = C or F = R, a conformal vector e is called an Ising

vector if c.c.(e) = 1
2
and the sub-VOA (Vir(e), Y, , e) generated by e is simple, that is,

Vir(e) ⇠= L(1
2
, 0).

Remark 2.20. Let e 2 V be an Ising vector. Then the sub-VOA Vir(e) ⇠= L(1
2
, 0)

is a rational VOA (i.e., all Vir(e)-modules are completely reducible) and it has exactly 3

irreducible modules L(1
2
, 0), L(1

2
,

1
2
), and L(1

2
,

1
16
) (cf. [DMZ, Mi1, Mi4]).

2.10. ⌧-involution and �-involution

For an Ising vector e 2 V2, one can define a certain involutive automorphism ⌧

e

from

e. If ⌧
e

= id, then one can define another automorphism �

e

.

Definition 2.21. For a given VOA (V, Y, ,!), an Ising vector e 2 V , and a constant

h 2 {0, 1
2
,

1
16
}, let V

e

(h) be the sum of all irreducible Vir(e)-submodules of V isomorphic

to L(1
2
, h). Then we have the decomposition (see [Mi1])

V = V

e

(0)� V

e

(
1

2
)� V

e

(
1

16
).

Define a linear map ⌧

e

: V ! V by

(2.10.1) ⌧

e

:=

8
>><

>>:

1 on V

e

(0)� V

e

(1
2
),

�1 on V

e

( 1
16
).

Let V ⌧

e be the fixed point subspace of ⌧
e

in V , i.e.

(2.10.2) V

⌧

e := {v 2 V | ⌧
e

(v) = v} = V

e

(0)� V

e

(
1

2
).

Define a linear map �

e

: V ⌧

e ! V

⌧

e by

(2.10.3) �

e

:=

8
>><

>>:

1 on V

e

(0),

�1 on V

e

(1
2
).

It was proved in [Mi1] that ⌧
e

and �

e

are automorphisms of V and V

⌧

e, respectively.
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Theorem 2.22. (Theorem 4.7 and Theorem 4.8 of [Mi1]) Let e be an Ising vector of a

VOA V . Then the map ⌧

e

defined in Definition 2.21 is an automorphism of V . Moreover,

for any ⇢ 2 Aut(V ), we have ⇢⌧

e

⇢

�1 = ⌧

⇢(e).

On the fixed point sub-VOA V

⌧

e, we have �

e

2 Aut(V ⌧

e). In addition, for any % 2

Aut(V ⌧

e), we have %�

e

%

�1 = �

%(e).

2.11. Eigenspace decomposition

Let V be a VOA of CFT type with V1 = 0 and denote G = V2.

Let e 2 G be an Ising vector. Then e(1) acts semisimply on the Griess algebra G

and the eigenvalues of e(1) are 0, 2, 1/2, or 1/16 only (see Remark 2.20). Since ⌧ and �

involutions are defined via the eigenspace decomposition, we can express the product in

the Griess algebra by using these involutions.

Proposition 2.23. (cf. [Ma, Mi1, Sa]) For any Ising vector e 2 G, we have an

orthogonal decomposition

G = Ge

0 � Ge

2 � Ge

1
2
� Ge

1
16
,

where Ge

h

:= {a 2 G| e · a = ha}. Moreover, G \ V

e

(0) = Ge

0 � Ge

2, G \ V

e

(1
2
) = Ge

1
2
,

G \ V

e

( 1
16
) = Ge

1
16
.

The next lemma follows immediately from the definitions of ⌧
e

and �

e

.

Lemma 2.24. Let e be an Ising vector of VOA V . For any x 2 G, we have the

decomposition x = x0 + x2 + x

1
2
+ x

1
16
, where x

h

2 Ge

h

. Then, x

1
16

= 1
2

�
x � ⌧

e

(x)
�
,

x

1
2
= 1

2

�
1
2
(x+ ⌧

e

(x))� �

e

�
1
2
(x+ ⌧

e

(x))
��
, and x2 = 4he, xie. Moreover,

e · x = 8he, xie+ 1

22

✓
1

2
(x+ ⌧

e

(x))� �

e

�1
2
(x+ ⌧

e

(x))
�◆

+
1

25
�
x� ⌧

e

(x)
�
.

If ⌧
e

(x) = x, then we have

e · x = 8he, xie+ 1

22
�
x� �

e

�
x

��
.
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2.12. Norton inequality

From now on, we will assume the following condition.

Assumption 1. Let (V, Y, ,!) be a VOA of CFT type over R. Suppose that V1 = 0

and the invariant bilinear form defined in Theorem 2.12 is positive definite.

Remark 2.25. Let V be a VOA satisfying Assumption 1. Then the bilinear form

h·, ·i defined on G = V2 (see Theorem 2.13) is also positive definite. In particular, the

Cauchy-Schwartz inequality holds: ha, aihb, bi � ha, bi2, and ha, aihb, bi = ha, bi2 if and

only if a and b are linearly dependent, i.e. a = rb for some r 2 R or b = 0. In particular,

if a and b are conformal vectors such that ha, bi = ha, ai = hb, bi, then a = b.

Remark 2.26. Note that the involution ⌧

e

(and �

e

if it is well-defined) also acts on

G = V2 for an Ising vector e.

The next theorem is important to our discussion. The proof can be found in [Mi1,

Theorem 6.3].

Theorem 2.27. (Norton inequality) Let V be a VOA satisfying Assumption 1. Then

for all a, b in G = V2, we have

ha · a, b · bi � ha · b, a · bi.

In particular, if a, b are idempotents in G, then ha, bi = ha · a, b · bi � ha · b, a · bi � 0.

By Norton inequality, we know that the norm of the product a · b is constrained by

the norm of a · a and b · b.
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CHAPTER 3

Dihedral algebras and McKay’s observation

In this chapter, we will recall the construction of the lattice VOA in [FLM]. Then

we will review McKay’s E8, E7 and E6 observations. In addition, the dihedral VOA

constructed in [LYY1, LYY2] and [HLY1, HLY2] will be reviewed.

3.1. Lattice VOA

We will recall the construction of lattice VOA from [FLM].

Let F be a field of characteristic 0. Let Rn be the R inner product vector space

generated by n orthonormal basis {e1, · · · , en}. A lattice in Rn of rank m is a free Z-

module (i.e. free abelian group) generated by m linearly independent elements in Rn

with the restriction positive definite inner product h·, ·i. We say L is a integral lattice if

ha, bi 2 Z for all a, b in L. We say L is an even lattice if ha, ai 2 2Z for all a in L. Clearly

an even lattice is an integral lattice since ha, bi = 1
2
(ha+ b, a+ bi � ha, ai � hb, bi).

Let L ⇢ Rn be a (positive-definite) even lattice of rank m. We will construct a VOA

V

L

associated to L.

Let h be the F (field of characteristic 0) vector space

h := L⌦Z F

and we view it as an abelian Lie algebra.

Let

ĥ := h⌦ C[t, t�1]� Fc, and h̃ := ĥ� Fd
23



be Lie algebras with the bracket defined by

(3.1.1) [h⌦ tn, h0 ⌦ tn
0
] := �

n+n

0
,0 nhh, h0ic,

[c, h̃] := 0,

[d, h⌦ tn] := nh⌦ tn,

for h, h0 2 h, n, n0 2 Z. We also define a (non-degenerate) bilinear form h·, ·i, on h̃ by

hh⌦ tn, h0 ⌦ tn
0i := �

n,n

0 hh, h0i,

hc, ĥi := 0,

hd, ĥi := 0,

hc,di := 1,

hd,di := 0.

It is direct to check that h̃ is a Lie algebra and the form h·, ·i is invariant , i.e.

h[x, y], zi+ hy, [x, z]i = 0 for all x, y, z 2 h̃.

Define the associated Heisenberg algebra,

h̃0 := [h̃, h̃] = Fc�
M

n2Z\{0}

h⌦ tn.

We can decompose the Heisenberg algebra as Lie subalgebras

h̃0 = h̃0� � Fc� h̃0+,

where h̃0+ :=
L

n2Z
>0

h⌦ tn, h̃0� :=
L

n2Z
<0

h⌦ tn.

For � 2 F, define the one dimensional Fc� h̃0+-module

F
�

:= F1
24



by

c1 = �1, h̃0+ · 1 = 0.

Then we can define the Verma module M(�) to be the induced h̃0-module

(3.1.2) M(�) := Indh̃0

Fc�h̃0+
F
�

:= U(h̃0)⌦
U(Fc�h̃0+) F�

,

where U(l) is the universal enveloping algebra of the Lie algebra l. Denote the operator

↵⌦ tn on M(�) by ↵(n). As vector space, we have

(3.1.3) M(�) = SpanF{↵1(�n1) · · ·↵k

(�n

k

)1
��
k 2 Z�0,↵i

2 h, n
i

2 Z�1 8i}.

Define the weight (energy) on M(�) by

wt (↵1(�n1) · · ·↵k

(�n

k

)1) := (n1 + · · ·+ n

k

).

We have wt (↵(n) · ↵1(�n1) · · ·↵k

(�n

k

)1) = �n+wt (↵1(�n1) · · ·↵k

(�n

k

)1), i.e. the

weight

wt (↵(n)) = �n,

as an operator, for n 2 Z.

Let L̂ be a central extension of an even lattice L by the cyclic group hi with 

2 = 1

and the commutator map

c0(↵, �) ⌘ h↵, �i mod 2.

That means we have an exact sequence

1 ! hi ,! (L̂, ·)
¯⇣(L,+) ! 0,

and

(3.1.4) aba

�1
b

�1 = 

hā,b̄i
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for all a, b in L̂. Note that such an extension L̂ exists and is unique up to isomorphism

by [FLM, Proposition 5.2.3].

Define the F-algebra

(3.1.5) F{L} := F[L̂]/(+ 1) = F[L̂]
��
!�1

,

where F[L̂] is the group ring, (+ 1) is the (two sided) ideal generated by + 1. Let

◆ : F[L̂] ! F[L̂]/(+ 1) = F{L}

be the natural projection morphism. Define the weight on F{L} by

wt (◆(a)) :=
1

2
hā, āi 2 Z

for a 2 L̂.

Now we can define the lattice VOA V

L

. As vector space,

(3.1.6) V

L

:= M(1)⌦F F{L},

which is both a left h̃0-module and a left L̂-module by

h(m⌦ ◆(b)) = (hm)⌦ ◆(b),

a(m⌦ ◆(b)) = m⌦ ◆(ab)

for h 2 h̃0, a 2 L̂, m 2 M(1), b 2 F{L}. As vector space,

V

L

= SpanF{↵1(�n1) · · ·↵k

(�n

k

)1⌦ ◆(a)
��
k 2 Z�0,↵i

2 h, n1 � · · · � n

k

� 1 2 Z, a 2 L̂}.

The Z grading (weight) of V
L

comes form the weight of M(1) and of F{L},

(3.1.7) wt (↵1(�n1) · · ·↵k

(�n

k

)1⌦ ◆(a)) = n1 + · · ·+ n

k

+
1

2
hā, āi.

Then

V

L

=
M

n2Z�0

(V
L

)
n

,
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where (V
L

)
n

:= {v 2 V

L

��wt (v) = n}. Clearly we have

(V
L

)0 = F ,(3.1.8)

where := 1⌦ ◆(1).

Extend V

L

from h̃0-module to h̃-module by defining the ↵(0) and d action,

(3.1.9) ↵(0)(↵1(�n1) · · ·↵k

(�n

k

)1⌦ ◆(a)) := h↵, āi(↵1(�n1) · · ·↵k

(�n

k

)1⌦ ◆(a)),

d(↵1(�n1) · · ·↵k

(�n

k

)1⌦ ◆(a)) =
�
� n1 � · · ·� n

k

� ha, ai
2

�
↵1(�n1) · · ·↵k

(�n

k

)1⌦ ◆(a).

It is straightforward to check it is well-defined h̃-module.

For ↵ 2 h, ↵(�1)1⌦ ◆(1) = ↵(�1) 2 V

L

, define

(3.1.10) Y (↵(�1) , z) := Y (↵, z) :=
X

n2Z

↵(n)z�n�1
.

For simplicity, we often use Y (↵, z) to denote Y (↵(�1) , z).

Define the normal-ordered product

�
�↵1(n1) · · ·↵k

(n
k

)�� := ↵

i1(ni1) · · ·↵i

k

(n
i

k

)

on End(V
L

) with {i1, · · · , ik} = {1, · · · , k} and n

i1  · · ·  n

i

k

. Note that ↵1(n1)↵2(n2) =

↵2(n2)↵1(n1) unless n1 + n2 = 0 by (3.1.1). Then we can define Y (1 ⌦ ◆(a), z) 2

HomF(VL

, V

L

[[z, z�1]]) = (EndF(VL

))[[z, z�1]] by

Y (1⌦ ◆(a), z) = Y (a , z) := Y (a, z)(3.1.11)

: = �
� exp

⇣Z �
Y (ā, z)� ā(0)z

�1
�
dz

⌘
�
�az

ā

: = �
� exp

⇣ X

n2Z\{0}

ā(n)

�n

z

�n

⌘
�
�az

ā

= exp
⇣ X

n2Z
>0

ā(�n)

n

z

n

⌘
exp

⇣ X

n2Z
>0

ā(n)

�n

z

�n

⌘
az

ā

,(3.1.12)
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where the operator a means left multiplication and the operator zā is given by

z

ā(↵1(�n1) · · ·↵k

(�n

k

)1⌦ ◆(b)) := ↵1(�n1) · · ·↵k

(�n

k

)1⌦ ◆(b) zhā,b̄i.

Note that (3.1.12) is well-defined since

exp
⇣ X

n2Z
>0

ā(n)

�n

z

�n

⌘
v

is a finite sum for each v 2 V

L

.

We have

Y ( , z) = Y (1⌦ ◆(1), z) = 1 (= id z0).

For ↵1(�n1) · · ·↵k

(�n

k

)1⌦ ◆(a) 2 V

L

, define

Y (↵1(�n1) · · ·↵k

(�n

k

)1⌦ ◆(a), z) := �
�

⇣ 1

(n1 � 1)!

�
d

dz

�
n1�1

Y (↵1, z)
⌘
· · ·

⇣ 1

(n
k

� 1)!

�
d

dz

�
n

k

�1
Y (↵

k

, z)
⌘
Y (a, z)�� ,

and extend the definition to Y (v, z) for v 2 V

L

linearly. Note that this definition is

compatible with (3.1.10), (3.1.12).

For v 2 V

L

, define v(n) 2 End(V
L

), n 2 Z by

Y (v, z) =
X

n2Z

v(n)z
�n�1

.

Remark 3.1. From (3.1.10) we have

(↵(�1) )(n) = ↵(n),

and we can embed h into V

L

by ↵ ! ↵(�1) . Similarly, from (3.1.12) we can embed

F{L} into V

L

by

◆(a) ! 1⌦ ◆(a).
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The Virasoro element ! in V

L

is defined by

! :=
1

2

mX

i=1

h

i

(�1)h
i

(�1) ,

where {h1, · · ·hm

} is an orthonormal basis of h. Note that the definition of ! is indepen-

dent of the choice of the basis.

Define L

n

:= !(n+1). Then wt (L
n

) = �n and L0(v) = wt (v)v for any homogeneous

element v. It is shown in [FLM] that (V
L

, Y, ,!) is an VOA with the central charge

c = rank(L) = m.

There is an order 2 automorphism ✓ 2 Aut(V
L

) (c.f. [FLM]) defined by

✓(↵1(�n1) · · ·↵k

(�n

k

)⌦ ◆(a)) := (�↵1)(�n1) · · · (�↵

k

)(�n

k

)⌦ ◆(a�1)(�1)hā,āi/2.

The fixed space

V

+
L

:= {v 2 V

L

��
✓(v) = v}

is a sub-VOA. If L is doubly even, then (V
L

)1 = Span{h(�1) | h 2 h} and hence we

have

(3.1.13) (V +
L

)1 = 0.

3.2.
p
2 times root lattices

For an even lattice R,
p
2R is an doubly even lattice, which means

h↵,↵i 2 4Z

for all ↵ 2
p
2R. In this case, h↵, �i 2 2Z for ↵, � 2

p
2R and the central extension [p2R

splits and hence

(3.2.1) F{
p
2R} = F[

p
2R] =

M

↵2R

Fe
p
2↵
,
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where {e
p
2↵
��
↵ 2 R} is the multiplicative abelian group isomorphic to the additive group

p
2R.

In this case, h = (
p
2R)⌦Z F = R⌦Z F if F = R or C.

The lattice VOA

V

p
2R = SpanF{↵1(�n1) · · ·↵k

(�n

k

)1⌦e

p
2�
��
k 2 Z�0,↵i

2 h, n1 � · · · � n

k

� 1 2 Z, � 2 R}.

Suppose R = R1 � R2 is an orthogonal decomposition. Then V

p
2R = V

p
2R1

⌦ V

p
2R2

. If

R

0 ⇢ R is a sub-lattice, we have a natural inclusion V

p
2R0 ,! V

p
2R.

The automorphism ✓ 2 Aut(Vp
2R) is given by

✓(↵1(�n1) · · ·↵k

(�n

k

)⌦ e

p
2�) := (�↵1)(�n1) · · · (�↵

k

)(�n

k

)⌦ e

�
p
2�
.

By (3.1.8) and (3.1.13) we have

(V +p
2R
)1 = 0, (V +p

2R
)0 = F .

3.3. V

p
2R for a root lattice R

If R is generated by its roots, i.e. norm-2 vectors, then the Virasoro element of Vp
2R

is given by

!

R

=
1

4h

X

↵2�(R)

(↵(�1))2 ,

where h is the Coxeter number of R and �(R) is the root system of R. In [DLMN], it

was shown that the vector defined by

(3.3.1) !̃

R

:=
2

h+ 2
!

R

+
1

h+ 2

X

↵2�(R)

e

p
2↵

is a conformal vector (cf. Definition 2.17), where e

x := 1⌦ e

x (c.f. Remark 3.1).

Proposition 3.2. [c.f. [DLMN]] The central charge of !̃
R

is 2n
n+3

, 1, 6
7
, 7

10
, and 1

2

when R is of type A

n

, D
n

, E6, E7, and E8 respectively .
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Remark 3.3. When R = E8, the conformal vector !̃

E8 2 V

p
2E8

has central charge

1/2 and hence is an Ising vector. The Ising vectors in the lattice VOA V

+
⇤ associated to

the Leech lattice ⇤ are classified in [LSh]. It is shown that if e 2 V

+
⇤ is an Ising vector,

then there exists a sub-lattice E < ⇤ isomorphic to
p
2E8 such that e = !̃

E8 2 V

+
E

⇢ V

+
⇤ .

3.4. McKay’s observation

In the late 1970’s, John McKay [McK] observed that there is an interesting corre-

spondence between the a�ne E8 diagram and the 6-transposition property of the Monster

group as follows.

(3.4.1)

3C

�|
|�������������������������������������������

1A 2A 3A 4A 5A 6A 4B 2B

It is known that 2A-involutions of the Monster simple group satisfy a 6-transposition

property, that is, |xy|  6 (i.e. (xy)n = 1 for some 1  n  6) for any two 2A-involutions

x, y 2 M. In addition, the product xy belongs to one of the following nine conjugacy

classes 1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B, or 3C. If we remove the alphabets from the

labels, then the nine numbers 1, 2, 3, 4, 5, 6, 4, 2, 3 are the usual numerical labels of the

a�ne Dynkin E8-diagram, which are the multiplicities of the corresponding simple roots

in the highest root in the E8 root system. There are similar relations that associate the

Baby Monster to the E7-diagram and Fischer’s largest 3-transposition group Fi24 to the

E6-diagram as follows.

E7-observation. Let s, t be 2A-involutions of the Baby Monster. It is known that the

product st belongs to one of the Baby Monster conjugacy classes 1A, 2B, 2C, 3A or 4B.

McKay noticed [McK] that the order of these elements coincide with the numerical labels
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of the a�ne E7 Dynkin diagram and there is a correspondence as below.

(3.4.2)

� 2C|||�������������������������������������������������

1A 2B 3A 4B 3A 2B 1A

In this case, the correspondence is no longer one-to-one but only up to the diagram

automorphism.

E6-observation. Similarly, for the Fischer group Fi24, the products of any two 2C-

involutions of Fi24 belongs to one of the conjugacy classes 1A, 2A or 3A of Fi24. It was

again noted by McKay [McK] that the order of these elements coincide with the numerical

labels of the a�ne E6 Dynkin diagram and there is a correspondence as follows:

(3.4.3)

� 1A|
|
|� 2A|
|
|�������������������������������������������������

1A 2A 3A 2A 1A

This correspondence is again not one-to-one but only up to diagram automorphisms.

3.4.1. E8-case. In [LYY1, LYY2], McKay’s E8 observation has been studied using

the VOA V

p
2E8

. Certain VOA generated by 2 Ising vectors were constructed explicitly

in V

p
2E8

. There are 9 di↵erent cases and these VOA are denoted by U1A, U2A, U2B, U3A,

U3C , U4A, U4B, U5A, and U6A. An explanation for McKay’s E8 observation has also been

proposed.

Next we will recall the construction of U
nX

from [LYY1]. We assume that F = C.
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For each node nX 2 {1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B, 3C}, we assign a root ↵

nX

to

the McKay E8 diagram as follows.

(3.4.4)

↵3C

�|
|�������������������������������������������

↵1A ↵2A ↵3A ↵4A ↵5A ↵6A ↵4B ↵2B

That means h↵
nX

,↵

nX

i = 2 and for nX 6= mY , h↵
nX

,↵

mY

i = �1 if the nodes are

connected by an edge and h↵
nX

,↵

mY

i = 0 otherwise. Then, {↵2A,↵3A, . . . ,↵3C} forms a

set of simple roots for E8 and ↵1A is the negative of the highest root. Moreover,

(3.4.5) ↵1A + 2↵2A + 3↵3A + 4↵4A + 5↵5A + 6↵6A + 4↵4B + 2↵2B + 3↵3C = 0.

For any nX 2 {1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B, 3C}, let E8(nX) be the sublattice

generated by {↵1A, . . . ,↵3C} \ {↵nX

}. Then E8(nX) is a rank 8 sublattice of E8. In fact,

E8(nX) is the root lattice associated with the Dynkin diagram Ê8 \ {nX-node} obtained

by removing the corresponding node nX from the a�ne E8 diagram. Note that the index

[E8 : E8(nX)] is equal to n.

The subdiagram Ê8 \ {nX-node} breaks down to several disjoint components. Let

E

i

8(nX) ⇢ E8(nX), i = 1, · · · , ` be the sublattices of E8 associated to the connected

components of Ê8 \ {nX-node}. It is clear that the lattice E8(nX) is an orthogonal sum

of Ei

8(nX) for i = 1, . . . , `.

Since [E8 : E8(nX)] = n, we have the decomposition

E8 =
n�1[

r=0

(r↵
nX

+ E8(nX))
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The lattice VOA V

p
2E8

can be decomposed as

V

p
2E8

=
n�1M

r=0

V

p
2(r↵

nX

+E8(nX)),

where V

p
2(r↵

nX

+E8(nX)) =
L

↵2
p
2(r↵

nX

+E8(nX)) M(1) ⌦ Ce↵ is a V

p
2E8(nX)-module. The

quotient group E8/E8(nX) also induces an automorphism ⇢

nX

on V

p
2E8

defined by

(3.4.6) ⇢

nX

(u) := ⇠

r

n

u for u 2 V

p
2(r↵

nX

+E8(nX)), r = 0, · · · , n� 1,

where ⇠

n

:= e

2⇡i/n is a primitive n-th root of unity.

Let

f := !̃

E8 =
1

16
!

E8 +
1

32

X

↵2�(E8)

e

p
2↵

be the Ising vector defined as in Section 3.3 (see (3.3.1)) and f

0 := ⇢

nX

(!̃
E8).

Lemma 3.4 (see [LYY2]). As an automorphism of Vp
2E8

, we have

(3.4.7) ⌧

f

⌧

f

0 = ⇢

�2
nX

2 Aut(Vp
2E8

).

Consider the commutant sub-VOA,

(3.4.8) U

nX

:= Com
V

p
2E8

⇣
Vir

�
!

E8 �
`X

i=1

!̃

E

i

8(nX)

�⌘
,

where

Com
V

(V 0) := {v 2 V | v(n)V 0 = 0 for all n 2 Z�0}

denotes the commutant sub-VOA of V 0 in V . By definition, it is clear that the Virasoro

element of U
nX

is
P

`

i=1 !̃E

i

8(nX). The following result can be found in [LM, LYY2] (see

also [GL]).

Proposition 3.5. Let U
nX

, f and f

0 be defined as above. Then

(1) the sub-VOA U

nX

is generated by f and f

0;
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(2) the sub-VOA U

nX

can be embedded into the VOA V

+
⇤ < V

\ (the Moonshine VOA).

Moreover, the product ⌧
f

⌧

f

0 defines an element in the conjugacy nX of M.

Remark 3.6. It is known [FLM, Mi4] that the Moonshine VOA V

\ has a real sub-

VOA V

\

R such that V \ = V

\

R ⌦R C and the invariant form on V

\

R is positive definite. The

VOA U

nX

also has a positive definite real form U

nX,R [LYY2]. Proposition 3.5 still holds

if we restrict V \ and U

nX

to their real forms.

3.4.2. E7-case. In [HLY1], the {3, 4}-transposition property of the Baby Monster

simple group and McKay’s E7-observation were studied. The main idea is to consider a

certain commutant sub-VOA in the Moonshine VOA V

\.

Let e be an Ising vector in V

\. Then ⌧

e

defines a 2A-involution of M and thus

CAut(V \)(⌧e) is a double cover of the Baby Monster simple group B, where CAut(V \)(⌧e) :=

{g 2 Aut(V \)| g⌧
e

g

�1 = ⌧

e

} is the centralizer of ⌧
e

.

Define

VB\ := Com
V

\(Vir(e)),

which is called the Baby Monster VOA in [HLY1]. Since CAut(V \)(⌧e) fixes e, it also

stabilizes VB\ and hence we have the restriction map '

e

: CAut(V \)(⌧e) ! Aut(VB\) such

that '
e

(g) := g

��
VB\

.

In [Hö] (see also [Y]), it is shown that the automorphism group of VB\, Aut(VB\), is

isomorphic to the Baby Monster B, and thus we have an exact sequence of groups

0 ! h⌧
e

i ,! CAut(V \)(⌧e)
'

e⇣Aut(VB\) ! 0.

For any 2A-involution a 2 B, the inverse image '

�1
e

(hai) is a Klein’s 4-group Z2 ⇥ Z2

such that all involutions belongs to the conjugacy class 2A. By Miyamoto’s correspon-

dence, the group '

�1
e

(hai) corresponds to a sub-VOA U < V

\ with U

⇠= U2A and e 2 U .
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Recall that the 2A-algebra U2A is isomorphic to

L(
1

2
, 0)⌦ L(

7

10
, 0)� L(

1

2
,

1

2
)⌦ L(

7

10
,

3

2
),

and hence we have

Com
U

(Vir(e)) ⇠= L(
7

10
, 0).

That means a 2A-involution of B determines uniquely a conformal vector of central charge

7/10 in VB\.

Similar to the case of Ising vectors, one can also define some automorphism with a

simple conformal vector of central charge 7/10. Recall that the simple Virasoro VOA

L( 7
10
, 0) has 6 inequivant irreducible modules, L( 7

10
, h) with h = 0, 3

2
, 7

16
, 3

5
, 1

10
, or 3

80
.

Theorem 3.7 ([Mi1]). Let V be a VOA and x 2 V a simple conformal vector with

central charge 7/10. Denote by V

x

[h] the sum of irreducible Vir(x)-submodules isomorphic

to L( 7
10
, h) for h = 0, 3

2
, 7

16
, 3

5
, 1

10
, or 3

80
. Then the linear map

⌧

x

:=

8
>>><

>>>:

1 on V

x

[0]� V

x

[3
2
]� V

x

[3
5
]� V

x

[ 1
10
],

�1 on V

x

[ 7
16
]� V

x

[ 3
80
],

defines an automorphism of V .

Definition 3.8. A simple conformal vector u of central charge 7/10 is said to be of

�-type on V if V
x

[ 7
16
] = V

x

[ 3
80
] = 0.

Lemma 3.9 ([Mi1, HLY1]). Let x 2 V be a simple c = 7/10 Virasoro vector of

�-type. Then one has the isotypical decomposition

V = V

x

[0]� V

x

[
3

2
]� V

x

[
1

10
]� V

x

[
3

5
].
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Moreover, the linear automorphism �

x

2 End(V ) defined by

(3.4.9) �

x

:=

8
>>><

>>>:

1 on V

x

[0]� V

x

[3
5
],

�1 on V

x

[3
2
]� V

x

[ 1
10
]

is an automorphism of V .

Remark 3.10. In [HLY1], it is shown that there is a 1-1 corrrespondence between

the 2A-involutions of the Baby Monster group and the simple c = 7/10 conformal vectors

of �-type the Baby Monster VOA VB\.

3.4.2.1. Commutant subalgebras UB(nX) and VB(nX). Next we will recall the construc-

tion of certain conformal vectors of central charge 7/10 and the commutant subalgebras

UB(nX) and VB(nX) from [HLY1]. Similar to the E8 case, we will first define an automor-

phism ⇢B(nX) 2 Aut(Vp
2E7

).

For each node nX, nX 2 {1A, 2B, 3A, 4B, 2C}, of the McKay E7-diagram (cf. (3.4.2)),

let E7(nX) < E7 be the root sublattice associated with the Dynkin diagram Ê7 \ {nX �

node} obtained by removing the corresponding node nX. We also denote the simple root

associated to the node nX by �

nX

. Then E7 =
S

n�1
r=0 (r�nX

+ E7(nX)) and

V

p
2E7

=
n�1M

r=0

V

p
2(r�

nX

+E7(nX)).

The automorphism ⇢B(nX) : Vp
2E7

! V

p
2E7

is defined by

⇢B(nX)(u) = ⇠

r

n

u for u 2 V

p
2(r�

nX

+E7(nX)), r = 0, · · · , n� 1.

In fact

(3.4.10) ⇢B(nX) = exp
⇣2⇡i

n

�

nX

(0)
⌘

for some �
nX

2 (
p
2E7(nX))⇤ ⇢ h (c.f. (3.1.9)) as an automorphism (see [HLY1, LYY1]).
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Remark 3.11. Strictly speaking, the root �

nX

is not well defined since there are

more than one nodes with the label nX. However, the isometry type of E7(nX) and the

conjugacy class of the automorphism ⇢B(nX) are uniquely determined by the label nX.

Notation 3.12. Let f̃ := !̃

E7 be the conformal vector defined as in (3.3.1) with

R = E7 and g̃ := ⇢B(nX)(f). Then f̃ and g̃ are conformal vectors of central charge 7/10.

Similar to the E8 case, we denote the sublattices associated to connected components

of Ê7 \ {nX-node} by E

i

7(nX), i = 1, . . . , ` and define the commutant sub-VOA

UB(nX) := Com
V

p
2E7

⇣
Vir

�
!

E7 �
`X

i=1

!̃

E

i

7(nX)

�⌘
.

In [HLY1], it is shown that f̃ , g̃ are contained in UB(nX) but in general, the VOA (or

the Griess subalgebra) generated by f̃ and g̃ is not equal to UB(nX) (or the Griess algebra

of UB(nX)). Therefore, we will consider some bigger sub-VOA.

First we fix an embedding of E7 into E8. Then

Ann
E8(E7) := {↵ 2 E8| h↵, E7i = 0} ⇠= A1

and we obtain an embedding of A1 �E7 into E8. Note that such an embedding is unique

up to an automorphism of E8.

Now define

(3.4.11) VB(nX) := Com
V

p
2E8

⇣
Vir

�
!

E8 � !̃Ann
E8 (E7) �

`X

i=1

!̃

E

i

7(nX)

�⌘
.

Then the Virasoro element of VB(nX) is !̃Ann
E8 (E7) +

P
`

i=1 !̃E

i

7(nX) and by definition, it is

clear that

UB(nX)
⇠= Com

VB(nX)

⇣
Vir

�
!̃Ann

E8 (E7))
�
.

Since Ann
E8(E7) ⇠= A1, the central charge of !̃Ann

E8 (E7) is
1
2
by Proposition 3.2.
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Notation 3.13. Let

e := !̃Ann
E8 (E7) and f = !̃

E8 .

Then both e and f are Ising vectors in VB(nX) (c.f. [LYY1, LYY2]). By (3.4.10), we

have ⇢B(nX) = exp(2⇡i
n

�

nX

(0)). It also defines an automorphism of Vp
2E8

by the embedding

of E7 to E8. Define

g := ⇢B(nX)(f).

Then g is also an Ising vector. Moreover, VOA(e, f) ⇠= VOA(e, g) ⇠= U2A.

The following results are proved in [HLY1].

Proposition 3.14. Let e, f, g be defined as in Notation 3.13 and let f̃ , g̃ be defined

as in Notation 3.12. Then

(1) ComVOA(e,f)(Vir(e)) = V ir(f̃) and ComVOA(e,g)(Vir(e)) = V ir(g̃);

(2) the VOA VB(nX) can be embedded into V

+
⇤ < V

\ and UB(nX) can be embedded into

VB\ for any nX = 1A, 2B, 3A, 4B, 2C. Moreover, '
e

(⌧
f

⌧

g

) = �

f̃

�

g̃

belongs to the

conjugacy class nX of the Baby Monster.

Remark 3.15. As in the E8 case, we can also consider the (positive definite) real

forms of VB\, VB(nX), etc. The conclusion in Proposition 3.14 will still hold.

In Chapter 5, we will study Griess-algebras generated by three Ising vectors e, f ,

and g such that the sub-VOA generated by e and f and the sub-VOA generated by e

and g are both isomorphic to U2A. We say that such a configuration is of central 2A-

type. Under this assumption, we will show that there are only 5 possible structures of

sub-Griess-algebras and they correspond exactly to the Griess algebras of the five VOA

VB(nX), nX 2 {1A, 2B, 3A, 4B, 2C}.
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3.4.3. R = E6 case. The above method can also be used to study McKay’s E6-

observation [HLY2].

For each node nX, nX 2 {1A, 2A, 3A}, of the E6-diagram (cf. (3.4.3)), let E6(nX) <

E6 be the root sublattice associated with the Dynkin diagram Ê6 \ {nX-node} obtained

by removing the corresponding node nX. We also use �

nX

to denote the simple root

associated to the node nX. Then E6 =
S

n�1
r=0 (r�nX + E6(nX)) and

V

p
2E6

=
n�1M

r=0

V

p
2(r�

nX

+E6(nX)).

We also obtain an automorphism ⇢

F (nX) : Vp
2E6

! V

p
2E6

defined by

⇢

F (nX)(u) = ⇠

r

n

u for u 2 V

p
2(r�

nX

+E6(nX)), r = 0, · · · , n� 1.

Note that

(3.4.12) ⇢

F (nX) = exp(
2⇡i

n

�

0
nX

(0))

for some �

0
nX

2 (
p
2E6(nX))⇤ as an automorphism [HLY2, LYY1].

Notation 3.16. Let u := !̃

E6 be the conformal vector defined as in (3.3.1) and u

0 :=

⇢

F (nX)(u). Then u and u

0 are conformal vectors of central charge 6/7.

As in the E8 and E7 cases, we use E

i

6(nX) to denote the sublattice associated to

the connected components of the Dynkin diagram Ê6 \ {nX-node}. We also define the

commutant sub-VOA

U

F (nX) := Com
V

p
2E6

⇣
Vir

�
!

E6 �
`X

i=1

!̃

E

i

6(nX)

�⌘
.

Fix an embedding of E6 into E8. Then Ann
E8(E6) := {↵ 2 E8| h↵, E6i = 0} ⇠= A2 and

we obtain an embedding of A2 � E6 into E8.
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Similar to the E7 case, we also consider the commutant sub-VOA

(3.4.13) V

F (nX) := Com
V

p
2E8

⇣
Vir

�
!

E8 � !̃Ann
E8 (E6) �

`X

i=1

!̃

E

i

6(nX)

�⌘
.

Since Ann
E8(E6) ⇠= A2, the central charge of !̃Ann

E8 (E6) is 4/5 by Proposition 3.2. More-

over, U
F (nX) = Com

V

F (nX)

⇣
Vir

�
!̃Ann

E8 (E6)

�⌘
.

From now on, set µ := !̃Ann
E8 (E6) = !̃

A2 . Recall that the quotient group E8/(A2�E6)

induces an automorphism ⇢ := ⇢3A 2 Aut(Vp
2E8

) (cf. (3.4.6)). Let

a0 := !̃

E8 and a1 := ⇢(a0).

Then both a0, a1 are Ising vectors in V

F (nX) (c.f. [LYY1, LYY2]) and the sub-VOA

VOA(a0, a1) generated by a0, a1 is isomorphic to U3A. Moreover, µ = !̃

A2 2 VOA(a0, a1)

and is fixed by ⌧

a0⌧a1 (see [LYY2]).

By (3.4.12), the map ⇢

F (nX) = exp(2⇡i
n

�

0
nX

(0)) also defines an automorphism on V

p
2E8

.

Define

b0 = ⇢

F (nX)(a0) and b1 = ⇢

F (nX)(a1).

Then b0, b1 are also Ising vectors and they generate a 3A-algebra in V

p
2E8

.

Since ⇢

F (nX) fixes V

p
2Ann

E8 (E6)
pointwisely, it fixes the conformal vector µ and the

sub-VOA Com
V

p
2A2

(Vir(!
A2 � µ)), which is isomorphic to the W3-algebra W(4/5) ⇠=

L(4/5, 0)� L(4/5, 3) (cf. [HLY2, SY]).

The next result can be found in [HLY2].

Proposition 3.17. Let U = VOA(a0, a1) and U

0 = VOA(b0, b1). Then

(1) the VOA V

F (nX) is generated by U and U

0 and

U \ U

0 ⇠= W(
4

5
) ⇠= L(

4

5
, 0)� L(

4

5
, 3).
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(2) u is the Virasoro elemnent of Com
U

(Vir(µ)) and u

0 is the Virasoro elemnent of

Com
U

0(Vir(µ)), where u and u

0 are defined as in Notation 3.16.

3.4.3.1. The VOA VF

\. Next we will recall the properties of a commutant sub-VOA

VF

\ from [HLY2].

Let g be a 3A-element of the Monster M. Then the normalizer NM(hgi) is isomorphic

to 3.Fi24 and acts on V

\. A character theoretical consideration in [Co, MeN] indicates

that the centralizer CM(g) ⇠= 3.Fi024 fixes a unique simple conformal vector µ of central

charge 4/5 in V

\, where Fi024 := haba�1
b

�1|a, b 2 Fi24i is the derived subgroup. In fact, it

was also shown that CM(g) actually fixes an extension W ⇠= W(4
5
) = L(4

5
, 0)� L(4

5
, 3) of

Vir(µ) in V

\.

Definition 3.18. Define the commutant sub-VOA

VF

\ := Com
V

\(W) = Com
V

\(Vir(µ)).

The VOA VF

\ is called the Fischer group VOA in [HLY2].

A simple observation shows that NM(hgi) acts naturally on VF

\ = Com
V

\(W). In fact,

the Fischer group Fi24 can be realized as a subgroup of Aut(VF \).

Theorem 3.19 ([HLY2]). Let '
µ

: NM(hgi) ! Aut(VF \) be the natural restriction

map. Then the image of '
µ

is isomophic to Fi24. Therefore, the automorphism group

Aut(VF \) of VF \ contains Fi24 as a subgroup. Moreover, let X be the full-subalgebra of

VF

\ generated by its weight 2 subspace. Then Aut(X) ' Fi24.

By the theorem above, we have an exact sequence

0 ! hgi ! NAut(V \)(hgi) ! Fi24 ! 0.
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Let t be a 2C-involution of Fi24. Then the inverse image '

�1
µ

(hti) is isomorphic to the

symmetry group S3 and is generated by two 2A-involutions of the Monster [ATLAS].

Therefore, '�1
µ

(hti) corresponds to a 3A-subalgebra U in V

\ with µ 2 U by the Miyamoto

correspondence. In addition, we have

Com
U

(Vir(µ)) ⇠= L(
6

7
, 0)� L(

6

7
, 5)

(see [HLY2, LYY2, SY]). In other words, a 2C-involution of Fi24 determines an extended

Virasoro VOA L(6
7
, 0)� L(6

7
, 5) in the Fischer group VOA VF

\.

Definition 3.20. A simple conformal vector u 2 V of central charge 6/7 is said to

be of �-type in V if V
u

[h] = 0 unless h = 0, 5, 1/7, 5/7, 12/7, 22/7. The subspace V

u

[h]

is defined to be the sum of all irreducible Vir(u)-modules of V isomorphic to L(6/7, h).

Lemma 3.21. Let u 2 V be a simple c = 6/7 conformal vector of �-type. Then the

linear map �

u

given by

(3.4.14) �

u

:=

8
>>><

>>>:

1 on V

u

[0]� V

u

[5
7
]� V

u

[22
7
],

�1 on V

u

[5]� V

u

[12
7
]� V

u

[1
7
].

is an automorphism of V .

The next theorem is also proved in [HLY2].

Proposition 3.22 (Proposition 5.15 and Theorem 5.16 of [HLY2]). For any nX =

1A, 2A or 3A, the VOA V

F (nX) can be embedded into the Moonshine VOA V

\ and the

VOA U

F (nX) can be embedded into VF

\ = Com
V

\(Vir(µ)). Moreover, �
u

�

u

0 = '

µ

(⌧
a1⌧b1)

defines an element of the conjugacy nX in Fi24.

In Chapter 6, we will study Griess-algebras generated by two 3A-algebras U and U

0

such that their intersection contains a sub-VOA isomorphic to W(4/5). We will show that
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there are only 3 possibilities, up to isomorphism and they are isomorphic to the Griess

algebras associated to V

F (1A), VF (2A), and V

F (3A).
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CHAPTER 4

Griess algebra generated by 2 Ising vectors

From now on, all VOA and their Griess algebras are over R unless otherwise stated.

We also assume every VOA satisfies Assumption 1, i.e., a VOA of CFT type with V1 = 0

and the invariant form on V is positive definite.

In [Sa], Griess algebras generated by 2 Ising vectors in a VOA satisfying Assumption 1

are classified. There are 9 cases and the structures of these Griess algebras are determined

(see also [IPSS, Table 3]).

Notation 4.1. For g1, g2 2 Aut(G), define Gphg1, g2i to be the subgroup generated

by g1 and g2. For g 2 Aut(G), S ⇢ G, define g · S to be the subset {g(x)| x 2 S} ⇢ G.

For any G < Aut(G) and S ⇢ G, set G · S := {g(x) | x 2 S, g 2 G} ⇢ G.

Notation 4.2. Let V be a VOA satisfying Assumption 1. Let x0, x1 be Ising vectors

in V2. Let D := Gph⌧
x0 , ⌧x1i be the dihedral group generated by ⌧

x0 , ⌧x1 and ⇢ := ⌧

x1⌧x0.

Set I0 = D · x0, I1 = D · x1 (Notation 4.2), and I = I0 [ I1.

Lemma 4.3. (cf. [Sa, Lemma 4.1, 4.2]) Let V , x0, x1, I0, I1 and I be defined as in

Notation 4.2. Then

(1) |I0| = |I1|;

(2) I0 = I1 if and only if n = |I0| is odd. In this case, x1 = ⇢

(n+1)/2(x0);

(3) |I|  6 and (⌧
x0⌧x1)

|I| = 1 as an automorphism of V .

Theorem 4.4. [cf. [Sa] and [IPSS]] Let V be a VOA satisfying Assumption 1. Let

x0, x1 be Ising vectors in V2 and let I0, I1 and I be defined as in Notation 4.2. Then
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the Griess subalgebra G generated by x0 and x1 in G
V

= V2 is isomorphic to one of the

following 9 algebras: GU1A, GU2A, GU2B, GU3A, GU3C, GU4A, GU4B, GU5A, and GU6A.

Moreover, I = I0[I1 is the set of all Ising vectors in G unless G ⇠= GU2A, GU4B, or GU6A.

If G ⇠= GU2A,GU4B, or GU6A, then the number of Ising vectors in G is equal to |I0[I1|+1.

The structures of the 9 algebras can be summarized as follows.

G{x0, x1} GU1A GU2A GU2B GU3A GU3C GU4A GU4B GU5A GU6A

hx0, x1i 1
22

1
25

0 13
210

1
28

1
27

1
28

3
29

5
210

4.0.4. GU1A. In this case, x0 = x1, and hence G = SpanR{x0} and dimG = 1.

Therefore, I = I0 = I1 = {x0}. The multiplication and the bilinear form are given by

x0 · x0 = 2x0 and hx0, x0i = 1
22
.

4.0.5. GU2A. In this case, ⌧
x0(x1) = x1, ⌧x1(x0) = x0, hx0, x1i 6= 0. Let x2 := �

x0(x1).

Then G = SpanR{x0, x1, x2} and dimG = 3. In addition, I0 = {x0}, I1 = {x1} and there

are 3 Ising vectors in G. The multiplication and the bilinear form are given by

(4.0.1) x

i

· x
j

=
1

22
(x

i

+ x

j

� x

k

) and hx
i

, x

j

i = 1

25
for {i, j, k} = {0, 1, 2}.

Note also that ⌧
x

i

= id on G and �

x

i

(x
j

) = x

k

for {i, j, k} = {0, 1, 2}. We call the ordered

set (x0, x1, x2) a normal GU2A basis.

4.0.6. GU2B. In this case, ⌧

x0(x1) = x1, ⌧

x1(x0) = x0, and hx0, x1i = 0. Then

G = SpanR{x0,x1} and dimG = 2. In addition, I0 = {x0}, I1 = {x1}, and there are

exactly 2 Ising vectors in G. The multiplication and the bilinear form are given by

(4.0.2) x

i

· x
j

= 0 and hx
i

, x

j

i = 0 for i 6= j.

Note that both ⌧

x

i

and �

x

i

act trivially on G. We call (x0, x1) a normal GU2B basis.
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4.0.7. GU3A. In this case, ⌧
x0 and ⌧

x1 generate a symmetric group S3 and hx0, x1i =
13
210

. Let x2 := ⌧

x0(x1) and u := 26

33·5(2x0+2x1+x2�24x0·x1). Then, u is a conformal vector

of central charge 4
5
, G = SpanR{x0, x1, x2, u} and dimG = 4. For {i, j, k} = {0, 1, 2}, the

multiplication and the bilinear form are given by

(4.0.3) x

i

· x
j

=
1

24
(2x

i

+ 2x
j

+ x

k

)� 135

210
u,

(4.0.4) x

i

· u =
2

32
(2x

i

� x

j

� x

k

) +
5

24
u,

(4.0.5) u · u = 2u,

and

(4.0.6) hx
i

, x

j

i = 13

210
, hx

i

, ui = 1

24
, hu, ui = 2

5
.

Moreover, we have

(4.0.7) ⌧

x

i

(x
j

) = x

k

, and ⌧

x

i

(u) = u.

For i 2 Z3, the fixed point subalgebra G⌧

x

i has dimension 3 and is spanned by x

i

, x

j

+ x

k

and u. Moreover we have

(4.0.8) �

x

i

(x
j

+ x

k

) = �3x
i

24
+

x

j

+ x

k

22
+

135u

27
,

(4.0.9) �

x

i

(u) =
2x

i

32
+

8(x
j

+ x

k

)

32
� u

22
.

I = I0 = I1 = {x0, x1, x2} is the set of all Ising vectors in G.

We call the ordered set (x0, x1, x2, u) a normal GU3A basis.
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4.0.8. GU3C. In GU3C, ⌧x0 and ⌧

x1 generate a symmetric group S3 and hx0, x1i = 1
28
.

Let x2 := ⌧

x0(x1). Then, G = SpanR{x0, x1, x2} and dimG = 3. The multiplication

and the bilinear form are given by

(4.0.10) x

i

· x
j

=
1

25
(x

i

+ x

j

� x

k

), and hx
i

, x

j

i = 1

28
,

where {i, j, k} = {0, 1, 2}. In this case, we also have ⌧

x

i

(x
j

) = x

k

and I = I0 = I1 =

{x0, x1, x2} is the set of all Ising vectors in G.

The fixed point subalgebra G⌧

x

i has dimension 2 and is spanned by x

i

and x

j

+ x

k

.

Moreover we have �

x

i

(x
j

+ x

k

) = x

j

+ x

k

. We call (x0, x1, x2) a normal GU3C basis.

4.0.9. GU4A. In GU4A, ⌧x0 and ⌧

x1 generate a Klein’s 4-group and hx0, x1i = 1
27
.

Let x2 := ⌧

x1(x0), x3 := ⌧

x0(x1) and µ := x0 + x1 +
1
3
x2 +

1
3
x3 � 25

3
x0 · x1. Then µ is a

conformal vector of central charge 1 and G = SpanR{x0, x1, x2, x3, µ}. The dimension of

G is 5 and the multiplication and the bilinear form are given as the following.

For k ⌘ i + 2 (mod 4), the pair (x
i

, x

k

) forms a normal GU2B basis. The product

structure and the bilinear form between x

i

and x

k

are then shown as in GU2B.

For j ⌘ i+ 1 (mod 4), {i, j, k, l} = {0, 1, 2, 3}, we have

(4.0.11) x

i

· x
j

=
1

25
(3x

i

+ 3x
j

+ x

k

+ x

l

� 3µ) and hx
i

, x

j

i = 1

27
.

For k ⌘ i+ 2 (mod 4), {i, j, k, l} = {0, 1, 2, 3}, we have

(4.0.12) x

i

· µ =
1

23
(5x

i

� 2x
j

� x

k

� 2x
l

+ 3µ) and hx
i

, µi = 3

25
.

We also have

(4.0.13) µ · µ = 2µ and hµ, µi = 1

2
.
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Moreover, ⌧
x

i

(x
j

) = x

l

, ⌧

x

i

(x
l

) = x

j

for j ⌘ i+1 (mod 4), l ⌘ i�1 (mod 4) and ⌧

x

i

(µ) = µ

for i 2 {0, 1, 2, 3}. In this case, I0 = {x0, x2}, I1 = {x1, x3}, and there are exactly 4 Ising

vectors in G.

The fixed point subalgebra G⌧

x

i has dimension 4 and is spanned by x

i

, x
k

, µ and x

j

+x

l

,

where k ⌘ i+ 2 (mod 4), j ⌘ i+ 1 (mod 4) and l ⌘ i� 1 (mod 4). In addition,

�

x

i

(x
j

+ x

l

) = �x

i

22
� x

k

22
+

x

j

+ x

l

2
+

3µ

22
,

�

x

i

(µ) =
x

i

2
+

x

k

2
+ (x

j

+ x

l

)� µ

2
.

We call the ordered set (x0, x1, x2, x3, µ) a normal GU4A basis.

4.0.10. GU4B. In GU4B, ⌧x0 and ⌧

x1 generate a Klein’s 4-group and hx0, x1i = 1
28
. Let

x2 := ⌧

x1(x0), x3 := ⌧

x0(x1), and x := �x0 � x1 + x2 + x3 + 25x0 · x1. Then x is an Ising

vector and G = SpanR{x0, x1, x2, x3, x}. The dimension of G is 5.

The multiplication and the bilinear form are given as the following.

For k ⌘ i + 2 (mod 4), the triple (x
i

, x

k

, x) forms a normal GU2A basis for G{x
i

, x

k

},

and hence the product structure and the bilinear form between x

i

, x
k

, x are shown as in

GU2A.

For j ⌘ i+ 1 (mod 4), {i, j, k, l} = {0, 1, 2, 3}, we have

x

i

· x
j

=
1

25
(x

i

+ x

j

� x

k

� x

l

+ x), and hx
i

, x

j

i = 1

28
.

Moreover, we have ⌧

x

i

(x
j

) = x

l

, ⌧

x

i

(x
l

) = x

j

for j ⌘ i+1 (mod 4), l ⌘ i� 1 (mod 4) and

⌧

x

i

(x) = x for i 2 {0, 1, 2, 3}. In this case, I0 = {x0, x2}, I1 = {x1, x3} and there are 5

Ising vectors in G.

The fixed point subalgebra G⌧

x

i has dimension 4 and is spanned by x

i

, x
k

, x and x

j

+x

l

,

where k ⌘ i+ 2 (mod 4), {i, j, k, l} = {0, 1, 2, 3}. Moreover we have

�

x

i

(x
j

+ x

l

) = (x
j

+ x

l

) +
x

k

22
� x

22
.
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We call the ordered set (x0, x1, x2, x3, x) a normal GU4B basis.

4.0.11. GU5A. In GU5A, ⌧x0 and ⌧

x1 generate a dihedral group of order 10. Let x2 :=

⌧

x1(x0), x3 := ⌧

x2(x1), x4 := ⌧

x0(x1), and ⌫ := �x0 � x1 + x2 + x3 + 25x0 · x1. Then

G = SpanR{x0, x1, x2, x3, x4, ⌫} and dimG = 6. In this case, the vector ⌫ is fixed by

⌧

x

i

for all i 2 {0, 1, 2, 3, 4}. The multiplication and the bilinear form are given as the

following.

For j ⌘ i± 1 (mod 5), {i, j, k, l,m} = {0, 1, 2, 3, 4},

x

i

· x
j

=
1

26
(3x

i

+ 3x
j

� x

k

� x

l

� x

m

) + 2⌫.

For k ⌘ i± 2 (mod 5), {i, j, k, l,m} = {0, 1, 2, 3, 4},

x

i

· x
k

=
1

26
(3x

i

� x

j

+ 3x
k

� x

l

� x

m

)� 2⌫.

For j ⌘ i+ 1 (mod 5), m ⌘ i� 1 (mod 5), k ⌘ i+ 2 (mod 5), l ⌘ i� 2 (mod 5),

x

i

· ⌫ =
7

211
(x

j

� x

k

� x

l

+ x

m

) +
7

24
⌫.

We also have

⌫ · ⌫ =
52 · 7
218

(x0 + x1 + x2 + x3 + x4).

For j 6= i, we have

hx
i

, x

j

i = 3

29
, hx

i

, ⌫i = 0, h⌫, ⌫i = 53 · 7
221

.

Moreover, ⌧
x

i

(x
j

) = x

m

, for j +m ⌘ 2i (mod 5) and ⌧

x

i

(⌫) = ⌫ for i 2 {0, 1, 2, 3, 4}. In

this case, I = I0 = I1 = {x0, . . . , x4} and there are exactly 5 Ising vectors in G.

The fixed point subalgebra G⌧

x

i has dimension 4 and is spanned by x

i

, ⌫, x
j

+ x

m

and

x

k

+x

l

where j ⌘ i+1 (mod 5), m ⌘ i�1 (mod 5), k ⌘ i+2 (mod 5) and l ⌘ i�2 (mod 5).

Moreover we have

�

x

i

(x
j

+ x

m

) =
x

j

+ x

m

23
+

7(x
k

+ x

l

)

23
� 16⌫,
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�

x

i

(x
k

+ x

l

) =
7(x

j

+ x

m

)

23
+

x

k

+ x

l

23
+ 16⌫,

�

x

i

(⌫) =
�7(x

j

+ x

m

)

29
+

7(x
k

+ x

l

)

29
� 3

4
⌫.

We call the ordered set (x0, x1, x2, x3, x4, ⌫) a normal GU5A basis.

4.0.12. GU6A. In GU6A, (⌧
x0⌧x1)

3 = 1, and ⌧

x0⌧x1(x0) 6= x1. Let x2 := ⌧

x1(x0),

x3 := ⌧

x2(x1), x4 := ⌧

x3(x2), x5 := ⌧

x0(x1), x := x0 + x2 � 22x0 · x2 and µ := 26

33·5(2x0 +

2x2 + x4 � 24x0 · x2). Then x is an Ising vector and u is a conformal vector of central

charge 4
5
. Moreover, we have G = SpanR{x0, x1, x2, x3, x4, x5, x, µ} and dimG = 8. The

multiplication and the bilinear form are given as the following.

• For k ⌘ i + 2 (mod 6), m ⌘ i � 2 (mod 6), the quadruple (x
i

, x

k

, x

m

, µ) forms a

normal GU3A basis. Hence their structures are shown as in GU3A.

• For l ⌘ i + 3 (mod 6), the quadruple (x
i

, x

l

, x) forms a normal GU2A basis. In

particular, we have x

i

· x
l

= 1
4
(x

i

+ x

l

� x).

• For j ⌘ i+ 1 (mod 6), {i, j, k, l,m, n} = {0, 1, 2, 3, 4, 5}, we have

(4.0.14) x

i

· x
j

=
1

25
(x

i

+ x

j

� x

k

� x

l

� x

m

� x

n

+ x) +
45

210
µ.

We also have

(4.0.15) x · µ = 0, hx, µi = 0,

and

(4.0.16) hx
i

, x

j

i = 5

210
for j ⌘ i+ 1 (mod 6).

Moreover, for i, j 2 Z6, we have

(4.0.17) ⌧

x

i

(x
j

) = x2i�j

.

51



The fixed point subalgebra G⌧

x

i has dimension 6 and is spanned by x

i

, x
l

, x, µ, x
j

+ x

n

,

x

k

+ x

m

, where l ⌘ i+ 3 (mod 6), j ⌘ i+ 1 (mod 6), n ⌘ i� 1 (mod 6), k ⌘ i+ 2 (mod 6),

m ⌘ i� 2 (mod 6). Moreover we have

�

x

i

(x
j

+ x

n

) =
x

i

24
+

x

l

22
+ (x

j

+ x

n

) +
x

k

+ x

m

22
� x

22
� 45µ

27
.

We call the ordered set (x0, x1, x2, x3, x4, x5, x, µ) a normal GU6A basis.

Remark 4.5. By Sakuma’s Theorem (Theorem 4.4), it is easy to see that a = b if

and only if ha, bi = 1
22

for any 2 Ising vectors a, b.
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CHAPTER 5

Griess algebras generated by 3 Ising vectors of central 2A-type

Since Griess algebras generated by 2 Ising vectors are classified. We may want to

classify Griess algebras generated by 3 Ising vectors. However, a group generated by

3 involutions can be very large and the situation could be very complicated. Here we

concentrate on Griess algebras generated by 3 Ising vectors of central 2A-type (Definition

5.2). In this case, we can classify all possibilities and each has the corresponding VOA

constructed in [HLY1].

Notation 5.1. Let S be a subset of G = V2, we use GS to denote the (Griess)

subalgebra generated by S. For example, G{x, y} denotes the (Griess) subalgebra generated

by x and y.

Definition 5.2. Let V be a VOA satisfying Assumption 1 and let e, x0, x1 be Ising

vectors in V2. The set {e, x0, x1} is said to be of central 2A-type if G{e, x0} ⇠= G{e, x1} ⇠=

GU2A. In this case, ⌧
e

commutes with ⌧

x0 and ⌧

x1.

The following lemma can be found in [HLY1], which is proved by Matsuo [Ma].

Lemma 5.3. Suppose that V is a VOA satisfying Assumption 1. Let x0, x1, x2 and

e be Ising vectors of V such that (x0, x1, x2) forms a normal GU2A basis (recall 4.0.5).

Then it is impossible that G{e, x
i

} ⇠= GU2A for all i = 0, 1, 2.

In [HLY1], certain VOA generated by 3 Ising vectors of central 2A-type are con-

structed. There are 5 cases and they are denoted by VB(1A), VB(2B), VB(3A), VB(4B), and

VB(2C). We denote their Griess algebras by GVB(nX).
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The next theorem is the main theorem of Chapter 5, which shows that there are only

five possible structures for Griess algebra generated by 3 Ising vectors of central 2A-type.

5.1. Main theorem

Theorem 5.4. Let V be a VOA satisfying Assumption 1 and let e, x0, x1 be Ising vec-

tors of central 2A-type. Then the Griess subalgebra G generated by e, x0, x1 is isomorphic

to one of the following algebras.

(1) GVB(1A). In this case, G{e, x0} ⇠= G{e, x1}. Then G is generated by e and x0. By

our assumption, G is isomorphic to GU2A in the previous chapter and dimG = 3.

(2) GVB(2B). The algebra GVB(2B) is isomorphic to the Griess algebra of V +p
2A2

. In

this case, G = GVB(2B) = SpanR{e, f, f 0
, g, g

0
, h} and dimG = 6, where (e, f, f 0),

(e, g, g0), (h, f, g), and (h, f 0
, g

0) form normal GU2A bases of G{e, x0}, G{e, x1},

G{f, g}, and G{f 0
, g

0} respectively. In addition, (e, h), (f, g0), and (f 0
, g) form

normal GU2B basis for G{e, h}, G{f, g0}, and G{f 0
, g} respectively. The multipli-

cation and the bilinear form can be obtained via the structures of GU2A and GU2B

(c.f. Figure 1).

(3) GVB(2C). In this case, x0 and x1 generate GU4B and G = GU4B in the previous

chapter with e = x. The dimension of G is 5 (c.f. Figure 3).

(4) GVB(3A). In this case, x0 and x1 generate GU6A or GU3A and G is isomorphic to

GU6A as described in the previous chapter with e = x and dimG = 8 (c.f. Figure

2).

(5) GVB(4B). In this case, x0 and x1 generate GU4A. Let (x0, x1, x2, x3, µ) be a nor-

mal GU4A basis and y

i

:= ⌧

e

(x
i

). Then y2 2 G⌧

x0 and let e

0 := �

x0(y2). The

subalgebra G{x0, y1} is also isomorphic to GU4A. Let µ

0 2 G{x0, y1} such that
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(x0, y1, x2, y3, µ
0) forms a normal GU4A basis. Then,

G = SpanR{e, e0, x0, x1, x2, x3, y0, y1, y2, y3, µ, µ
0}

with an extra relation x0+x1+x2+x3+y0+y1+y2+y3�e�e

0� 3
2
µ� 3

2
µ

0 = 0. The

dimension of G is 11. Elements e, e

0
, x0, x1, x2, x3, y0, y1, y2, y3 are Ising vectors

and µ, µ0 are conformal vectors with central charge 1.

The structures can be summarized as follows (c.f. Figure 4).

• The ordered sets (x0, x1, x2, x3, µ), (y0, y1, y2, y3, µ), (x0, y1, x2, y3, µ
0), and

(y0, x1, y2, x3, µ
0) form normal GU4A bases.

• The triples (e, x
i

, y

i

) and (e0, x
i

, y

j

) form normal GU2A bases for i 2 {0, 1, 2, 3},

j ⌘ i+ 2 (mod 4).

• The pair (e, e0) forms a normal GU2B basis.

• The remaining structures are listed below.

µ · e = 0, µ · e0 = 0, µ0 · e = 0, µ0 · e0 = 0, µ · µ0 = 0,

and

hµ, ei = 0, hµ, e0i = 0, hµ0
, ei = 0, hµ0

, e

0i = 0, hµ, µ0i = 0.

In addition, we have

⌧

e

(µ) = µ, ⌧

e

(µ0) = µ

0
, ⌧

e

0(µ) = µ, ⌧

e

0(µ0) = µ

0
,

and

�

e

(µ) = µ, �

e

(µ0) = µ

0
, �

e

0(µ) = µ, �

e

0(µ0) = µ

0
.
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5.2. Proof of the main theorem

In the following, we will give a proof for Theorem 5.4.

Notation 5.5. Let x

0
0 := �

e

(x0) and x

0
1 := �

e

(x1). Then (e, x0, x
0
0) and (e, x1, x

0
1)

form normal GU2A bases for G{e, x0} and G{e, x1}.

By Theorem 4.4, there are 9 possibilities for G{x0, x1}. We will analyze each case in

details.

5.2.1. Case 1. G{x0, x1} ⇠= GU1A. In this case, x0 = x1. Then G{e, x0, x1} =

G{e, x0} = GU2A. This algebra is isomorphic to GVB(1A).

5.2.2. Case 2. G{x0, x1} ⇠= GU2A.

Lemma 5.6. Let h := �

x0(x1) = x0 + x1 � 22x0 · x1 (by (4.0.1)). Then he, hi = 0 or

1
22
.

Proof. Since ⌧
e

is trivial on G{x0, x1, e} = G, we have ⌧
e

(h) = h and Gph⌧
e

, ⌧

h

i·{h} =

{h}. Hence G{e, h} is isomorphic to GU1A, GU2A or GU2B by Theorem 4.4.

Since (x0, x1, h) forms a normal GU2A basis for G{x0, x1} and G{e, x0} ⇠= G{e, x1} ⇠=

GU2A by our assumption, G{e, h} cannot be isomorphic to GU2A by Lemma 5.3. Hence

we have G{e, h} ⇠= GU2B or GU1A, i.e. he, hi = 0 or 1
22
. ⇤

Lemma 5.7. We have hx0, x
0
1i = he, hi. Hence hx0, x

0
1i = 0 or 1

22
.

Proof. Since x

0
1 = �

e

(x1) = e+ x1 � 22e · x1 (by (4.0.1)), we have

hx0, x
0
1i = hx0, e+ x1 � 22e · x1i = hx0, ei+ hx0, x1i � 22hx0, e · x1i

=
1

25
+

1

25
� 22he, x0 · x1i =

1

25
+

1

25
� he, x0 + x1 � hi

=
1

25
+

1

25
� 1

25
� 1

25
+ he, hi = he, hi
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as desired. ⇤

Proposition 5.8. (1) If he, hi = 1
22
, then G{e, x0, x1} ⇠= GU2A.

(2) If he, hi = 0, then dimG{e, x0, x1} = 6 and G{e, x0, x1} ⇠= GVB(2B).

Proof. (1) When he, hi = hx0, x
0
1i = 1

22
, we have e = h and x0 = x

0
1 by Remark

2.25. Therefore G{e, x0, x1} = G{e, x0
1, x1} ⇠= GU2A.

(2) When he, hi = hx0, x
0
1i = 0, we have G{e, h} ⇠= G{x0, x

0
1} ⇠= GU2B. Set f :=

x0, g := x1, f

0 := x

0
0, g

0 := x

0
1. We have a normal GU2A basis (f, g, h) for

G{x0, x1} = G{f, g} and normal GU2B bases (e, h) and (f, g0) for G{e, h} and

G{f, g0} respectively. Since ⌧

e

is trivial on G, we can apply �

e

to the normal

GU2A basis (f, g, h) to get another normal GU2A basis (f 0
, g

0
, h) and apply �

e

to

the normal GU2B basis (f, g0) to get a normal GU2B basis (f 0
, g). Therefore, there

are 4 normal GU2A bases and 3 normal GU2B bases. The structure is summarized

in Figure 1. In Figure 1, any three collinear points form a normal GU2A basis

and any 2 points not joined by a line form a normal GU2B basis.

Hence G = SpanR{e, h, f, f 0
, g, g

0} is closed under multiplication. This algebra

is isomorphic to GVB(2B).

Figure 1. Configuration for GVB(2B)

To prove that {e, h, f, f 0
, g, g

0} is linearly independent, we can compute det(ha
i

,

a

j

i) for a
i

2 {e, h, f, f 0
, g, g

0}. By computer, we verify that det(ha
i

, a

j

i) = 33

217
6=

0. Hence GVB(2B) have dimension 6.
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⇤

5.2.3. Case 3. G{x0, x1} ⇠= GU2B. In this case, we have

hx0, x
0
1i = hx0, e+ x1 � 22e · x1i = hx0, ei+ hx0, x1i � 22hx0, e · x1i

=
1

25
+ 0� 22he, x0 · x1i =

1

25
.

That is to say, G{x0, x
0
1} is isomorphic to GU2A. Moreover, it is easy to see that G{e, x0, x1}

= G{e, x0, x
0
1} since G{e, x1} = G{e, x0

1} ⇠= GU2A. Hence, by Case 2, we have G{e, x0, x1} =

G{e, x0, x
0
1} ⇠= GVB(2B).

5.2.4. Case 4. G{x0, x1} ⇠= GU3A. Let x2 := ⌧

x0(x1) and u := 26

33·5(2x0 + 2x1 + x2 �

24x0 · x1). Then (x0, x1, x2, u) forms a normal GU3A basis and

he, x2i = h⌧
x1(e), ⌧x1(x2)i = he, x0i =

1

25
.

Hence G{e, x2} ⇠= GU2A. Let x0
2 := �

e

(x2). Then (e, x2, x
0
2) forms a normal GU2A basis.

Lemma 5.9. We have ⌧

x

i

�

e

= �

e

⌧

x

i

and ⌧

x

i

= ⌧

x

0
i

for any i = 0, 1.

Proof. Since ⌧
x1 fixes e, we have ⌧x1�e

⌧

x1 = �

⌧

x1 (e)
= �

e

, which implies ⌧
x1�e

= �

e

⌧

x1 .

Therefore, ⌧

x1 = �

e

⌧

x1�e

= ⌧

�

e

(x1) = ⌧

x

0
1
. Similarly we also have ⌧

x0�e

= �

e

⌧

x0 and

⌧

x0 = ⌧

x

0
0
. ⇤

Lemma 5.10. The set Gph⌧
x0 , ⌧x

0
1
i · {x0, x

0
1} = {x0, x1, x2, x

0
0, x

0
1, x

0
2}.
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Proof. By Lemma 5.9, ⌧
x

0
1
(x0) = ⌧

x1(x0) = x2, ⌧x0(x2) = x1, and Gph⌧
x0 , ⌧x

0
1
i·{x0} =

{x0, x1, x2}. Moreover,

Gph⌧
x0 , ⌧x

0
1
i · {x0

1} = Gph⌧
x0 , ⌧x

0
1
i · {�

e

(x1)}

= �

e

· (Gph⌧
x0 , ⌧x

0
1
i · {x1})

= �

e

· {x0, x1, x2}

= {x0
0, x

0
1, x

0
2}

(5.2.1)

and thus we have the desired result. ⇤

Lemma 5.11. For any i, j 2 {0, 1, 2}, x0
i

6= x

j

.

Proof. Clearly, x
i

6= x

0
i

since G{x
i

, x

0
i

} ⇠= GU2A. Suppose x

0
i

= x

j

for some i 6= j.

Then G{x
i

, x

0
i

} = G{x
i

, x

j

} ⇠= GU3A by our assumption. It is absurd since G{x
i

, x

0
i

} ⇠=

GU2A. ⇤

Proposition 5.12. We have G{x0, x1, e} ⇠= GU6A
⇠= GVB(3A).

Proof. By Lemma 5.10 and 5.11, there are at least 6 distinct Ising vectors in G{x0, x
0
1}

and hence G{x0, x
0
1} ⇠= GU6A by Theorem 4.4. By Lemma 5.10, we have {x0, x1, x2, x

0
0, x

0
1, x

0
2} ⇢

G{x0, x
0
1} and thus e 2 G{x1, x

0
1} ⇢ G{x0, x

0
1}. Hence the Griess algebra G{x0, x

0
1}

contains G{x0, x1, e} and G{x0, x1, e} = G{x0, x
0
1} = SpanR{x0, x

0
1, x2, x

0
0, x1, x

0
2, e, u} ⇠=

GU6A. This algebra is isomorphic to GVB(3A). The structure is shown in Figure 2, where

three collinear points joined by a solid line form a normal GU2A basis and the vertices of

a dotted triangle form a normal GU3A basis with u. ⇤

59



Figure 2. Configuration for GVB(3A)

5.2.5. Case 5. G{x0, x1} ⇠= GU3C. Let x2 := ⌧

x1(x0), x0
2 := �

e

(x2) = e+x2�22e ·x2.

As in (5.9), we also have ⌧

x

i

= ⌧

x

0
i

for i = 0, 1, 2. Then,

hx0, x
0
1i = hx0, e+ x1 � 22e · x1i

= hx0, ei+ hx0, x1i � 22he, x0 · x1i

=
1

25
+

1

28
� 22

⌧
e,

1

25
(x0 + x1 � x2)

�

=
1

25
+

1

28
� 22 · 1

25

✓
1

25
+

1

25
� 1

25

◆

=
1

25
.

It implies G{x0, x
0
1} is isomorphic to GU2A, and we have ⌧

x

0
1
(x0) = x0. On the other hand,

⌧

x

0
1
(x0) = ⌧

x1(x0) = x2 6= x0. That is a contradiction. Hence there is no such Griess

algebra.

5.2.6. Case 6. G{x0, x1} ⇠= GU5A. Let (x0, x1, x2, x3, x4, ⌫) be a normal GU5A basis.

Since ⌧
x1 · {e, x0} = {e, x2}, G{e, x2} is isomorphic to G{e, x0} ⇠= GU2A. Similarly G{e, x

i

}

is isomorphic to GU2A for all i = 0, 1, 2, 3, 4.

Lemma 5.13. Let y

i

:= �

e

(x
i

) = e + x

i

� 22x
i

· e. Then Gph⌧
x0 , ⌧y1i · {x0} =

{x0, x1, x2, x3, x4}, and Gph⌧
x0 , ⌧y1i · {y1} = {y0, y1, y2, y3, y4}.
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Proof. As in Lemma 5.9, we have ⌧

x

i

= ⌧

y

i

for i = 0, 1, 2, 3, 4. Hence Gph⌧
x0 , ⌧y1i ·

{x0} = Gph⌧
x0 , ⌧x1i · {x0} = {x0, x1, x2, x3, x4}, and Gph⌧

x0 , ⌧y1i · {y1} = Gph⌧
x0 , ⌧x1i ·

{�
e

(x1)} = �

e

· (Gph⌧
x0 , ⌧x1i · {x1}) = �

e

· {x0, x1, x2, x3, x4} = {y0, y1, y2, y3, y4}. ⇤

Lemma 5.14. For i, j 2 {0, 1, 2, 3, 4}, we have y

i

6= x

j

.

Proof. Suppose y

i

= x

j

for some i, j. Then G{x
i

, y

i

} ⇠= G{x
i

, x

j

}. Since G{x
i

, y

i

} ⇠=

GU2A and G{x
i

, x

j

} ⇠= GU5A for i 6= j, we must have i = j and G{x
i

, x

i

} ⇠= GU1A. It is

also absurd. ⇤

Therefore, G{x0, x
0
1} has at least 10 distinct Ising vectors. That is impossible by

Theorem 4.4. Hence there is no such Griess algebra.

5.2.7. Case 7. G{x0, x1} ⇠= GU6A. Let (x0, x1, x2, x3, x4, x5, e
0
, u) be a normal GU6A

basis of G{x0, x1}. Since ⌧

e

fixes x0 and x1, it also fixes all elements in G{x0, x1}.

Lemma 5.15. Set y
i

:= �

e

(x
i

). Then

(1) hx0, y1i, hx0, y2i 2 { 13
210

,

5
210

} and

(2) hx0, y3i 2 { 1
22
,

1
25
, 0}.

Proof. As in (5.9), we have ⌧
x

i

= ⌧

y

i

for i = 0, 1, 2, 3, 4, 5. Hence Gph⌧
x0 , ⌧y1i ·{x0} =

{x0, x2, x4}, which has 3 elements. So by Theorem 4.4, G{x0, y1} is isomorphic to GU3A,

GU3C or GU6A. However, G{x0, y1} � GU3C because G{x0, y1} � G{x0, x2, x4} ⇠= GU3A (or

by Case 5).

Similarly, Gph⌧
x0⌧y2i · {x0} = {x0, x2, x4} and G{x0, y2} is also isomorphic to GU3A or

GU6A. Hence by Theorem 4.4, we have

(5.2.2) hx0, y1i, hx0, y2i 2 { 13
210

,

5

210
}.
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On the other hand, Gph⌧
x0 , ⌧y3i·{x0} = Gph⌧

x0 , ⌧x3i·{x0} = {x0}, which has 1 element.

Therefore, G{x0, y3} is isomorphic to GU1A, GU2A or GU2B by Theorem 4.4 and we have

(5.2.3) hx0, y3i 2 { 1

22
,

1

25
, 0}.

⇤

Lemma 5.16. Let e0 be defined as above. Then he, e0i = 1
22

and hence e = e

0.

Proof. By direct calculation, we have

hx0, y1i

= hx0, e+ x1 � 22e · x1i

=
1

25
+

5

210
� 22he, x0 · x1i

=
1

25
+

5

210
� 22

⌧
e,

1

25
(x0 + x1 � x2 � x3 � x4 � x5 + e

0) +
45

210
u

�
by (4.0.3)

=
1

25
+

5

210
� 22

✓
1

25

✓
2

25
� 4

25
+ he, e0i

◆
+

45

210
he, ui

◆

=
45

210
� 1

23
he, e0i+ 45

28
he, ui,

hx0, y3i = hx0, e+ x3 � 22e · x3i

=
1

25
+

1

25
� 22he, x0 · x3i

=
1

4
� 22

⌧
e,

1

22
(x0 + x3 � e

0)

�

=
1

4
� 1

25
� 1

25
+ he, e0i

= he, e0i,(5.2.4)
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and

hx0, y2i = hx0, e+ x2 � 22e · x2i

=
1

25
+

13

210
� 22he, x0 · x2i

=
1

25
+

13

210
� 22

⌧
e,

1

24
(2x0 + 2x2 + x4)�

45

210
u

�

=
45

210
� 1

4

✓
2 · 1

25
+ 2 · 1

25
+

1

25

◆
+

45

28
he, ui

=
5

210
� 45

28
he, ui.

So we have

5

210
� hx0, y2i =

45

28
he, ui = hx0, y1i �

45

210
+

1

23
he, e0i = hx0, y1i �

45

210
+

1

23
hx0, y3i.

Therefore, we have

hx0, y3i = �23hx0, y1i+
50

27
� 23hx0, y2i.

Since hx0, y1i, hx0, y2i 2 { 13
210

,

5
210

},

�23hx0, y1i+
50

27
� 23hx0, y2i =

3

24
,

1

22
, or

5

24
.

Thus, we have hx0, y3i = 1
22

by (5.2.3) and he, e0i = hx0, y3i = 1
22

by (5.2.4). That implies

e = e

0 and x0 = y3 by Remark 2.25. ⇤

In the proof above, we also proved the following.

Lemma 5.17. For i = 0, . . . , 5 and j ⌘ i+ 3 mod 6, we have y

j

= x

i

.

Proposition 5.18. The Griess algebra G{e, x0, x1} is isomorphic to GU6A
⇠= GVB(3A).

Proof. Since G{e, x0, x1} = G{e0, x0, x1} = G{x0, x1} ⇠= GU6A, we have the desired

result (see Figure 2). ⇤
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5.2.8. Case 8. G{x0, x1} ⇠= GU4B.

Notation 5.19. Set x2 := ⌧

x1(x0), x3 := ⌧

x0(x1). Then by the structure of GU4B

(Theorem 4.4), we have G{x0, x1} = SpanR{x0, x1, x2, x3, e
0} where (x0, x1, x2, x3, e

0) forms

a normal GU4B basis.

Lemma 5.20. Let b

i

:= �

e

(x
i

) = e + x

i

� 22e · x
i

. Then Gph⌧
x0 , ⌧b1i · {x0, b1} =

{x0, x2, b1, b3}. Therefore, G{x0, b1} ⇠= GU4A or GU4B and hx0, b1i = 1
27

or 1
28
.

Proof. By Lemma 5.9, we have ⌧
x

i

= ⌧

b

i

for i = 0, 1, 2, 3. Hence for i = 1, 3, ⌧
b

i

(x0) =

⌧

x

i

(x0) = x2, and b

i

6= x0, x2. Moreover, Gph⌧
x0 , ⌧b1i ·{x1} = Gph⌧

x0 , ⌧x1i ·{x1} = {x1, x3},

and Gph⌧
x0 , ⌧b1i · {b1} = Gph⌧

x0 , ⌧x1i · {�e

(x1)} = �

e

· (Gph⌧
x0 , ⌧x1i · {x1}) = �

e

· {x1, x3} =

{b1, b3}. Thus Gph⌧
x0 , ⌧b1i · {x0, b1} = {x0, x2, b1, b3}, which have 4 distinct elements.

Hence by Theorem 4.4, we have the lemma. ⇤

Lemma 5.21. Let e0 be defined as in Notation 5.19. Then he, e0i 2 { 1
22
,

1
25
, 0}.

Proof. Since ⌧

e

is trivial on G, Gph⌧
e

, ⌧

e

0i · {e0} = {e0} and G{e, e0} is isomorphic to

GU1A, GU2A or GU2B by Theorem 4.4. Hence he, e0i 2 { 1
22
,

1
25
, 0}. ⇤

Lemma 5.22. Let e0 and b1 be defined as in Notation 5.19 and Lemma 5.20. Then

e = e

0 and hx0, b1i = 1
28
.

Proof. By definition,

hx0, b1i = hx0, e+ x1 � 22e · x1i

=
1

25
+

1

28
� 22he, x0 · x1i

=
1

25
+

1

28
� 22

⌧
e,

1

25
(x0 + x1 � x2 � x3 + e

0)

�

=
1

25
+

1

28
� 1

23

✓
1

25
+

1

25
� 1

25
� 1

25
+ he, e0i

◆

=
9

28
� 1

23
he, e0i.

64



Then, by Lemma 5.21, we have hx0, b1i = 9
28
� 1

23
he, e0i 2 { 1

28
,

1
25
,

9
28
} and thus hx0, b1i =

1
28

and he, e0i = 1
22

by Lemma 5.20. It implies e = e

0 by Remark 2.25. ⇤

Proposition 5.23. The Griess algebra G{e, x0, x1} is isomorphic to GU4B
⇠= GVB(2C).

Proof. Since e = e

0, we have G{e, x0, x1} = G{e0, x0, x1} = G{x0, x1} is isomorphic

to GU4B. This Griess algebra is GVB(2C). The configuration is given in Figure 3, where

three collinear points form a normal GU2A basis and the 4 vertices of the dotted square

and e form a normal GU4B basis. ⇤

Figure 3. Configuration for GVB(2C)

5.2.9. Case 9. G{x0, x1} ⇠= GU4A.

Notation 5.24. Let (x0, x1, x2, x3, µx

) be a normal GU4A basis for G{x0, x1}. Since

⌧

e

is trivial on G, ⌧
e

(µ
x

) = µ

x

and �

e

(µ
x

) is well-defined.

Set µ
y

:= �

e

(µ
x

) and let y
i

:= �

e

(x
i

) = e+x

i

�22e ·x
i

. We can apply �

e

to the normal

GU4A basis (x0, x1, x2, x3, µx

) to get a new normal GU4A basis (y0, y1, y2, y3, µy

).

As in Lemma 5.9, we have

(5.2.5) �

e

⌧

x

i

= ⌧

x

i

�

e

and ⌧

x

i

= ⌧

y

i

for i = 0, 1, 2, 3.

Lemma 5.25. We have G{x0, y1} ⇠= GU4A and G{y0, x1} ⇠= GU4A.
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Proof. For i = 1, 3, ⌧
y

i

(x0) = ⌧

x

i

(x0) = x2, and thus y

i

6= x0, x2 for i = 1, 3. In

addition, Gph⌧
x0 , ⌧y1i · {x1} = Gph⌧

x0 , ⌧x1i · {x1} = {x1, x3}, and Gph⌧
x0 , ⌧y1i · {y1} =

Gph⌧
x0 , ⌧x1i · {�e

(x1)} = �

e

· (Gph⌧
x0 , ⌧x1i · {x1}) = �

e

· {x1, x3} = {y1, y3}. Thus

Gph⌧
x0 , ⌧y1i ·{x0, y1} = {x0, x2, y1, y3}, which have 4 distinct elements. Hence by Theorem

4.4, G{x0, y1} is isomorphic to GU4A or GU4B and

hx0, y1i 2 { 1

27
,

1

28
}.

By Norton inequality (Theorem 2.27), we have

he, µ
x

i = 1

4
he · e, µ

x

· µ
x

i � 1

4
he · µ

x

, e · µ
x

i � 0.

Therefore,

hx0, y1i = hx0, e+ x1 � 22e · x1i

=
1

25
+

1

27
� 22he, x0 · x1i

=
1

25
+

1

27
� 22

⌧
e,

1

25
(3x0 + 3x1 + x2 + x3 � 3µ

x

)

�

=
1

25
+

1

27
� 1

23

✓
3

25
+

3

25
+

1

25
+

1

25
� 3he, µ

x

i
◆

=
1

27
+

3

23
he, µ

x

i

� 1

27
.

Hence we have

(5.2.6) hx0, y1i =
1

27
and he, µ

x

i = 0.

Thus G{x0, y1} is isomorphic to GU4A. Similarly, G{y0, x1} ⇠= GU4A, also. ⇤

Notation 5.26. By (5.2.5), ⌧

x0(y1) = ⌧

x0�e

(x1) = �

e

⌧

x0(x1) = �

e

(x3) = y3, and

⌧

y1(x0) = ⌧

x1(x0) = x2. Therefore, by the structure of GU4A, there is a conformal vector

µ0 of central charge 1 such that (x0, y1, x2, y3, µ0) forms a normal GU4A basis for G{y0, x1}.
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Similarly, there is a conformal vector µ1 of central charge 1 such that (y0, x1, y2, x3, µ1)

forms a normal GU4A basis for G{y0, x1}. Note that ⌧
e

(µ
i

) = µ

i

for all i 2 {0, 1, x, y}

since ⌧

e

is trivial on G.

Lemma 5.27. We have �

e

(µ1) = µ0, and �

e

(µ0) = µ1.

Proof. By the structure of GU4A, we have

�

e

(y0 · x1) = �

e

(y0) · �e

(x1) = x0 · y1 =
1

25
(3x0 + 3y1 + x2 + y3 � 3µ0).

On the other hand,

�

e

(y0 · x1) = �

e

✓
1

25
(3y0 + 3x1 + y2 + x3 � 3µ1)

◆

=
1

25
(3x0 + 3y1 + x2 + y3 � 3�

e

(µ1)).

It implies �
e

(µ1) = µ0 and �

e

(µ0) = µ1. ⇤

Lemma 5.28. We have he, µ
i

i = 0 for i 2 {0, 1, x, y}.

Proof. To compute he, µ
i

i, we use the equation

he, x0 · y1i =

⌧
e,

1

25
(3x0 + 3y1 + x2 + y3 � 3µ0)

�

=
1

25

✓
3

25
+

3

25
+

1

25
+

1

25
� 3he, µ0i

◆

=
1

27
� 3

25
he, µ0i.
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By associative rule,

he, x0 · y1i = he · x0, y1i

=

⌧
1

22
(e+ x0 � y0), y1

�

=
1

22

✓
1

25
+

1

27
� 1

27

◆

=
1

27
.

It implies 1
27

� 3
25
he, µ0i = 1

27
and he, µ0i = 0. Similarly we have he, µ1i = 0. Combining

these results with (5.2.6), we have the lemma. ⇤

Lemma 5.29. The subalgebras G{x0, y2}, G{x1, y3}, G{x2, y0} and G{x3, y1} are iso-

morphic to GU2A.

Proof. We first note that

hx0, y2i = hx0, e+ x2 � 22e · x2i =
1

25
+ 0� 22he, x0 · x2i =

1

25
.

Similarly we have

(5.2.7) hx0, y2i = hx1, y3i = hx2, y0i = hx3, y1i =
1

25
.

Hence, G{x0, y2}, G{x1, y3}, G{x2, y0} and G{x3, y1} are isomorphic to GU2A. ⇤

Lemma 5.30. For all i 2 {0, 1, 2, 3}, j 2 {x, y, 0, 1}, we have

hx
i

, µ

j

i = 3

25
and hy

i

, µ

j

i = 3

25
.
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Proof. We compute

hx0 · y0, y1i =

⌧
1

22
(x0 + y0 � e), y1

�

=
1

22

✓
1

27
+

1

27
� 1

25

◆

= � 1

28
,

and

hx0 · y0, y1i = hx0, y0 · y1i

=

⌧
x0,

1

25
(3y0 + 3y1 + y2 + y3 � 3µ

y

�

=
1

25

✓
3

25
+

3

27
+

1

25
+

1

27
� 3hx0, µy

i
◆

=
5

210
� 3

25
hx0, µy

i.

Therefore, 5
210

� 3
25
hx0, µy

i = � 1
28

and hx0, µy

i = 3
25
.

By the same calculations, we have

hx0 · y0, x1i = � 1

28
,

hx0 · y0, x1i = hx0, y0 · x1i =
5

210
� 3

25
hx0, µ1i,

and then hx0, µ1i = 3
25
. The other equality can be proved by the same method. ⇤

Notation 5.31. Set e0 := �

x0(y2) and e1 := �

x1(y3).

Proposition 5.32. The triples (e0, x0, y2), (e0, y0, x2), (e1, x1, y3), (e1, y1, x3), (e, x0, y0),

(e, x1, y1), (e, x2, y2) and (e, x3, y3) form normal GU2A bases. Moreover,

(5.2.8) hx
i

, e0i = hx
i

, e1i = hx
i

, ei = hy
i

, e0i = hy
i

, e1i = hy
i

, ei = 1

25
for i 2 {0, 1, 2, 3}.
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Proof. By definition, (e, x
i

, y

i

) forms a normal GU2A basis for i 2 {0, 1, 2, 3}. More-

over, (e0, x0, y2) and (e1, x1, y3) also form normal GU2A bases.

Since ⌧

x3(y1) = y1, �x3(y1) is well-defined. Because x3 = ⌧

x0(x1) and y1 = ⌧

x0(y3), we

have �

x3(y1) = �

⌧

x0 (x1)(⌧x0(y3)) = ⌧

x0�x1(y3) = ⌧

x0(e1) = e1. Therefore, (e1, y1, x3) forms

a normal GU2A basis. Similarly, we can also show that (e0, y0, x2) forms a normal GU2A

basis using ⌧

x2(y0) = y0 and �

x2(y0) = e0.

It remains to show hx
i

, e0i = hy
i

, e0i = hx
j

, e1i = hy
j

, e1i = 1
25

for i = 1, 3 and j = 0, 2.

Since the calculation is similar, we only prove one case. For example,

hx0, e1i = hx0, x1 + y3 � 22x1 · y3i

=
1

27
+

1

27
� 22hx0, x1 · y3i

=
1

26
� 22hx0 · x1, y3i

=
1

26
� 22

⌧
1

25
(3x0 + 3x1 + x2 + x3 � 3µ

x

), y3

�

=
1

26
� 1

23

✓
3

27
+

3

25
+

1

27
+

1

25
� 3 · 3

25

◆
by Lemma 5.30

=
1

25

as desired. ⇤

Proposition 5.33. For each i 2 {0, 1}, (e, e
i

) is a normal GU2B basis, i.e.,

(5.2.9) he, e1i = 0 and he, e0i = 0.
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Proof. We note that

he, e1i = he, x1 + y3 � 22x1 · y3i by Proposition 5.32

=
1

25
+

1

25
� 22he · x1, y3i

=
1

24
� 22

⌧
1

22
(e+ x1 � y1), y3

�

=
1

24
�

� 1

25
+

1

25
� 0

�

= 0.

Similarly, we also have he, e0i = 0. ⇤

By Lemma 2.24, Lemma 5.27 and (5.2.6), we have

e · µ
x

= 8he, µ
x

ie+ 1

22
(µ

x

� �

e

(µ
x

))

=
1

22
(µ

x

� µ

y

).(5.2.10)

Similarly, we have

e · µ0 = 8he, µ0ie+
1

2

⇣1
2
(µ0 � �

e

(µ0))
⌘

=
1

22
(µ0 � µ1)(5.2.11)

and

(5.2.12) e · µ1 =
1

22
(µ1 � µ0).

Lemma 5.34. We have µ

x

= µ

y

and µ0 = µ1.
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Proof. We will compute hµ
x

, µ

y

i and hµ0, µ1i. First we note that

0 = he, 2µ
x

i

= he, µ
x

· µ
x

i

= he · µ
x

, µ

x

i

= h 1
22
(µ

x

� µ

y

), µ
x

i

=
1

22
(
1

2
� hµ

x

, µ

y

i).

It implies hµ
x

, µ

y

i = 1
2
and thus µ

x

= µ

y

by Remark 2.25 and hµ
x

, µ

x

i = hµ
y

, µ

y

i = 1
2
.

Similarly, we can also proved that hµ0, µ1i = 1
2
and µ0 = µ1. ⇤

Notation 5.35. Set µ := µ

x

= µ

y

and µ

0 := µ0 = µ1.

The next proposition is clear from the definition.

Proposition 5.36. (x0, x1, x2, x3, µ), (y0, y1, y2, y3, µ), (x0, y1, x2, y3, µ
0), and (y0, x1, y2,

x3, µ
0) form normal GU4A bases.

Since ⌧

x0(x1 + x3) = x3 + x1, �x0(x1 + x3) is well-defined.

Lemma 5.37. We have

(5.2.13) �

x0(x1 + x3) =
1

22
(�x0 + 2x1 � x2 + 2x3 + 3µ),

and

(5.2.14) �

x0(y1 + y3) =
1

22
(�x0 + 2y1 � x2 + 2y3 + 3µ0).

Proof. By (4.0.11),

x0 · (x1 + x3) =
1

25
(3x0 + 3x1 + x2 + x3 � 3µ) +

1

25
(3x0 + 3x3 + x2 + x1 � 3µ)

=
1

24
(3x0 + 2x1 + x2 + 2x3 � 3µ).(5.2.15)
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By Lemma 2.24, we also have

x0 · (x1 + x3) = 8hx0, x1 + x3ix0 +
1

22
((x1 + x3)� �

x0(x1 + x3))

= 8

✓
1

27
+

1

27

◆
x0 +

1

22
((x1 + x3)� �

x0(x1 + x3))

=
1

23
(x0 + 2x1 + 2x3 � 2�

x0(x1 + x3)).

Hence we have 1
24
(3x0 + 2x1 + x2 + 2x3 � 3µ) = 1

23
(x0 + 2x1 + 2x3 � 2�

x0(x1 + x3)) and

get (5.2.13). (5.2.14) can be proved by a similar method. ⇤

Lemma 5.38. For all i 2 {0, 1, 2, 3},

(5.2.16) ⌧

x

i

(µ) = µ, ⌧

y

i

(µ) = µ, ⌧

x

i

(µ0) = µ

0
, ⌧

y

i

(µ0) = µ

0
.

Hence �

x

i

(µ), �
y

i

(µ), �
x

i

(µ0) and �

y

i

(µ0) are well-defined and we have

(5.2.17) �

x0(µ) =
1

2
(x0 + 2x1 + x2 + 2x3 � µ).

(5.2.18) �

x0(µ
0) =

1

2
(x0 + 2y1 + x2 + 2y3 � µ

0),

(5.2.19) �

x1(µ
0) =

1

2
(x1 + 2y0 + x3 + 2y2 � µ

0).

Proof. First we note that

⌧

x0(x0 · (x1 + x3)) = ⌧

x0

✓
1

24
(3x0 + 2x1 + 2x3 + x2 � 3µ)

◆
by (5.2.15)

=
1

24
(3x0 + 2x3 + 2x1 + x2 � 3⌧

x0(µ))

and

⌧

x0(x0 · (x1 + x3)) = ⌧

x0(x0) · ⌧x0(x1 + x3)

= x0 · (x3 + x1)

=
1

24
(3x0 + 2x3 + 2x1 + x2 � 3µ) by (5.2.15).
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Thus, 1
24
(3x0 +2x3 +2x1 + x2 � 3⌧

x0(µ)) =
1
24
(3x0 +2x3 +2x1 + x2 � 3µ) and ⌧

x0(µ) = µ.

By similar computations, we have (5.2.16).

We use a similar method to compute �

x0(µ) and �

x0(µ
0).

�

x0(x0 · (x1 + x3)) = �

x0

✓
1

24
(3x0 + 2x1 + 2x3 + x2 � 3µ)

◆
by (5.2.15)

=
1

24

⇣
3x0 +

1

2
(�x0 + 2x1 � x2 + 2x3 + 3µ)

+x2 � 3�
x0(µ)

⌘
by (5.2.13).

Moreover,

�

x0(x0 · (x1 + x3)) = �

x0(x0) · �x0(x1 + x3)

=
1

22
x0 · (�x0 + 2x1 � x2 + 2x3 + 3µ) by (5.2.13)

=
1

24
(x0 � 2x1 � x2 � 2x3 + 3µ) by (4.0.2, 4.0.11, 4.0.12).

Hence we have

1

24

✓
3x0 +

1

2
(�x0 + 2x1 � x2 + 2x3 + 3µ) + x2 � 3�

x0(µ)

◆
=

1

24
(x0�2x1�x2�2x3+3µ)

and obtain (5.2.17). (5.2.18) and (5.2.19) can be obtained by the same method. ⇤

Lemma 5.39. Let e0 and e1 be defined as in Notation 5.31. Then G{e0, e1} is isomor-

phic to GU1A, i.e., e0 = e1.

Proof. First, we note by Proposition 5.32 that

⌧

e1(e0) = ⌧

e1(x0 + y2 � 22x0 · y2)

= x0 + y2 � 22x0 · y2

= e0.

Thus, by Theorem 4.4, G{e0, e1} is isomorphic to either GU1A, GU2A or GU2B .
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Case 1. Suppose G{e1, e0} is isomorphic to GU2A. By Proposition 5.32, G{e1, x0} and

G{e1, y2} are both isomorphic to GU2A.

Since (e0, x0, y2) also forms a normal GU2A basis by Proposition 5.32, such a Griess

algebra doesn’t exist by Lemma 5.3.

Case 2. Suppose G{e0, e1} ⇠= GU2B. Then he0, e1i = 0. By Proposition 5.32, G{e0, x1}

and G{e0, x3} are both isomorphic to GU2A. Set x10 := �

e0(x1). Then we have

hx0, x10i = h�
e0(x0), �e0(x10)i = hy2, x1i =

1

27
,(5.2.20)

hx2, x10i = h�
e0(x2), �e0(x10)i = hy0, x1i =

1

27
.(5.2.21)

By Proposition 5.33 and (5.2.19), we also have

hy1, x10i = h�
x1(y1), �x1(x10)i = he, e0i = 0,(5.2.22)

hy3, x10i = h�
x1(y3), �x1(x10)i = he1, e0i = 0,(5.2.23)

hµ0
, x10i = h�

x1(µ
0), �

x1(x10)i =
⌧
1

2
(x1 + 2y0 + x3 + 2y2 � µ

0), e0

�

=
3

25
.(5.2.24)

Since x10 = �

e0(x1) = �

x1(e0) and y1 = �

e

(x1) = �

x1(e), we have

hy1, x10i = (�
x1(e), �x1(e0)i = he, e0i = 0 by (5.2.9).
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Thus G{y1, x10} ⇠= GU2B and hence x10 · y1 = 0. Therefore,

0 = h0, µ0i = hx10 · y1, µ0i = hx10, y1 · µ0i

=

⌧
x10,

1

23
(5y1 � 2x0 � 2x2 � y3 + 3µ0)

�
by (4.0.12)

=
1

28
(�1 + 3 · 25hx10, µ

0i) by (5.2.20, 5.2.21, 5.2.22, 5.2.23)

=
1

28
(�1 + 3 · 25 · 3

25
) by (5.2.24)

=
1

25
,

which is a contradiction. Therefore, G{e0, e1} � GU2B and hence G{e0, e1} ⇠= GU1A is the

only possible case. ⇤

Notation 5.40. Set e0 := e1 = e0. Then e

0 = �

x0(y2) = �

x1(y3) by Notation 5.31.

Lemma 5.41. Let µ, µ0 be defined as in Notation 5.35. Then

(5.2.25) he0, µi = he0, µ0i = 0 and e

0 · µ = e

0 · µ0 = 0

Proof. Recall that e0 = �

x0(y2) = �

x1(y3). Then by the same argument as in Lemma

5.27, one can show that �
e

0(µ) = µ and �

e

0(µ0) = µ

0.

To determine he0, µ0i, we compute he0, x0 · y3i in two di↵erent ways. First, we have

he0, x0 · y3i =

⌧
e

0
,

1

25
(3x0 + 3y3 + x2 + y1 � 3µ0)

�
=

1

27
� 3

25
he0, µ0i.

By associative rule,

he0, x0 · y3i = he0 · x0, y3i =
⌧

1

22
(e0 + x0 � y2), y3

�
=

1

27
.

Thus, we have 1
27
� 3

25
he0, µ0i = 1

27
and he0, µ0i = 0. By the similar argument, one can also

show that he0, µi = 0 by using he0, x0 · x1i.
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By Lemma 2.24, we have

e

0 · µ0 = 8he0, µ0ie0 + 1

22
(µ0 � �

e

0(µ0)) = 0

since he0, µ0i = 0 and �

e

0(µ0) = µ

0. Similarly, e0 · µ = 0 also. ⇤

Proposition 5.42. We have hµ, µ0i = 0 and µ·µ0 = 0. Moreover, we have the relation

(5.2.26) x0 + x1 + x2 + x3 + y0 + y1 + y2 + y3 � e� e

0 � 3

2
µ

0 � 3

2
µ = 0.

Proof. To compute hµ, µ0i, we note that

hx0, x1 · µ0i =

⌧
x0,

1

23
(5x1 � 2y0 � 2y2 � x3 + 3µ0)

�
by (4.0.12)

=
1

23

⇣
5 · 1

27
� 2 · 1

25
� 2 · 1

25
� 1

27
+ 3 · 3

25

⌘
by Propositions 5.32, 5.36

=
3

27
.

Moreover,

hx0, x1 · µ0i = hx0 · x1, µ
0i =

⌧
1

25
(3x0 + 3x1 + x2 + x3 � 3µ), µ0

�
=

3

27
(1� 4hµ, µ0i).

Hence we have 3
27
(1� 4hµ, µ0i) = 3

27
and hµ, µ0i = 0.

To get the relation of {e, e0, x0, x1, x2, x3, y0, y1, y2, y3, µ, µ
0}, we use

�

x0((x1 + x3) · e) = �

x0

✓
1

22
(x1 + e� y1) +

1

22
(x3 + e� y3)

◆

=
1

22
(2�

x0(e) + �

x0(x1 + x3)� �

x0(y1 + y3))

=
1

22

⇣
2y0 +

1

4
(�x0 + 2x1 � x2 + 2x3 + 3µ)

�1

2
(�x0 + 2y1 � x2 + 2y3 + 3µ0)

⌘
by(5.2.13, 5.2.14)

=
1

24
(8y0 + 2x1 + 2x3 � 2y1 � 2y3 + 3µ� 3µ0)
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and

�

x0((x1 + x3) · e) = �

x0(x1 + x3) · �x0(e)

=
1

22
(�x0 + 2x1 � x2 + 2x3 + 3µ) · y0 by (5.2.13)

=
1

22

⇣�1

22
(x0 + y0 � e) +

2

24
(3x1 + 3y0 + x3 + y2 � 3µ0)

+
�1

22
(x2 + y0 � e

0) +
2

24
(3x3 + 3y0 + x1 + y2 � 3µ0)

+
3

23
(5x0 � 2x1 � 2x3 � x2 + 3µ)

⌘

=
1

25
(�2x0 + 2x1 � 2x2 + 2x3 + 14y0 � 6y1 � 2y2 � 6y3

+2e+ 2e0 � 3µ0 + 9µ).

Hence we have 1
25
(�2x0+2x1� 2x2+2x3+14y0� 6y1� 2y2� 6y3+2e+2e0� 3µ0+9µ) =

1
24
(8y0 + 2x1 + 2x3 � 2y1 � 2y3 + 3µ� 3µ0) and get the relation (5.2.26).

To obtain µ · µ0 = 0, we simply multiply (5.2.26) by µ and simplify it. ⇤

To summarize, we show that G = SpanR{e, e0, x0, x1, x2, x3, y0, y1, y2, y3, µ, µ
0} is closed

under multiplication with the relation

x0 + x1 + x2 + x3 + y0 + y1 + y2 + y3 � e� e

0 � 3

2
µ� 3

2
µ

0 = 0.

This algebra is isomorphic to GVB(4B). The structure is summarized in Figure 4. Three

points joined by a solid line (curve) form a normal GU2A basis while the 4 vertices of a

dotted square form a normal GU4A basis with µ and the 4 vertices of a dotted diamond

form a normal GU4A basis with µ

0.

Remark 5.43. To see {e, e0, x0, x1, x2, x3, y0, y1, y2, y3, µ} is linear independent, one

can compute the determinant of their Gram matrix. By computer, we verify that the

determinant is 36

232
6= 0 and hence GVB(4B) have dimension 11.
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Figure 4. Configuration for GVB(4B)

Therefore, there are only five possible structures for G{e, x0, x1} and we have proved

Theorem 5.4.
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CHAPTER 6

Griess algebras generated by two 3A-algebras with a common

axis

In this Chapter, we study Griess algebras generated by two pairs of Ising vectors

(a0, a1) and (b0, b1) such that each pair generates a 3A-algebra U3A and their intersection

contains the W3-algebra W(4/5) ⇠= L(4/5, 0) � L(4/5, 3). We show that there are only

3 possibilities, up to isomorphisms and they are isomorphic to the Griess algebras of the

VOA V

F (1A), VF (2A), and V

F (3A) constructed in [HLY2].

In addition to the symmetry of ⌧ and � involutions, we need the help of another order

3 automorphism associated to the W3-algebra W(4/5).

6.1. An order 3 automorphism induced by W(4/5)

We will describe an order 3 automorphism associated to the W3-algebra W(4/5) =

L(4
5
, 0)� L(4

5
, 3) over the real field R.

Let L(4
5
, 0)C be the Virasoro VOA of central charge 4/5 over the complex field. It is

known (see [KMY] and [LLY]) that the sum WC(4/5) = L(4
5
, 0)C�L(4

5
, 3)C has a unique

structure of a simple VOA over C. This VOA is rational and has exactly 6 irreducible

modules, namely,

WC(0) = L(
4

5
, 0)C � L(

4

5
, 3)C, WC(2/5) = L(

4

5
,

2

5
)C � L(

4

5
,

7

5
)C,

WC(2/3,+) = L(
4

5
,

2

3
)C, WC(2/3,�) = L(

4

5
,

2

3
)C,

WC(1/15,+) = L(
4

5
,

1

15
)C, WC(1/15,�) = L(

4

5
,

1

15
)C.

Its fusion rules has a Z3-symmetry and one can define an automorphism as follows.
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Theorem 6.1 ([Mi2], Theorem 5.1). Let VC be a VOA over C containing a sub-VOA

XC isomorphic to WC(4/5). Then a linear endomorphism g

XC of VC defined by

g

XC :=

8
>>>>>><

>>>>>>:

1 on the isotypic components of WC(0) and WC(2/5)

e

2⇡i/3 on the isotypic components of WC(2/3,+) and WC(1/15,+)

e

4⇡i/3 on the isotypic components of WC(2/3,�) and WC(1/15,�)

is an automorphism of VC.

In [Mi2], the real form of WC(4/5), i.e. a real sub-VOA W+
R such that W+

R ⌦ C =

WC(4/5), has been studied.

Proposition 6.2 ([Mi2], Theorem 6.1). There is a unique real sub-VOA W+
R of

WC(4/5) which possesses a positive definite invariant bilinear form over R and W+
R ⌦C =

WC(4/5). This VOA W+
R is rational.

The automorphism defined in Theorem 6.1 restricts to VR as following.

Theorem 6.3. [[Mi2],Theorem 6.2] Assume that a VOA VR over R contains a sub-

VOA X

⇠= W+
R . Then the automorphism gCX 2 Aut(CVR) defined by CX as in Theorem

6.1 keeps VR invariant. In particular, g
X

= gCX |
VR

is an automorphism of VR.

Now suppose U

⇠= U3A is contained in a real VOA V satisfying Assumption 1. Let

(a0, a1, a2, µ) be a normal GU3A basis of U . Then U contains a unique sub-VOA X

isomorphic to W+
R (see [LYY2, SY]). In this case, the Virasoro element of X is µ. By

the theorem above, g = gCX |
VR

defines an order 3 automorphism on V and U .

Lemma 6.4 ([LYY2, SY]). Let (a0, a1, a2, µ) be a normal GU3A basis of U and let

g = gCX |
VR
. Then ⌧

a0⌧a1 = g or g

�1.
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6.2. Main setting

Let V be a VOA satisfying Assumption 1. Let U ⇠= U3A and U

0 ⇠= U3A be sub-VOA of

V . We further assume that U\U 0 contains a sub-VOA X isomorphic to W+
R . Let µ be the

Virasoro element of W+
R . Then µ generates a sub-VOA isomorphic to L(4/5, 0)R. Since

U

⇠= U3A, the Griess algebra of U is of dimension 4 and GU = Span{a0, a1, a2, µ}, where

a0, a1, a2 are the three distinct Ising vectors in GU . Similarly, GU 0 = Span{b0, b1, b2, µ},

where b0, b1, b2 are the three distinct Ising vectors in GU 0. By Lemma 6.4, we may assume

that

(6.2.1) ⌧

a0⌧a1 = ⌧

b0⌧b1 = g

X

by reindexing if necessary.

Lemma 6.5. Let g = g

X

be defined as in Theorem 6.3. Then

(6.2.2) ⌧

a

i

g = g

�1
⌧

a

i

and g commutes with ⌧

a

i

⌧

b

j

for any i, j 2 {0, 1, 2}.

Proof. Since g = g

X

= ⌧

a0⌧a1 = ⌧

b0⌧b1 , both ⌧

a

i

and ⌧

b

j

invert g. Hence, we have

⌧

a

i

⌧

b

j

g = ⌧

a

i

g

�1
⌧

b

j

= g⌧

a

i

⌧

b

j

as desired. ⇤

In [HLY2], McKay’s E6-observation and the Fischer group Fi24 were studied. Along

with other results, three VOA V

F (1A), VF (2A), and V

F (3A) generated by two 3A algebras

were constructed. We will denote their Griess algebras by GV
F (1A), GVF (2A), and GV

F (3A)

respectively. With Assumption 1, we will show that these three cases exhaust all possi-

bilities for Griess algebras generated by GU and GU 0. The following is our main theorem.
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6.3. The second main theorem

Theorem 6.6. Let V be a VOA over R satisfying Assumption 1. Let U ⇠= U3A and

U

0 ⇠= U3A be sub-VOA of V such that U \U

0 contains a sub-VOA isomorphic to W+
R . Let

(a0, a1, a2, µ) and (b0, b1, b2, µ) be normal GU3A bases of GU and GU 0 respectively and let

G be the sub-Griess algebra generated by GU and GU 0. Then G is isomorphic to one of

the following 3 structures.

(1) G ⇠= GV
F (1A)

⇠= GU3A. In this case, {a0, a1, a2} = {b0, b1, b2}.

(2) G ⇠= GV
F (2A)

⇠= GU6A.

(3) G ⇠= GV
F (3A). In this case, dimG = 12 and it is spanned by 9 Ising vectors x

i,j

,

i, j 2 Z3 and 4 Virasoro vectors µ0,1 = µ, µ1,0, µ1,1 and µ1,2 of central charge 4/5

satisfying the relation

32
X

i,j2Z3

x

i,j

� 45(µ0,1 + µ1,0 + µ1,1 + µ1,2) = 0.

Moreover, (x
i0,j0 , xi1,j1xi2,j2 , µi,j

) forms a normal GU3A basis if and only if

8
>><

>>:

(i0, j0) + (i1, j1) + (i2, j2) ⌘ (0, 0) (mod 3),

(i1, j1)� (i0, j0) ⌘ ±(i, j) (mod 3).

By Theorem 4.4, there are 9 possible structures for G{a0, b0}. We will prove our main

theorem by analyzing these 9 cases in details.

6.3.1. Case1: G{a0, b0} ⇠= GU1A.

Proposition 6.7. Suppose a

i

= b

j

for some i, j 2 {0, 1, 2}. Then {a0, a1, a2} =

{b0, b1, b2} and G ⇠= GU3A. In particular, G ⇠= GU3A if G{a0, b0} ⇠= GU1A.
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Proof. Without loss, we may assume a0 = b0. Then

ha0 · µ, b1i = h 2
32
(2a0 � a1 � a2) +

5

24
µ, b1i by (4.0.4)

=
2

32
�
2 · 13

210
� ha1, b1i � ha2, b1i

�
+

5

24
· 1

24
by (4.0.6).

On the other hand,

ha0 · µ, b1i = ha0, µ · b1i by (2.7.4)

= hb0,
2

32
(2b1 � b0 � b2) +

5

24
µi by (4.0.4)

=
2

32
�
2 · 13

210
� 1

22
� 13

210
�
+

5

24
· 1

24
by (4.0.6).

Hence we have

ha1, b1i+ ha2, b1i =
267

210
,

which implies max{ha1, b1i, ha2, b1i} � 1
2
· 267

210
>

1
25
. Thus, we have b1 = a1 or b1 = a2

since by Theorem 4.4 and Remark 4.5, ha
i

, b

j

i  1
25

if a
i

6= b

j

. In either case, we have

{a0, a1, a2} = {b0, b1, b2} and G is isomorphic to GU3A. ⇤

6.3.2. Case2: G{a0, b0} ⇠= GU2A. In this case, set c0 = �

a0(b0). Then by (4.0.1), we

have G{a0, b0} = Span{a0, b0, c0},

(6.3.1) a0 · b0 =
1

22
(a0 + b0 � c0) and ha0, b0i =

1

25
.

Proposition 6.8. Suppose G{a0, b0} ⇠= GU2A. Then G = G{a0, b1} = G{a0, b2} ⇠=

GU6A.

Proof. We will first calculate the values of ha0, bji for j = 1, 2. By (6.3.1) and (4.0.6),

we have

ha0 · b0, b1i = h 1
22
(a0 + b0 � c0), b1i =

1

22

⇣
ha0, b1i+

13

210
� hc0, b1i

⌘
,
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and

ha0 · b0, b1i = ha0, b0 · b1i = ha0,
1

24
(2b0 + 2b1 + b2)�

135

210
µi

=
2

24
· 1

25
+

2

24
ha0, b1i+

1

24
ha0, b2i �

135

210
· 1

24
.

Combining these two equations, we obtain

(6.3.2) 123 = 210
�
� 2ha0, b1i+ ha0, b2i+ 22hc0, b1i

�
.

and

(6.3.3) hc0, b1i =
123

212
+

1

2
ha0, b1i �

1

22
ha0, b2i.

Since by Theorem 4.4,

(6.3.4) ha0, b1i, ha0, b2i, hc0, b1i 2
⇢

1

22
,

1

25
,

13

210
,

1

27
,

3

29
,

5

210
,

1

28
, 0

�
,

we have

hc0, b1i =
123

212
+

1

2
ha0, b1i �

1

22
ha0, b2i 

123

212
+

1

2
· 1

22
<

1

22
.

Hence c0 6= b1 and hc0, b1i  1
25
.

We also note that a0 6= b1 and a0 6= b2; otherwise, {a0, a1, a2} = {b0, b1, b2} by Propo-

sition 6.7 and G{a0, b0} � GU2A. Therefore, ha0, b1i  1
25

and ha0, b2i  1
25
.

Now by (6.3.3), we have

hc0, b1i =
123

212
+

1

2
ha0, b1i �

1

22
ha0, b2i �

123

212
� 1

22
· 1

25
=

91

212
>

13

210
,

and hence

(6.3.5) hc0, b1i =
1

25
.

Therefore by (6.3.2), we have

(6.3.6) 211ha0, b1i = 210ha0, b2i+ 5.
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Note that 211ha0, b1i is an even integer, so 210ha0, b2i is an odd integer and hence ha, b2i =
5
210

or 13
210

by (6.3.4). If ha0, b2i = 13
210

, then ha0, b1i = 9
210

which is impossible. Hence,

we have ha0, b2i = 5
210

and ha0, b1i = 5
210

. That means G{a0, b1} ⇠= G{a0, b2} ⇠= GU6A and

G{c0, b1} ⇠= GU2A.

Claim: G = G{a0, b1} ⇠= GU6A.

Let (a0, b1, x2, x3, x4, x5, e, µ
0) be the normal GU6A basis for G{a0, b1}. We will show

that x3 = b0, x5 = b2, {x2, x4} = {a1, a2}, e = c0, µ0 = µ and G = G{a0, b1} ⇠= GU6A.

Since G{c0, a0} ⇠= G{c0, b0} ⇠= G{c0, a1} ⇠= G{c0, b1} ⇠= GU2A and G is generated by

a0, a1, b0, b1, the map �

c0 is well-defined on G. Moreover,

(6.3.7) ⌧

b0�c0⌧b0 = �

⌧

b0
(c0) = �

c0 ,

i.e., ⌧
b0 commutes with �

c0 . Therefore,

⌧

a0 = ⌧

�

c0 (b0)
= �

c0⌧b0�c0 = ⌧

b0

and hence by the structure of 6A-algebra (see (4.0.17)),

x5 = ⌧

a0(b1) = ⌧

b0(b1) = b2.

Since (b1, x5, x3, µ
0) is a normal GU3A basis for G{b1, b2}, we have

x3 = ⌧

b1(x5) = ⌧

b1(b2) = b0 and µ

0 = µ.

Note that µ and µ

0 are both determined by b0(= x3), b1, b2(= x5) using (4.0.3).

Recall that (a0, b1, x2, x3, x4, x5, e, µ
0) is the normal GU6A basis for G{a0, b1}. Thus, we

have

e = �

a0(x3) = �

a0(b0) = c0.
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Finally, we will show that {a1, a2} = {x2, x4}. By (4.0.8), we have

�

a0(a1 + a2) = � 3

24
a0 +

a1 + a2

22
+

135

27
µ,

�

a0(x2 + x4) = � 3

24
a0 +

x2 + x4

22
+

135

27
µ

0
.

Note that µ = µ

0 and hence

ha1 + a2, x2 + x4i

= h�
a0(a1 + a2), �a0(x2 + x4)i

= h� 3

24
a0 +

a1 + a2

22
+

135

27
µ,� 3

24
a0 +

x2 + x4

22
+

135

27
µi

=
3

24
· 3

24
· 1

22
+

1

24
ha1 + a2, x2 + x4i+

1352

214
· 2
5
� 2 · 3

24
· 1

22
(
13

210
+

13

210
)

�2 · 3

24
· 135
27

· 1

24
+ 2 · 1

22
· 135
27

(
1

24
+

1

24
)

=
1

24
ha1 + a2, x2 + x4i+

8070

214
,

which implies

ha1 + a2, x2 + x4i =
269

29
.

On the other hand, we also have

ha1 + a2, a1 + a2i =
1

22
+

1

22
+ 2 · 13

210
=

269

29
,

and similarly

hx2 + x4, x2 + x4i =
269

29
.

Thus, by the Schwartz inequality, we get a1 + a2 = x2 + x4.

Taking inner product with a1, we get

ha1, x2i+ ha1, x4i = ha1, x2 + x4i = ha1, a1 + a2i =
1

22
+

13

210
=

77

210
,
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which implies max{ha1, x2i, ha1, x4i} � 1
2
· 77
210

>

1
25
. Then by Theorem 4.4, we have

(ha1, x2i, ha1, x4i) = (
1

22
,

13

210
) or (

13

210
,

1

22
).

It implies x2 = a1 or x4 = a1. In either case, {x2, x4} = {a1, a2}. Therefore, G ⇢ G{a0, b1}

and thus G = G{a0, b1} ⇠= GU6A. ⇤

6.3.3. Case3: G{a0, b0} ⇠= GU2B. In this case, a0 · b0 = 0 and ha0, b0i = 0 by (4.0.2).

Then, we have

0 = ha0 · b0, µi = ha0, b0 · µi

= ha0,
2

32
(2b0 � b1 � b2) +

5

24
µi

=
�2

32
(ha0, b1i+ ha0, b2i) +

5

24
· 1

24
.

Therefore we have

ha0, b1i+ ha0, b2i =
45

29
,

which implies max{ha0, b1i, ha0, b2i} � 1
2
· 45
29

>

1
25
. It means a0 = b1 or a0 = b2 since

ha
i

, b

j

i  1
25

if a
i

6= b

j

. It is impossible since hb0, b1i = hb0, b2i = 13
210

by our assumption.

6.3.4. Case4: G{a0, b0} ⇠= GU3C. In this case, there is an Ising vector c0 2 G such

that (a0, b0, c0) forms a normal GU3C basis for G{a0, b0}. Then we have

(6.3.8) a0 · b0 =
1

25
(a0 + b0 � c0)

and

(6.3.9) ha0, b0i =
1

28
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by (4.0.10). Therefore,

ha0 · b0, b1i = h 1
25
(a0 + b0 � c0), b1i

=
1

25
(ha0, b1i+

13

210
� hc0, b1i).

On the other hand,

ha0 · b0, b1i = ha0, b0 · b1i

= ha0,
1

24
(2b0 + 2b1 + b2)�

135

210
µi by (4.0.3)

=
1

24

⇣
2 · 1

28
+ 2ha0, b1i+ ha0, b2i

⌘
� 135

210
· 1

24
by (6.3.9)

=
1

24

⇣
2ha0, b1i+ ha0, b2i

⌘
� 127

214
.

Combining these 2 equations we get

0 =
⇣
3ha0, b1i+ 2ha0, b2i+ hc0, b1i

⌘
� 267

210
.

By Proposition 6.7, it is clear that a0 6= b1, a0 6= b2, c0 6= b1. Thus, ha0, b1i, ha0, b2i, hc0, b1i 
1
25

and hence
⇣
3ha0, b1i+2ha0, b2i+hc0, b1i

⌘
� 267

210
 6· 1

25
� 267

210
= �75

210
< 0, which contradicts

the above equation. So this case is impossible.

6.3.5. Case5: G{a0, b0} ⇠= GU4A. In this case, there exist c0, d0, and u so that

G{a0, b0} = Span{a0, b0, c0, d0, u}.

In addition, ⌧
a0(b0) = d0 and G{b0, d0} ⇠= GU2B. Applying ⌧

a0 to the normal GU3A basis

(b0, b1, b2, µ), we get another normal GU3A basis (d0, ⌧a0(b1), ⌧a0(b2), µ). Since G{b0, d0} ⇠=

GU2B, this case is also impossible by the analysis of GU2B (see Chapter 6.3.3).
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6.3.6. Case6: G{a0, b0} ⇠= GU4B. In this case, there exist c0, d0, e 2 G such that

G{a0, b0} = Span{a0, b0, c0, d0, e}

with G{a0, c0} = Span{a0, c0, e} ⇠= GU2A and G{b0, d0} = Span{b0, d0, e} ⇠= GU2A (see

[IPSS, Table 3]). Moreover,

a0 · b0 =
1

25
(a0 + b0 � c0 � d0 + e),(6.3.10)

ha0, b0i =
1

28
,(6.3.11)

and

⌧

b0(a0) = c0

Applying ⌧

b0 to the normal GU3A basis
�
a0, a1, a2, µ

�
, we get another normal GU3A basis

�
c0, ⌧b0(a1), ⌧b0(a2), µ

�
. Then by Proposition 6.8, we have

G{a0, a1, a2, c0, ⌧b0(a1), ⌧b0(a2), µ} = G{c0, a1} = G{a0, ⌧b0(a1)} ⇠= GU6A.

Set x0 := a0, x1 := ⌧

b0(a1), x3 := c0, x5 := ⌧

b0(a2). Then there exists {x2, x4} =

{a1, a2} such that (x0, x1, x2, x3, x4, x5, e, µ) forms a normal GU6A basis for G{c0, a1}.

Similarly, set y0 := b0, y1 := ⌧

a0(b1), y3 := d0, y5 := ⌧

a0(b2). There exists {y2, y4} =

{b1, b2}, such that (y0, y1, y2, y3, y4, y5, e, µ) forms a normal GU6A basis for G{d0, b1}.

Lemma 6.9. For i = 1, 2, 4, 5, G{x0, yi} ⇠= G{x3, yi} ⇠= GU6A, and hence hx0, yii =

hx3, yii = 5
210

. Similarly, hx
i

, y0i = hx
i

, y3i = 5
210

for i = 1, 2, 4, 5.

Proof. Since (x0, x2, x4, µ), (y0, y2, y4, µ) are normal GU3A bases, by Lemma 6.5, the

order 3 element ⌧
y

i

⌧

y0 commutes with ⌧

y0⌧x0 for i = 2, 4. Since G{x0, y0} ⇠= GU4B, ⌧y0⌧x0

has order 2 or 4. Hence ⌧

y

i

⌧

y0 · ⌧y0⌧x0 has order 6 or 12. Since ⌧

y

i

⌧

y0 · ⌧y0⌧x0 = ⌧

y

i

⌧

x0 , by
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6-transposition property (Theorem 4.4), ⌧
y

i

⌧

x0 must have order  6 and hence has order

6 and G{x0, yi} ⇠= GU6A for i = 2, 4.

Since (a0, b0, c0, d0) = (x0, y0, x3, y3) is a normal GU4B basis, we have G{x0, y3} ⇠= GU4B.

Since (x0, x2, x4, µ), (y1, y3, y5, µ) form normal GU3A bases, ⌧
y

i

⌧

y3 commutes with ⌧

y3⌧x0

for i = 1, 5 and thus we also have G{x0, yi} ⇠= GU6A for i = 1, 5 by the same arguments

as before. ⇤

Proposition 6.10. It is impossible that G{a0, b0} ⇠= GU4B.

Proof. By direct calculation, we have

hx1 · x0, y0i

= h 1
25
(x0 + x1 � x2 � x3 � x4 � x5 + e) +

45

210
µ, y0i by (4.0.14)

=
1

25

⇣ 1

28
+

5

210
� 5

210
� 1

28
� 5

210
� 5

210
+

1

25

⌘
+

45

210
· 1

24
by Lemma 6.9 and (6.3.11)

=
7

211
,

and

hx1 · x0, y0i = hx1, x0 · y0i

= hx1,
1

25
(x0 + y0 � x3 � y3 + e)i by (6.3.10)

=
1

25

⇣ 5

210
+

5

210
� 13

210
� 5

210
+

1

25

⌘
by Lemma 6.9 and (4.0.16)

=
3

212
,

which is a contradiction. So this case is impossible. ⇤

6.3.7. Case7: G{a0, b0} ⇠= GU5A. In this case, ⌧
a0⌧b0 has order 5.

Proposition 6.11. It is impossible that G{a0, b0} ⇠= GU5A.
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Proof. By Lemma 6.5, the order 3 element ⌧

a1⌧a0 commutes with ⌧

a0⌧b0 and hence

⌧

a1⌧a0 · ⌧
a0⌧b0 has order 15. But ⌧

a1⌧a0 · ⌧
a0⌧b0 = ⌧

a1⌧b0 , which has order  6 by the

6-transposition property (Theorem 4.4). It is a contradiction. ⇤

6.3.8. Case8: G{a0, b0} ⇠= GU6A. In this case, set x0 = a0, x1 = b0. Then there exist

x2, x3, x4, x5, e, µ0 such that the ordered set (x0, x1, x2, x3, x4, x5, e, µ
0) forms a normal

GU6A basis for G{a0, b0}.

Proposition 6.12. Suppose G{a0, b0} ⇠= GU6A. Then G = G{a0, b0}.

Proof. Since ⌧
x

i

(x
j

) = x2i�j

by (4.0.17) and µ is fixed by ⌧

x0 = ⌧

a0 and ⌧

x1 = ⌧

b0 , we

have

hx4, µi = h⌧
x0x2, µi = hx2, µi = h⌧

x1x0, µi = hx0, µi =
1

24
.

Similarly, we also have

hx3, µi = h⌧
x1x5, µi = hx5, µi = h⌧

x0x1, µi = hx1, µi =
1

24
.

Now let h = ⌧

b0⌧a0 = ⌧

x1⌧x0 . Then G{h(b0), h(b1)} ⇠= G{b0, b1} ⇠= GU3A and the

set (h(b0), h(b1), h(b2), h(µ)) = (x3, h(b1), h(b2), µ) will form a normal GU3A basis for

G{h(b0), h(b1)}. Note that h(b0) = h(x1) = x3 and h(µ) = ⌧

b0⌧a0(µ) = µ.

Since (a0, x3, e) forms a normal GU2A basis for G{a0, x3}, by Proposition 6.8, we have

G{a0, a1, x3, h(b1)} = G{a0, h(b1)} ⇠= GU6A. Hence ha
i

, ei = 1
25

for i = 1, 2 and he, µi = 0.

Similarly we can also prove hb
i

, ei = 1
25

for i = 1, 2.

Finally, we will show that {a1, a2} = {x2, x4} and {b1, b2} = {x3, x5}.
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By the structure of the 6A-algebra, we have

hb0 · a0, µi

= h 1
25
(x0 + x1 � x2 � x3 � x4 � x5 + e) +

45

210
µ

0
, µi by (4.0.14)

=
1

25
(
1

24
+

1

24
� 1

24
� 1

24
� 1

24
� 1

24
+ 0) +

45

210
hµ0

, µi by (4.0.6)

= � 1

28
+

45

210
hµ0

, µi,

and

hb0 · a0, µi = hb0, a0 · µi

= hb0,
2

32
(2a0 � a1 � a2) +

5

24
µi by (4.0.4)

=
2

32
(2 · 5

210
� hb0, a1i � hb0, a2i) +

5

24
· 1

24
by (4.0.16)

=
50

28 · 32 � 2

32
(hb0, a1i+ hb0, a2i),

which implies

(6.3.12) hµ0
, µi = 22

34 · 5
�
59� 29(hb0, a1i+ hb0, a2i)

�
.

Since G{x0, x2} ⇠= GU3A, we also have

hx2 · x0, µi = h 1
24
(2x0 + 2x2 + x4)�

135

210
µ

0
, µi by (4.0.3)

=
1

24
(2 · 1

24
+ 2 · 1

24
+

1

24
)� 135

210
hµ0

, µi

=
5

28
� 135

210
hµ0

, µi,
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and

hx2 · x0, µi = hx2, x0 · µi = hx2, a0 · µi

= hx2,
2

32
(2a0 � a1 � a2) +

5

24
µi

=
2

32
(2 · 13

210
� hx2, a1i � hx2, a2i) +

5

24
· 1

24

=
58

28 · 32 � 2

32
(hx2, a1i+ hx2, a2i),

which implies

(6.3.13) hµ0
, µi = 22

35 · 5
�
� 13 + 29(hx2, a1i+ hx2, a2i)

�
.

From (6.3.12) and (6.3.13), we get

3hb0, a1i+ 3hb0, a2i+ hx2, a1i+ hx2, a2i =
95

28
,

which implies

(6.3.14) max{hb0, a1i, hb0, a2i, hx2, a1i, hx2, a2i} � 95

28(3 + 3 + 1 + 1)
>

1

25
.

By Proposition 6.7, a
i

6= b

j

for any i, j 2 {0, 1, 2} and thus we must have x2 = a1 or

x2 = a2. A similar argument also shows that x3 = b1 or b2. Therefore, G = G{a0, b0} ⇠=

GU6A. ⇤

6.3.9. Case9: G{a0, b0} ⇠= GU3A. By assumption, there exists c0 and µ0 such that

(a0, b0, c0, µ0) forms a normal GU3A basis.

Lemma 6.13. Let (a0, a1, a2, µ) and (b0, b1, b2, µ) be normal GU3A bases and G{a0, b0} ⇠=

GU3A. Then either

(1) {a0, a1, a2} = {b0, b1, b2} and G ⇠= GU3A; or

(2) G{a
i

, b

j

} ⇠= GU3A for i, j 2 Z3.
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Proof. By Lemma 6.5, for i = 1, 2, the order 3 element ⌧
a

i

⌧

a0 commutes with ⌧

a0⌧b0 ,

which has order 3 by assumption. Hence ⌧
a

i

⌧

a0 ·⌧a0⌧b0 = ⌧

a

i

⌧

b0 has order 1 or 3 for i = 1, 2.

Case 1. ⌧
a

i

⌧

b0 is of order 1. Then ⌧

a

i

⌧

a0 = (⌧
a0⌧b0)

�1 and we have

a

j

= ⌧

a

i

⌧

a0a0 = ⌧

b0⌧a0a0 = c0,

where {0, i, j} = {0, 1, 2}. Thus, by Proposition 6.7, we have b0 2 {a0, a1, a2} and

{a0, a1, a2} = {b0, b1, b2}.

Case 2. ⌧
a

i

⌧

b0 has order 3. Then G{a
i

, b0} ⇠= GU3A, GU3C or GU6A.

By the discussion in Chapter 6.3.4, G{a
i

, b0} ⇠= GU3C is impossible.

If G{a
i

, b0} ⇠= GU6A, then by Proposition 6.12, ha0, b0i = 1
32

or 5
210

, which is again

impossible since G{a0, b0} ⇠= GU3A. Therefore, G{ai, b0} ⇠= GU3A is the only possible case.

Similarly, we also have G{a
i

, b

j

} ⇠= GU3A for any i, j = 0, 1, 2. ⇤

From now on, we assume {a0, a1, a2} 6= {b0, b1, b2}, which implies G{a
i

, b

j

} ⇠= GU3A for

all i 6= j.

Notation 6.14. Let g := ⌧

a0⌧a1 = ⌧

a2⌧a0 and h := ⌧

a0⌧b0. Then both g and h are of

order 3 and g commutes with h by Lemma 6.5. Moreover, we have

⌧

a2⌧b0 = ⌧

a2⌧a0 · ⌧a0⌧b0 = gh,

⌧

a1⌧b0 = ⌧

a1⌧a0 · ⌧a0⌧b0 = g

2
h.

For i, j = 0, 1, 2, denote

x

i,j

= h

i

g

j(a0).

Note that x0,0 = a0, x0,1 = g(a0) = a1, x0,2 = g

2(a0) = a2, and x1,0 = h(a0) = b0. By

definition, it is also easy to see that

h

k

g

`(x
i,j

) = x

i+k, j+`

, for i, j, k, ` 2 Z3.
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Notation 6.15. For any (i, j) 6= (0, 0), denote

G
i,j,0 := G{x0,0, xi,j

} ⇠= GU3A.

Then there exists a conformal vector µ
i,j,0 of central charge 4/5 such that (x0,0, xi,j

, x2i,2j, µi,j,0)

forms a normal GU3A basis of G
i,j,0. For k = 1, 2, we denote

G0,1,k := h

k(G0,1,0) = h

k(G0,2,0).

Then G0,1,k
⇠= GU3A and there is a conformal vector µ0,1,k of central charge 4/5 such that

(x
k,0, xk,1, xk,2, µ0,1,k) forms a normal basis for G0,1,k.

Remark 6.16. By our assumption, we have µ(0,1,0) = µ(0,1,1) = µ(0,1,2) = µ. We use

µ0,1 to denote µ(0,1,0) = µ(0,1,1) = µ(0,1,2). Note that µ0,1 is fixed by ⌧

x

i,j

for all i, j.

Notation 6.17. For (i, j) 6= (0, 0), (0, 1) and (0, 2), we denote

G
i,j,k

= g

k(G
i,j,0).

Then, G
i,j,k

⇠= GU3A for any k = 0, 1, 2. Let µ
i,j,k

be the conformal vector of central charge

4/5 such that (x0,k, xi,j+k

, x2i,2j+k

, µ

i,j,k

) forms a normal GU3A basis for G
i,j,k

. Note that

µ

i,j,k

= µ2i,2j,k and g

`(µ
i,j,k

) = µ

i,j,k+`

for any i 6= 0.

We will show µ1,i,j = µ1,i,k for all i, j, k (Proposition 6.27). This turns out to be the

most complicated part of the proof.

Lemma 6.18. For any n, i, k, ` 2 Z3, we have

(6.3.15) ⌧

x

n,n`+k

(µ1,`,i) = µ1,`,�k�i

.
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Proof. By definition, we have by (6.2.2),

⌧

x

i,j

(x
k,`

) = h

i

g

j

⌧

a0g
�j

h

�i

h

k

g

`(a0) = h

�k+2i
g

�`+2j
⌧

a0(a0) = x�i�k,�j�`

.

Thus, ⌧
x

n,n`+k

maps the normal GU3A basis (x0,i, x1,i+`

, x2,i+2`, µ1,`,i) to

(x�n,�n`�k�i

, x�n�1,�n`�k�i�`

, x�n�2,�n`�k�i�2`, ⌧x
n,n`+k

(µ1,`,i)).

Then we have

{x�n,�n`�k�i

, x�n�1,�n`�k�i�`

, x�n�2,�n`�k�i�2`}

= {x0,�k�i

, x�1,�k�i�`

, x�2,�k�i�2`}

= {x0,�k�i

, x2,�k�i+2`, x1,�k�i+`

}.

Since (x0,�k�i

, x1,�k�i+`

, x2,�k�i+2`, µ1,`,�k�i

) forms a normal GU3A basis, we have that

⌧

x

n,n`+k

(µ1,`,i) = µ1,`,�k�i

. ⇤

Lemma 6.19. For any i, j 2 Z3, y 2 {µ0,1, µ1,0,k, µ1,1,k, µ1,2,k| k = 0, 1, 2}, we have

(6.3.16) hx
i,j

, yi = 1

24

and

(6.3.17) hµ1,i,j, µ1,k,`i = 0, hµ0,1, µ1,i,ji = 0

for all i, j, and for k 6= i.

Proof. Computing

hx0,0, x0,1 · x1,0i = hx0,0,
1

24
(2x0,1 + 2x1,0 + x2,2)�

135

210
µ1,2,1i by (4.0.3)

=
1

24
(2 · 13

210
+ 2 · 13

210
+

13

210
)� 135

210
hx0,0, µ1,2,1i

=
65

214
� 135

210
hx0,0, µ1,2,1i
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together with

hx0,0, x0,1 · x1,0i = hx0,0 · x0,1, x1,0i

= h 1
24
(2x0,1 + 2x1,0 + x2,2)�

135

210
µ0,1, x1,0i

=
1

24
(2 · 13

210
+ 2 · 13

210
+

13

210
)� 135

210
· 1

24

=
65

214
� 135

210
· 1

24
,

we can get hx0,0, µ1,2,1i = 1
24
. Similarly, we can get (6.3.16).

Computing

hµ1,0,1, x0,1 · x1,0i = hµ1,0,1,
1

24
(2x0,1 + 2x1,0 + x2,2)�

135

210
µ1,2,1i

=
1

24
(2 · 1

24
+ 2 · 1

24
+

1

24
)� 135

210
hµ1,0,1, µ1,2,1i by (6.3.16)

=
5

28
� 135

210
hµ1,0,1, µ1,2,1i

together with

hµ1,0,1, x0,1 · x1,0i = hµ1,0,1 · x0,1, x1,0i

= h 2
32
(2x0,1 � x2,1 � x1,1) +

5

24
µ1,0,1, x1,0i

=
2

32
(2 · 13

210
� 13

210
� 13

210
) +

5

24
· 1

24
by (6.3.16)

=
5

28
,

we can get

hµ1,0,1, µ1,2,1i = 0.

Similar argument gives (6.3.17). ⇤

Lemma 6.20. We have

(6.3.18) µ1,i,j · µ1,k,` = 0
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for i 6= k, and

(6.3.19) µ0,1 · µ1,i,j = 0

for i 2 Z3.

Proof. By Theorem 2.27, Norton inequality, and (6.3.17) we have

|µ1,i,j · µ1,k,`|2 = hµ1,i,j · µ1,k,`, µ1,i,j · µ1,k,`i

 hµ1,i,j · µ1,i,j, µ1,k,` · µ1,k,`i

= h2µ1,i,j, 2µ1,k,`i by (4.0.5)

= 0.

Since the inner product is positive definite by Assumption 1, we have (6.3.18). Similarly,

we can get (6.3.19). ⇤

Lemma 6.21. For x 2 {x
i,j

��
i, j}, µ0 2 {µ0,1, µ1,i,j

��
i, j}, we have

(6.3.20) x · µ0 =
1

2
x+

5

25
µ

0 +
3

25
⌧

x

(µ0)� 1

23
�

x

(µ0 + ⌧

x

(µ0)).

Proof. By Lemma 2.24 and (6.3.16) we have

x · µ0 = 8hx, µ0ix+
1

22

✓
1

2
(µ0 + ⌧

x

(µ0))� �

x

�1
2
(µ0 + ⌧

x

(µ0))
�◆

+
1

25
�
µ

0 � ⌧

x

(µ0)
�

= 8 · 1

24
· x+

1

22
�1
2
(µ0 + ⌧

x

(µ0))� 1

2
�

x

(µ0 + ⌧

x

(µ0))
�
+

1

25
(µ0 � ⌧

x

(µ0))

=
1

2
x+

5

25
µ

0 +
3

25
⌧

x

(µ0)� 1

23
�

x

(µ0 + ⌧

x

(µ0)).

⇤

Lemma 6.22. For i 2 {0, 1, 2}, we have

(6.3.21) hµ1,i,0, µ1,i,2i = hµ1,i,1, µ1,i,2i = hµ1,i,0, µ1,i,1i.
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Proof. Since g 2 Aut(G) preserve the inner product, we have

hµ1,i,0, µ1,i,1i = hgj(µ1,i,0), g
j(µ1,i,1)i = hµ1,i,j, µ1,i,1+j

i

for any j = 0, 1, 2. ⇤

Lemma 6.23. For x = x

k,`

, µ0 = µ1,i,j, µ00 = ⌧

x

(µ0), we have

(6.3.22) h�
x

(µ0 + µ

00), µ0i = �1

22
+

3

22
hµ0

, µ

00i.

Proof. By (6.3.20), (6.3.16), and (6.3.17), we have

hx · µ0
, µ

0i

= h1
2
x+

5

25
µ

0 +
3

25
µ

00 � 1

23
�

x

(µ0 + µ

00), µ0i

=
1

25
+

1

24
+

3

25
hµ0

, µ

00i � 1

23
h�

x

(µ0 + µ

00), µ0i

=
3

25
+

3

25
hµ0

, µ

00i � 1

23
h�

x

(µ0 + µ

00), µ0i.

By (4.0.5), we also have

hx · µ0
, µ

0i = hx, µ0 · µ0i = 2hx, µ0i = 1

23
.

Hence we get

h�
x

(µ0 + µ

00), µ0i = �1

22
+

3

22
hµ0

, µ

00i

as desired. ⇤

Lemma 6.24. Let µ0 = µ

i,j,k

and µ

00 = µ

i

0
,j

0
,k

0. If (i, j) 6= (i0, j0) or (2i0, 2j0), then we

have

(6.3.23) h�
x

(µ0 + ⌧

x

(µ0)), µ00i = 1

22
.

for any x = x

k,`

.
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Proof. By Lemma 6.20, we have µ

0 · µ00 = 0 and hµ0
, µ

00i = h⌧
x

(µ0), µ00i = 0. Hence

0 = hx, µ0 · µ00i

= hx · µ0
, µ

00i

= h1
2
x+

5

25
µ

0 +
3

25
⌧

x

(µ0)� 1

23
�

x

(µ0 + ⌧

x

(µ0)), µ00i by (6.3.20)

=
1

2
· 1

24
+

5

25
· 0 + 3

25
· 0� 1

23
h�

x

(µ0 + ⌧

x

(µ0)), µ00i,

which implies (6.3.23). ⇤

Lemma 6.25. We have

6075µ0,1 · µ1,1,1

= 64x0,1 � 656(x0,0 + x0,2)� 576(x1,2 + x2,0) + 384(x1,0 + x1,1 + x2,1 + x2,2)

+810µ0,1 + 1260µ1,1,1 � 135(µ1,1,0 + µ1,1,2) + 360(µ1,0,1 + µ1,2,1)

+45(µ1,0,0 + µ1,0,2 + µ1,2,0 + µ1,2,2)� 720(�
x0,1(µ1,0,0 + µ1,0,2 + µ1,2,0 + µ1,2,2)

+180
�
�

x0,0(µ1,1,1 + µ1,1,2) + �

x0,2(µ1,1,0 + µ1,1,1)
�

= 0.

Proof. We will expand both sides of the equality

�

x0,1

�
(x0,2 + x0,0) · (x1,2 + x2,0)

�
= �

x0,1(x0,2 + x0,0) · �x0,1(x1,2 + x2,0).
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First we compute

�

x0,1

�
(x0,2 + x0,0) · (x1,2 + x2,0)

�

= �

x0,1

⇣ 1

24
(2x0,2 + 2x1,2 + x2,2) +

1

24
(2x0,2 + 2x2,0 + x1,1) +

1

24
(2x0,0 + 2x1,2 + x2,1)

+
1

24
(2x0,0 + 2x2,0 + x1,0)�

135

210
(µ1,0,2 + µ1,2,2 + µ1,2,0 + µ1,0,0)

⌘

=
1

24
x0,0 �

15

27
x0,1 +

1

24
x0,2 +

1

26
x1,0 +

1

26
x1,1 +

1

24
x1,2 +

1

24
x2,0 +

1

26
x2,1 +

1

26
x2,2

+
135

29
µ0,1 +

135

29
µ1,1,1 +

135

211
µ1,0,1 +

135

211
µ1,2,1

�135

210
�

x0,1(µ1,0,0 + µ1,0,2)�
135

210
�

x0,1(µ1,2,0 + µ1,2,2) by (4.0.8).(6.3.24)

By (4.0.8), (6.3.20), and (6.3.15), we also have

�

x0,1(x0,2 + x0,0) · �x0,1(x1,2 + x2,0)

= (
�3

24
x0,1 +

1

22
x0,2 +

1

22
x0,0 +

135

27
µ0,1) · (

�3

24
x0,1 +

1

22
x1,2 +

1

22
x2,0 +

135

27
µ1,1,1)

=
187

210
x0,0 �

33

28
x0,1 +

187

210
x0,2 �

7

27
x1,0 �

7

27
x1,1 +

43

28
x1,2 +

43

28
x2,0 �

7

27
x2,1 �

7

27
x2,2

+
945

213
µ0,1 �

135

214
(µ1,0,0 + µ1,0,2 + µ1,2,0 + µ1,2,2) +

135

212
µ1,1,1 +

405

214
(µ1,1,0 + µ1,1,2)

�135

212
�
�

x0,0(µ1,1,1 + µ1,1,2) + �

x0,2(µ1,1,0 + µ1,1,1)
�
+

18225

214
µ0,1 · µ1,1,1.(6.3.25)

Hence we have by (6.3.19), (6.3.24), (6.3.25),

0 = 6075µ0,1 · µ1,1,1

= 64x0,1 � 656(x0,0 + x0,2)� 576(x1,2 + x2,0) + 384(x1,0 + x1,1 + x2,1 + x2,2)

+810µ0,1 + 1260µ1,1,1 � 135(µ1,1,0 + µ1,1,2) + 360(µ1,0,1 + µ1,2,1)

+45(µ1,0,0 + µ1,0,2 + µ1,2,0 + µ1,2,2)� 720(�
x0,1(µ1,0,0 + µ1,0,2 + µ1,2,0 + µ1,2,2)

+180
�
�

x0,0(µ1,1,1 + µ1,1,2) + �

x0,2(µ1,1,0 + µ1,1,1)
�
,

as desired. ⇤
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Lemma 6.26. For i, k, ` 2 {0, 1, 2}, we have

(6.3.26) hµ1,i,k, µ1,i,`i =
2

5
.

Hence, µ1,i,k = µ1,i,` for any i, k, `.

Proof. By Lemma 6.25 and (6.3.21), (6.3.22), and (6.3.23), we have

0 = h6075µ0,1 · µ1,1,1, µ1,0,0i

= 64 · 1

24
� 656(

1

24
+

1

24
)� 576(

1

24
+

1

24
) + 384(

1

24
+

1

24
+

1

24
+

1

24
)

+810 · 0 + 1260 · 0� 135(0 + 0) + 360(hµ1,0,0, µ1,0,1i+ 0)

+45(
2

5
+ hµ1,0,0, µ1,0,1i+ 0 + 0)� 720(� 1

22
+

3

22
hµ1,0,0, µ1,0,1i+

1

22
)

+180
� 1

22
+

1

22
�

= 54� 135hµ1,0,0, µ1,0,1i.

which implies hµ1,0,0, µ1,0,1i = 2
5
. Similarly, one can prove hµ1,i,k, µ1,i,`i = 2

5
, also. ⇤

Notation 6.27. Denote

µ1,0 := µ1,0,0 = µ1,0,1 = µ1,0,2,

µ1,1 := µ1,1,0 = µ1,1,1 = µ1,1,2,

µ1,2 := µ1,2,0 = µ1,2,1 = µ1,2,2.

Proposition 6.28. For any (i, j) 6= (i0, j0),we have

(6.3.27) µ

i,j

· µ
i

0
,j

0 = 0.

Moreover,

(6.3.28) µ0,1+µ1,0+µ1,1+µ1,2 =
32

45
(x0,0+x0,1+x0,2+x1,0+x1,1+x1,2+x2,0+x2,1+x2,2).

Therefore, the dimension of G is 12.

104



Proof. The first assertion follows from (6.3.17) and Lemma 6.26.

To prove (6.3.28), let

µ̃ = µ0,1 + µ1,0 + µ1,1 + µ1,2,

x̃ =
32

45
(x0,0 + x0,1 + x0,2 + x1,0 + x1,1 + x1,2 + x2,0 + x2,1 + x2,2).

Then by Lemmas 6.19, 6.25, and hµ
i,j

, µ

i

0
,j

0i = 0 for (i, j) 6= (i0j0), we have

hµ̃� x̃, µ̃� x̃i = 0

and thus µ̃ = x̃ as desired.

To check the dimension of G, for {a1, a2, · · · , a12} = {x
i,j

, µ0,1, µ1,0, µ1,1

��
i, j 2 Z3}, we

can get det(ha
i

, a

j

i) = 342

286·52 6= 0 by computer. Hence the dimension of G is 12. ⇤

The structure of GV
F (3A) is summarized in Figure 1.

Figure 1. Configuration for GVB(4B)

To summarize, we have proved the theorem.

Theorem 6.29. Let (a0, a1, a2, µ) and (b0, b1, b2, µ) be normal GU3A bases of GU and

GU 0, respectively. Let G be the sub-Griess algebra generated by {a0, a1, a2, b0, b1, b2, µ}.

Then, it is impossible that G{a0, b0} ⇠= GU2B, GU3C, GU4A, GU4B and GU5A.

(1) If G{a0, b0} ⇠= GU1A, then G ⇠= GV
F (1A)

⇠= GU3A and {a0, a1, a2} = {b0, b1, b2}.

(2) If G{a0, b0} ⇠= GU2A or GU6A, then G ⇠= GV
F (2A)

⇠= GU6A.

(3) If G{a0, b0} ⇠= GU3A, then G ⇠= GV
F (3A) and dimG = 12.
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