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Pedestrian Detection and Tracking with Indoor Mobile
Robot Using both Color Information and Distance

Information

Student: Jun-Rong Lin Advisor: Dr. Feng-Li Lian

Department of Electrical Engineering
National Taiwan University

ABSTRACT

In daily life, that mobile robot communicates with pedestrian needs many tasks.
The applications are used in guided vehicle, shopping cart, or office assistance. In this
thesis, the tasks include self-localization, mapping, pedestrian detection, and target
pedestrian tracking in unknown indoor environment.

To do self-localization and mapping, the accurate odometry of mobile robot is
important. However, skidding and slipping can induce that the odometry is not equal
to the real distance. In this thesis, particle swarm optimization (PSO) algorithm
correct odometry in unknown indoor environment. The combination of the
self-localization and the mapping is referred to as the simultaneous localization and
mapping (SLAM) [39: Birk & Carpin 2006]. In the SLAM, once odometry of mobile

robot is known, building a map is also a task which can be effectively solved at the



same time [39: Birk & Carpin 2006]. Afterward, moving object detection is based on

the precise map.

After the moving objects are detected, the next steps are pedestrian detection and

target pedestrian tracking. In the pedestrian detection, the color image is regarded as

an additional condition for the judgment based on the laser range finder (LRF) scan.

In target pedestrian tracking, owing to pillars hindering or new pedestrians appearing,

the data association may be error between two consecutive LRF scans. In this thesis, a

method based on color distribution and color texture to track pedestrian in color

images is proposed. The experiment demonstrates the target pedestrian in the new

pedestrian appearing and the pillars hindering. Through the experiments, the

performance of pedestrian detection and target pedestrian tracking is not good.

However, the performance of pedestrian in color image is low owing to the resolution.

In the future, the detection and tracking moving object (DATMO) with LRF scan

in Chapter 3 can combine the pedestrian detection and target pedestrian tracking with

color image in this thesis.

Keywords: laser range finder, omnidirectional camera, robot self-localization,

moving objects detection, pedestrian detection, target pedestrian tracking.
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Chapter 1

Introduction

In this chapter, Section 1.1 states pedestrian tracking for mobile robot
applications in daily life. In pedestrian tracking, two problems often occur in the
sounding environment. The tasks include self-location, mapping, pedestrian detection,
and target pedestrian tracking. The method of solutions states in Section 1.2. In this
thesis, Section 1.3 states the contribution in this research field. Section 1.4 states the

architecture in this thesis.

1.1 Motivation

The mobile robot applications in the surrounding environment are widely
discussed such as automatic guided vehicle [1: Seifert & Kay 1995], shopping cart [2:
Nishimura et al. 2007], or office assistance [3: Chen et al. 2011]. In the office
assistance application, target pedestrian tracking is often hindered by pillar or is
associated to other pedestrian. To track pedestrian, the research works include
self-localization, mapping, pedestrian detection, and target pedestrian tracking. The

primary objective is to construct the perception system using both the distance scan



and the color image to track the pedestrian for both LRF and omnidirectional camera

mounting on mobile robot.

In the real-life, the mobile robot tracking the pedestrian needs self-localization,

mapping, detection, and tracking. Self-localization and mapping are two of the

fundamental capabilities for mobile robot [39: Birk & Carpin 2006]. Detection and

tracking are also discussed in [24: Chang & Lian 2012], [27: Carballo et al. 2010], [35:

Dalal & Triggs 2005]. However, the following two cases often occur in the sounding

environment. There are many pillars in Figure 1.1 scene. One case is that the target

pedestrian is hindered by pillar. The other case is that new pedestrian appears. The

detail states in Section 1.2.

In this thesis, the objective can provide office assistance mobile robot in

unknown indoor environment. The mobile robot in real-life can deal with the static

pillar hindering the target pedestrian and other pedestrian suddenly appearing. After

the target pedestrian hindered by pillars in the Figure 1.1 scene, the target pedestrian

is not predictable with the LRF scan information. However, the color distribution is

regarded as a condition for the judgment. In summary, the additional color image can

provide additional information to detect the pedestrian and track the target pedestrian.



(a) (b) (©
Figure 1.1 The Scene Shows the Pillars in the Indoor Environment.
(@) The 1st Men’s Dorm in NTU
(b) Electrical Engineering Building No. 2 in NTU
(c) Ming-Da Building in NTU

1.2 Problem Formulation

That the mobile robot tracks the target pedestrian needs many tasks including
localization, mapping, detection, and tracking. However, that the mobile robot tracks
the target pedestrian is difficult in dynamic environment with pillars or other
pedestrians. Figure 1.2 shows that multiple pedestrians make the mobile robot confuse
with pillars. In Figure 1.2, there are pedestrian Al, pedestrian A2, pillar, robot, and
LRF scan. Figure 1.2(a) shows the LRF scan at time t-2. The robot detects the
pedestrian Al, pedestrian A2, and pillar. However, the robot only detects the pillar at
time t-1 with LRF scan in Figure 1.2(b). At time t, two possible results appear in
Figure 1.2(c) and Figure 1.2(d). However, the robot cannot distinguish between
pedestrian Al and pedestrian A2 from LRF scan. It is pillar hindering case. And

Figure 1.3 shows that new pedestrian appears near the target pedestrian. In Figure 1.3,



there are pedestrian Al, pedestrian A2, pillar, robot, and LRF scan. In Figure 1.3(a),

the robot only detects the pedestrian A1 with LRF scan. However, the pedestrian Al

and pedestrian A2 are detected with LRF scan in Figure 1.3(b). The robot cannot

distinguish between pedestrian Al and pedestrian A2 owing to the position. It is new

pedestrian case. Two cases are discussed in this thesis.

In the mobile robotic field, the mobile robot localization and mapping is

important. For robot position, skidding and slipping can induce mobile robot

odometry is not equal to the real distance. Therefore, PSO algorithm [38: Li et al.

2011] corrects the mobile robot odometry through map construction. For map

construction, the occupancy gird is mainly used in construct the map [39: Birk &

Carpin 2006].



(a) (b)

[T ]]
INENENNEEEEE

() (d)
Figure 1.2 Dynamic Environment with Pillars Occlusion (with LRF Scan Grid Map
in Specific Plane)
(a) The robot detects Al and A2 candidate pedestrians and pillar at time t-2
(b) The robot only detects pillar at time t-1
(c) and (d) are two case making the robot confuse the candidate pedestrians with
LRF sensor at time t.

[ ] A R [§] time t-1
/]

NN EENEEEN [T 7777771771777
(a) (b)
Figure 1.3 Dynamic Environment with New Pedestrian Appearing Nearby (with
LRF Scan Grid Map in Specific Plane)
(a) The robot only detects Al candidate pedestrian at time t-1.
(b) That Al and A2 candidate pedestrians appear simultaneously makes the robot
confuse at time t.




Pedestrian detection and target pedestrian tracking in Figure 1.2 and Figure 1.3

are difficult. The data association between two LRF scans may be error. Therefore, the

color image is regarded as an additional condition for the judgment based on the LRF

scan. In [22: Wolf & Sukhatme 2004], Wolf and Sukhatme propose static map and

dynamic map. The static map includes many dynamic obstacles owing to inverse

observation model. Since inverse observation model predicts that the state from

unknown to occupied is static object, the pedestrian detected with LRF scan by robot

may be regarded as static object. Therefore, the pedestrian detection with color image

is necessary. In this thesis, it is necessary to adopt the features of head to detect

pedestrian. Both Hough circle transform and color distribution are used in head

detection in each candidate pedestrian [48: Zhao et al. 2012]. Although the pedestrian

candidates are selected, the target pedestrian tracking is still a difficult issue because

of data association in unexpected position in Figure 1.2 and Figure 1.3. Using color

distribution and local binary map (LBP) algorithm is a powerful method to track

pedestrian in the dynamic environment with pillars or other pedestrians. The color

distribution means that the histogram is calculated in each color channel. And the LBP

algorithm calculates the relative neighbor value in each pixel [49: Rahimi et al. 2013].

With the target pedestrian, the mobile robot can continuously track the target

pedestrian.



1.3 Contribution

The thesis proposes a system structure includes localization, mapping, pedestrian

detection, and tracking target pedestrian.

For the localization and the mapping, the initial position and the map

construction are two problems. The PSO algorithm [38: Li et al. 2011] corrects the

mobile robot odometry. In experimental result, the PSO algorithm compares to the

ICP algorithm. For ICP algorithm [24: Chang & Lian 2012], the distance error is

minimized. However, local optimal solution is a problem in scan matching. The PSO

algorithm in this thesis can overcome the problem. In static map construction and

dynamic map construction through inverse observation model in [22: Wolf &

Sukhatme 2004], the color feature can robustly judge the moving pedestrians in

previous unknown area.

For pedestrian detection and target pedestrian tracking in pillar hindering or new

pedestrian appearing, the data association may be error [12: Ueda et al. 2011]. In color

image, the Hough circle transformation, size, and color distribution are methods to

judge pedestrian and track the same person. In this thesis, the pillar hindering case and

the new pedestrian appearing case are solved in pedestrians with different color space

and color texture.

The experimental results show in Chapter 5. The experimental results and



analysis shows the performance of the pedestrian detection and the target pedestrian
tracking in unknown indoor environment. In the future works, the DATMO with LRF
scan in Chapter 3 can combine the pedestrian detection and target pedestrian tracking

with color image in this thesis.

1.4 Organization of the Thesis

This thesis includes six chapters. The remainder of this thesis is organized as
follows. Chapter 2 states the literature of past research. This chapter includes two
sections: simultaneous localization and mapping (SLAM), and pedestrian detection
and tracking. Chapter 3 states robot localization and map construction. The tasks have
the LRF usage, the robot localization, and the map construction in specific
environment. Chapter 4 states the omnidirectional camera structure, the pedestrian
detection by LRF scan spatial continuity, image color feature, and image edge feature,
and target tracking by image color histogram, image LBP, and LRF scan. Chapter 5
shows the experimental result and analysis. In addition, the PSO algorithm compares
to the ICP algorithm in SLAM. Both conclusions and feature works are presented in

Chapter 6.



Chapter 2

Literature Survey

This chapter states the literature survey in the mobile robotic field. Section 2.1
states the simultaneous localization and mapping including self-localization and
mapping. Self-localization and mapping are two of the fundamental capabilities for
mobile robot [39: Birk & Carpin 2006]. In addition, pedestrian detection and target
pedestrian tracking are researchable topics for the mobile robot. Section 2.2 states
pedestrian detection and target pedestrian tracking. Figure 2.1 shows the SLAM
categories in Section 2.1. And Figure 2.2 shows pedestrian detection and target

pedestrian tracking categories in Section 2.2.

2.1 Simultaneous Localization and Mapping

SLAM is an important topic for a mobile robot in unknown indoor environment.
Although many sensors can be selected, the laser range finder (LRF) often is used to
SLAM [15: Wu et al. 2013], [16: Rusdinar et al. 2010]. LRF is a sensor commonly
used owing to its accuracy in distance measurement [15: Wu et al. 2013].

In terms of methods, iterative close point (ICP) algorithm is commonly used [17:



Zhang 1994], [18: Lu & Milios 1994]. However, local optimal solution is a problem

in scan matching. To overcome the problem relating to the local optimal solution,

particle filter (PF) is proposed to correct the error pose [16: Rusdinar et al. 2010]. And

extended Kalman filter (EKF) is used to decrease odometric error of the robot [20:

Kang et al. 2010]. To overcome the problem relating to the outliers, random sample

consensus (RANSAC) algorithm is used to filter outliers [19: Tong & Barfoot 2011].

To build the map, the occupancy grid map is used [21: Moravec & Elfes 1985],

[39: Birk & Carpin 2006]. Since arbitrary data can be mapped, occupancy grid map is

focused [55: Winner et al. 2012]. The occupancy grid map needs a resolution to

discretize the environment [55: Winner et al. 2012]. Therefore, the occupancy grid

map can be chosen depending on the requirements of the precision of the data [55:

Winner et al. 2012]. The Bayesian probability grid map is used in [23: Thrun et al.

2005], [55: Winner et al. 2012]. The Bayesian probability grid map expresses the

possibility of grid is occupied and there is a lot of merits of calculation [55: Winner et

al. 2012].

In the dynamic environment, the occupancy grid map is difficultly built for the

full of people. The inverse observation model is used to build static occupancy grid

map [22: Wolf & Sukhatme 2004].

In this thesis, the PSO algorithm is proposed to overcome the local minimum

10



solution with ICP in [24: Chang & Lian 2012]. Figure 2.1 demonstrates simultaneous

localization and mapping categories.

SLAM

Y

f a4 L 1
. Random Grid Map &
lterative Extended )
. Particle Filter Sample Bayesian

Closest Point Kalman Filter

Consensus Probability
H; fﬁaﬁg\llﬁﬁ;] 1991 [16: Rusdinar et al. 2010] [20: Kang et al. 2010] gifggtn;foi]
Occupancy Static Map &
Grid Map .~ Dynamic Map

[21: Moravec & Elfes 1985] [22: Wolf & Sukhatme 2004]
[23: Thrun et al. 2005]

Figure 2.1 Simultaneous Localization and Mapping Categories

2.2 Pedestrian Detection and Tracking

Pedestrian detection and target pedestrian tracking play an important role in the
robotic field. Many sensors are implemented for pedestrian detection and target
pedestrian tracking. The sensors include laser-based sensor and vision-based sensor.
The laser-based sensor is used for distance measurement application [55: Winner et al.
2012]. And the vision-based sensor is used for color image application [55: Winner et
al. 2012].

For distance information such as LRF scan, many approaches are presented in

pedestrian detection and target pedestrian tracking. For pedestrian detection, inverse

11



observation model is used to differentiate between the dynamic objects and static

objects [22: Wolf & Sukhatme 2004]. However, the method detects the moving object.

In [26: Sung & Chung 2011] and [9: Chung et al. 2012], the clustering legs into a

pedestrian is presented. And using LRF scan in a two-layered arrangement to detect

features is presented in [27: Carballo et al. 2010]. For target pedestrian tracking, K

nearest neighbor (KNN) algorithm [3: Chen et al. 2011] and multiple hypothesis

tracking (MHT) algorithm [24: Chang & Lian 2012] are used with LRF scan in target

pedestrian tracking.

In the color image, background subtraction method acquires the moving objects

in static scene [29: Stauffer & Grimson 1999], [28: Lin & Huang 2011]. In [30: Lee et

al. 2003], background model updates based on Gaussian mixture model. In dynamic

scene, optical flow algorithm is applied [31: Enzweiler et al. 2008]. For pedestrian

detection, the image feature includes corner [34: Xu & Xu 2013], edge geometry [33:

Zhao et al. 2008], texture [32: Leithy et al. 2010], [41: Kun et al. 2012], and color

distribution [33: Zhao et al. 2008]. The image features are regarded as condition

judgments for pedestrian detection. What is more, Dalal and Triggs [35: Dalal &

Triggs 2005] present histograms of oriented gradients (HOG) feature vectors to detect

the pedestrian. Moreover, there are various approaches to track target pedestrian with

color image. For handle the occlusion case, Lin and Huang [28: Lin & Huang 2011]

12



use either Kalman-filter or mean-shift algorithm in different conditions. Cox and
Hingorani [25: Cox & Hingorani 1996] enumerate multiple models of targets from the
latest three frames through multiple hypothesis tracking (MHT) algorithm.

For fusion of LRF scan and color image, a recognition method to track running
pedestrians is presented [12: Ueda et al. 2011]. In [37: Kristou et al. 2011], the target
pedestrian tracking uses the LRF scan. However, the pedestrian detection uses the
color image.

In this thesis, the pedestrian extraction uses LRF scan spatial continuity, image
color feature, and image edge feature. For tracking target pedestrian, color distribution
is regard as a conditional judgment. The mobile robot robustly detects pedestrian and
tracks target pedestrian. Figure 2.2 shows the pedestrian detection and target

pedestrian tracking categories.

Pedestrian
Detection
and
Tracking

Pedestrian Target
‘ Pedestrian

Detection B
Tracking

r | r 1
Distance Distance
Color Image Color Image
Scan Scan

q r . I T T 1
Invarse Gaometry |l Gaomatry _— mutpe | 2Me" Multiple Histograms | Hue
Observation Featurein Featurein Bam{gml‘md Fplca Image K N-sarssl Hypothesis fiter & Hypothesis of Oriented Color
Subtraction low Feature Neighbor . Mean .
Model alLayer two Layer Tracking — Tracking Gradient Space
[22: Wolf &  [26: Sung [27: Carballo [29: Stauffer [31: [34: Xu & Xu [3: Chen et [24: Chang [28:Lin  [2g: Stauffer [35: Dalal& [12: Ueda
Sukhatme & Chung etal.2010] & Grimson Enzweiler 2013] al.2011] &Lian & Huang g Grimson Triggs 2005]et al. 2011;
2004] 2011] 1999], et al. 2008]33: Zhao et 2012] 2011] 1999]
[9: Chung [28: Lin & al. 2008] [25: Cox &
etal. 2012] Huang 2011], [32: Leithy Hingorani
[30: Lee et al. et al. 2010] 1998]
2003] [41: Kun et
al. 2012]

Figure 2.2 Pedestrian Detection and Target Pedestrian Tracking Categories
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Chapter 3
Simultaneous Localization and
Mapping

Self-localization and mapping are two of the fundamental capabilities for mobile
robot [39: Birk & Carpin 2006]. The combination of the self-localization and the
mapping is referred to as the simultaneous localization and mapping (SLAM) [39:
Birk & Carpin 2006]. In unknown indoor environment, SLAM is a researchable task
in this chapter. In this thesis, LRF is used owing to its accuracy in distance
measurement [15: Wu et al. 2013]. The LRF operation principle and the LRF
limitation are presented in Section 3.1. For self-localization, skidding and slipping can
induce that the odometry is not equal to the real distance. To solve the problem, PSO
algorithm [38: Li et al. 2011] is presented in Section 3.2. In the SLAM, once
odemetry of mobile robot is known, building a map is also a task which can be
effectively solved at the same time [39: Birk & Carpin 2006]. To build the map, the

occupancy grid map is used in Section 3.3.
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3.1 Laser Range Finder Usage and Limitation

LRF is a sensor measuring the distance. To use the LRF, the LRF operation
principle and the LRF limitation should be known. In Section 3.1.1, the operation
principle of LRF is presented. Section 3.1.2 states the limitation of LRF in specific

Scene.

3.1.1 Introduction of Laser Range Finder

For mobile robot, LRF is a common sensor. Compared with other sensors, LRF
is a sensor commonly used owing to its accuracy in distance measurement. So the
LRF is prevailing in the mobile robot.

The operation principle of LRF uses time of flight (ToF) to estimate the distance
from specific angle [4: Okubo et al. 2009]. Figure 3.1 shows the operation principle of
LRF. First, the laser emits an infrared beam and rotating mirror changes the beam’s
direction [4: Okubo et al. 2009]. Then the laser hits the surface of an object and is
reflected [4: Okubo et al. 2009]. ToF is proportional to distance measurement. Since
the infrared beam is rapid, the scan rate can achieve at least ten scans per second.
From the direction of mirror, the phase of emitted can be estimated. Finally, the

position of object is calculated.
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Figure 3.1 The Operation Principle of Laser Range Finder

3.1.2 The Limitation of Usage in the Glass Environment

LRF is a sensor commonly used owing to its accuracy in distance measurement
[15: Wu et al. 2013]. However, the limitation of LRF is about environment texture. In
the environment with glass, the light may refract the ray of light in the environment
with glass like Figure 3.2(a). The incident light, laser beam, can be divided into
diffusive reflection, specular reflection, and refraction, as shown in Figure 3.2(a). The
diode only absorbs the diffusive reflection. Therefore, the missing data may occur.
The real-scene is Ming-Da Building 2F having two glass window, as shown in Figure

3.2(b). In this scene, the data may miss.
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Figure 3.2: The Texture Influence in Glass Environment
(a) Theorem of the optical relation
(b) Scene in Ming-Da Building 2F

3.2 Robot Localization

Self-localization is an important task for mobile robot in unknown indoor
environment. Although the mobile robot estimates the position with encoder, the scan
matching technique can acquire precise position of the mobile robot. Generally,
iterative closest point (ICP) algorithm [43: Besl & McKay 1992] is widely used to the
scan matching. However, local optimal solution is a problem for ICP algorithm. The
scan matching technique needs another algorithm.

PSO algorithm [44: Kennedy & Eberhart 1995] is a feasible method in scan
matching technique. The PSO algorithm applies to minimize the distance energy
function F(x) in the approximately global optimization problem [45: Eberhart & Shi
1998]. The particle swarm model sets the N particles in the D-dimensional problem

space. The i-th particle owns the self-position x}, self-velocity v}, and distance

17



energy function ff(x) in the search domain at time t. Let each particle know the best
its position pbest’ and the best position in N particles gbest! before time t.

Therefore, the position and the velocity of each particle with N particles are expressed

as follows:
xlt = (xitl'xitZJ ---'xitN) (3.1)
Vit = (Vitp Vitz» Ty vitN) (3.2)

The i-th particle is expressed as a point owning the position xf*! and velocity

i

vt at time t+1 according to the following equations:

vt = w.vf + c.rand(). (pbest! — x!) + c,.rand (). (gbestf — xf) (3.3)

xt* = xb+ vl At (3.4)
where w is an inertia weight, ¢, is a cognitive coefficient, c, is a social coefficient,
and rand() is a random probability in [0, 1]. x‘** updates through Equation (3.4).
However, to avoid overshooting the global solution, v} sets the threshold value vy, .
Figure 3.4 shows the illustration of particle motion and the process of particle motion.
In Figure 3.3(a), the plane represents the distance energy function. The curve
represents the pass path for each particle by time t. The circle represents current
position for each particle. The square presents the best position for each particle. And
the triangle represents best position for all particles. Each particle owns its position

and velocity. The velocity of each particle is determined by Equation (3.3) and the

position of each particle is determined by Equation (3.4). Every particle can affect
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each other. Figure 3.4(b) shows the flow chart of particle motion. For all particles, the
position and the velocity are set. The energy function F(x) is calculated. Then the
pbest and the gbest are picked in the particles. And the particles move to next
position. Until the particles stay the same positions, the particles are global optimal

positions. If the particles do not stay the same positions, the steps are iterative.

—
DN

NI L
<~

(a)
Initialize particle Estimate the Update the pbest
position & velocity particles fitness & the gbest
No
OUtPUt the gllqbal Terminate or not Move the particles
optimal position Yes
(b)

Figure 3.3 The Illustration and Process of Particle Selection
(@) The illustration of each particle moving
I. The line represents the pass path;
ii. The circle represents current position.
iii. The triangle represents best position in all particles.
v, And the square is the best position in its particle.
(b) The particle selections of the PSO algorithm

Figure 3.4 shows scan matching points of two data sets results with the LRF. The

scan matching points of two data sets include the red points and the blue points, as
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shown in Figure 3.4. When the measurement error is not eliminated in time, it causes

the inaccurate map. Figure 3.4(a) and (c) show the LRF scan based on odometry in

Ming-Da 5F and Ming-Da 4F. Generally, PSO algorithm can reduce the measurement

error to enhance the map accuracy, as shown in Figure 3.4 (b) and (d). The other

experimental results in scan matching are shown in Section 5.3.

To acquire the more accurate robot position in populated environment, the

pedestrian need to be detected. Section 3.3 states dynamic map concept. And Section

4.3 states pedestrian detection based on dynamic map.
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Figure 3.4 Scan Matching 2 Data Result (Target and Source are in the LRF scans)
(unit: meter)

(a) Encoder in Ming-Da Building 5F

(b) PSO algorithm process from (a)

(c) Encoder in Ming-Da Building 4F

(d) PSO algorithm process from (c)

3.3 Map Construction

In map construction, occupancy grid map is an important method. Section 3.3.1 uses

the

occupancy grid map to construct the map. The inverse observation model is used

to build static occupancy grid map and dynamic occupancy grid map [22: Wolf &

Sukhatme 2004] in Section 3.3.2.
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3.3.1 Grid Map Construction

To make mobile robot move arbitrarily, mapping is a necessary task. However,
map construction is difficult for the mobile robot in dynamic environment. What is
more, the inaccuracy measurement of LRF scan may cause the map false.

Occupancy grid map is a main method in map construction [23: Thrun et al.
2005]. The occupancy grid map needs a resolution to discretize the environment [55:
Winner et al. 2012]. Therefore, the occupancy grid map can be chosen depending on
the requirements of the precision of the data [55: Winner et al. 2012]. In occupancy
grid map, three states include free, occupancy, and unknown. Bayesian probability

update robustly applies to the occupancy grid map state as follows:

p(StIZE, 8571 = a.p(S*1Z%). p(STH 251, 572) (3.5)

Bel(S?) = a. p(St|Zt~1). Bel(St™1) (3.6)

where the Bayesian probability p(St|Z¢,St™1) represents Bel(St). Stis map state
in the specific position at time t, and Z* is the measurement in the specific position at
timet. o isanormalization coefficient.

By Equation (3.6), the occupancy grid map updates the state through iterative
method. With this method, the grid occupancy probability only knows the previous

occupancy grid map Bel(St~1) and the inverse observation probability p(S¢|Zt~1).
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3.3.2 Static Map and Dynamic Map

For the occupancy grid map, both the static map concept and the dynamic map
concept are proposed [22: Wolf & Sukhatme 2004]. The dynamic map can be

estimated from the following equation:

p(DY|Z%,..Z5 87 p(DYZLS*Y)  1-p(D) pDTH)

- . . 3.7
T—pOUZ5, - 25500 ~ 1-pOiUZLseD pd) 1—ph O

where St is the state attimet, Z* isthe measurement at time t, and D is the
dynamic state at time t.

However, the p(D!|Zt, St1) needs the inverse observation model to update.
Table 3.1 shows the occupancy probability p(S) in map construction with state.
Three states include free, occupancy, and unknown. The threshold is set to 0.2 and

0.8.

Table 3.1 The Occupancy Probability of Each State S

State Occupancy probability

Free p(S) < 0.2
Unknown 0.2< p(S) <0.8
Occupied 0.8 < p(S)

With Table 3.1 result, the inverse observation model establishes in Table 3.2 [22:

Wolf & Sukhatme 2004]. In [22: Wolf & Sukhatme 2004], Wolf and Sukhatme

propose static map and dynamic map. The static map includes many dynamic
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obstacles owing to inverse observation model. Since inverse observation model
predicts that the state from unknown to occupied is static object, the pedestrian
detected with LRF scan by robot may be regarded as static object. The probability is
low in dynamic objects. It means that the objects are static. p(Dt|Z¢ St1) is

estimated as follows:

Table 3.2 Inverse Observation Model

St—l Zt p(Dt|Zt,St_1)

Free Free Low
Unknown Free Low
Occupied Free Low

Free Occupied High
Unknown Occupied Low
Occupied Occupied Low

Figure 3.5 demonstrates an example of the inverse observation model analysis of

two consecutive LRF scan. The state of pillar and the state of pedestrian are unknown

for the robot at time t-1, while the pillar and the pedestrian are detected for robot at

time t. Therefore, the pillar and the pedestrian are regarded as static objects from

Table 3.2. In fact, the pillar should be regarded as a static object and the pedestrian

should be regarded as a dynamic object. Table 3.2 is not obviously sufficient. In this

scene, the moving object is only pedestrian. The pedestrian detection in Section 4.4

can solve the problem of inverse observation model in Table 3.2.
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Figure 3.5 The Inverse Observation Model Problem (with LRF Scan Grid Map)
(@) The pillar and the pedestrian are unknown for the robot at time t-1.
(b) Either the pillar or the pedestrian is regarded as the static in inverse
observation model in LRF scan at time t. The pedestrian detection judgment
describes in Section 4.3.
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Chapter 4
Pedestrian Detection and Target

Pedestrian Tracking

For pedestrian detection and target pedestrian tracking, both LRF scan and color
image are used in this chapter. Section 4.1 states the operation principle of
omnidirectional camera and states the problem of the equipment. However, the
combination of LRF and omnidirectional camera is difficult since the sensors are not
calibrated. The calibration between LRF and omnidirectional camera can be divided
into horizontal adjustment, translation, and rotation. In the calibration, the rotation
calibration of the combination of LRF and omnidirectional camera is a researchable
question. Section 4.2 states rotation calibration of the combination of LRF and
omnidirectional camera. For pedestrian detection, the non-pedestrian needs to be
filtered out. In this thesis, the methods with the LRF scan and the color image are
presented in Section 4.3. LRF scan roughly judges pedestrian. Then the Hough circle
transform and the color distribution are the judgment with the color image. With the
above methods, the pedestrian detection can be implemented. In target pedestrian

tracking, owing to pillars hindering or new pedestrians appearing, the data association
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may be error between two consecutive LRF scans. The color distribution and the local

binary pattern (LBP) algorithm are used in the problems of Section 4.4.

4.1 The Operation Principle of Omnidirectional Camera

In the pedestrian detection problem and the target pedestrian tracking problem of
Section 1.2, the LRF scan and the color image should be used. Owing to wide field of
view (FOV), the omnidirectional camera is necessarily used in the problems. Section
4.1.1 states the operation principle of omnidirectional camera. What is more, Section

4.1.2 presents the histogram equalization for low-light omnidirectional camera image.

4.1.1 Introduction of Omnidirectional Camera

The color image is widely used in the mobile robotic field. The color feature
plays an important role in pedestrian detection and target pedestrian tracking.
Therefore, the camera is often mounted on the mobile robot.

In this thesis, one of the problems is pillars hindering. The data association may
be error between two consecutive LRF scans. To search the target pedestrian, the
omnidirectional camera is necessarily used. The omnidirectional camera’s field of

view is 360 degree. Therefore, the omnidirectional camera is regarded as an available
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tool to track the target pedestrian in the pillars hindering problem.

The structure of omnidirectional camera includes a hyperbolic mirror and a
camera under the mirror like Figure 4.1 [5: Yagi et al. 2005]. The horizontal passing
through the virtual center line (HPVCL) maintains the same height in projection [53:
Yang & Lian 2012], [5: Yagi et al. 2005]. The operation principle makes a light flight
to the upper center (0,c). When the light touches the hyperbolic mirror, the light
reflects to the other center (0, —c). The image appears in the process.

z (dc,zc)
04) T c,z2¢

(d1,z1)
(d,2)

(0,-0.5¢)

(do,z0)

Camera (d2,22)

Figure 4.1 The Omnidirectional Camera Structure

4.1.2 The Lightness of Omnidirectional Camera

Although the omnidirectional camera owns many advantages, it still overcomes a

low-light problem in Figure 4.2. Since the light does not directly flight to image plane,
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the color image is dark. The low-light causes the image dark, as shown in Figure

4.3(a). However, the real scene from digital camera is bright, as shown in Figure

4.3(b). That the lighting sources in the beginning put on the floor seems unworkable

because of the unknown environment. The caution leads to two influences. One is the

edge threshold value sets small. As a result, the noise easily interfaces the results. The

other is each color channel distribution is dense. Therefore, using the color space to

tracking target pedestrian is more difficult. Two methods are present to improve the

influences. One uses the histogram equalization [6: Gonzalez & Woods 2008] stated

in the next paragraph. The other enhances light through the aperture. In this thesis, the

histogram equalization is used. With the process, the color image results obtain more

robust.

Figure 4.2 The Light Depends on the Active Lighting Source
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(@) (b)
Figure 4.3 Display Image with Lightness Problem in Ming-Da Building 2F
(a) The omnidirectional image has the light problem
(b) The real-scene with digital camera

Histogram Equalization is a method making the intensity in image uniform [6:
Gonzalez & Woods 2008]. The variables are shown in Figure 4.4. Let B.(r) be the
probability of the intensity. Assume the output intensity s, and the definition of s is

the following:

s=T(r) = J B.(w)dw (4.1)
0
In this transform, the probability of s is the cumulative distribution function

(CDF) of the input r. And that is proved in [6: Gonzalez & Woods 2008]. The

definition of P; is the following:

p={l 0ss<1

0 otherwise (4.2)

where the probability of P, is a uniform function. Owing to digital signal, the
intensity s, of image from Equation (4.1) is a discontinuous function in the image

process as follows:
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k
Sk = z pr(15) (4.3)
j=0

The distribution of intensity is sparse, as shown in Figure 4.3(c), while it is
uniform. The edge extraction is more consistent than unprocessed image in dark

image. The detail states in Section 5.2.

Pr(r) T(r) Ps(s)

A A

> >

(@) (b) (©)
Figure 4.4 Each Variable in Histogram Equalization
(@) The probability of original intensity: PB.(r)
(b) The original intensity transforms output intensity: T(r)
(c) The probability of the output intensity: P(s)

4.2 Sensors Calibration

Before using the sensor, the calibration is an important task. In Section 4.2.1, the
calibration is divided into horizontal adjustment, translation, and rotation. And the
solutions are presented. Section 4.2.2, Section 4.2.3, and Section 4.2.4 are a series of

the solutions for the rotation calibration.
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4.2.1 The Description of Calibration

Combining the LRF and the omnidirectional camera can acquire the abundant
information in signal process. Most of all, the data association is the most important
problem in sensors calibration. In this calibration, the adjustment of six freedoms is
divided into horizontal adjustment, translation, and rotation. The horizontal
adjustment uses the gradienter to calibrate the inclination. The translation is to align
the geometry center of the LRF and geometry center of the omnidirectional camera in
different horizontal plane. The rotation problem is discussed in Section 4.2.2, 4.2.3,
and 4.2.4. Figure 4.5 shows the calibration problem for horizontal adjustment,
translation, and rotation. The gradienter is used to calibrate the horizontal adjustment.
Furthermore, the vernier caliper is used to align the geometry center. For the rotation
problem, the angle matching is a method. In this thesis, the break point and the
angular point in LRF scan and vertical line in color image are regarded as feature and

presented in Section 4.2.2 and Section 4.2.3.

32



X Y
degre
LRF Data igr;\/ egree
(d)

Figure 4.5 Calibration Problems: Horizontal Adjustment, Translation, and Rotation
(@) The laser range finder and omnidirectional camera

(b) The gradienter for the horizontal adjustment in different plane

(c) The vernier for the translation adjustment

(d) The plane rotation problem sketch

4.2.2 Break Point and Angular Point Detection

To do data association, using the feature of data is necessary. The indoor
environment is full of the walls. The break point for LRF scan and the angular point
for LRF scan are shown in Figure 4.6 [7: Jia et al. 2010]. Here, the break point is
presented based on point-distance-based segmentation method [8: Rebai et al. 2009].

The distance between two continuous points in LRF scan is expressed as follows:

D(ry,1i4q) = \/riz+1 +r?—2.14,. 7% cosAa (4.4)

If the distance is more than the threshold value D;;,, the two points are the break
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points. Therefore the threshold value sets as follows:

Cy-min{r;, 1i44}

D,y = Co +
" ’ cotg(pB).(cos (ATa) — sin(ATa))

(4.5)

The parameters C;, Cy, and 3 are presented in [8: Rebai et al. 2009]. Next, the
angular point is introduced in [7: Jia et al. 2010]. The start point links end point to be
a line. If the distance in point to the line is more than the threshold value §, the
angular point appears. In Figure 4.6, the idea of feature detection in LRF scan is
presented. The ‘V’ presents the break point and the X’ presents the angular point. For

the indoor scene, both the break point and the angular point may be corner.

ISRaEnans . Nasis
1117171771117

Figure 4.6 The Break Points and Angular Points (With LRF Scan Grid Map)

In LRF scan, two consecutive points determinate the corner. Finding the break
point, the angular point owns max distance large a threshold value between two
break points link.
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4.2.3 Vertical Line Detection

The vertical line for color image is also an important feature in unknown indoor
environment. The image of omnidirectional camera has distortion. Because of both
angular matching and image distortion, the panorama is necessary. To expand the
panorama, the projection center search is first of all. To sum up, the process needs to
find the projection center, expand the panorama, and detect the vertical line, as shown
in Figure 4.13.

The flow chart of projection center search is shown in Figure 4.7. The projection
center searching through the HPVCL is set in image center. First, the lower image is
cut. The gray broad in image appears with RGB filter. Then, the region growing and
the image filling are used to the image. The data x, y, and R relationship is shown as

follows:
(x—c1)?>+ (Y —c)* = R? (4.6)

where the coefficients ¢,, and ¢, are unknown. Next, through least square method [10:
Gander et al. 1994], the optimal projection center can be obtained. Finally, the
iterative method is continuous until it converges.

With above method, the optimal projection center converges in the omnidirectional

camera image.
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Figure 4.7 The Flow Chart of Projection Center Search
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(@) (d)

(b) (e)
Figure 4.8 Results of the Projection Center Search Algorithm
(@) Cut image
(b) Set the threshold value
(c) Region growing
(d) Image fill the holes
(e) Least square fitting circle

The panorama remedies the distortion image. For [11: Grassi & Okamoto 2006],

that the panorama image depends on radius and angle from projection center is shown

in Figure 4.9. The vertical axis of panorama is radius and the horizontal axis of

panorama is angle. The larger the radius from projection center is, and the less the

distortion in omnidirectional image is. The idea of panorama is that the Cartesian

coordinate converts the polar coordinate. Figure 4.10 demonstrates an example for

panorama image in real scene. Panorama image is shown in Figure 4.10(b).
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90° 180° 270° 360°
Figure 4.9 The Idea Process of Panorama Image

The vertical axis is radius and the horizontal axis is angle. The larger the radius is,
and the less the distortion is.

(b)
Figure 4.10 Real Scene Image Process in Ming-Da Building 5F
(a) Omnidirectional camera image
(b) Panorama image in (a) from the idea of Figure 4.9
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For the vertical line detection, many edge detectors can be used. For the

panorama image, the Sobel vertical edge detection as shown in Figure 4.11 presented

in [6: Gonzalez & Woods 2008] seems to be a practical method. Using the Sobel mask

in Figure 4.11 does convolution with the original image. If the intensity difference in

vertical direction is more than threshold value, the pixel is considered as a vertical

edge. The main problem is the lightness of color image stated in Section 4.1.2. If the

gradient Vf is more than threshold T, the vertical edge is detected. However, the

threshold value in Sobel vertical edge detection can vary dramatically because of the

low-light environment for omnidirectional camera. Figure 4.12 demonstrates an

example of low-light environment for omnidirectional camera. The threshold is small,

as shown in Figure 4.12(a), the edge can be detected. However, the threshold is large,

as shown in Figure 4.12(b). The low-light problem causes the edge threshold often

needs to change. Figure 4.14 presents the vertical line extraction results with

histogram equalization of low-light environment for omnidirectional camera.

Histogram equalization is used to Figure 4.14(c). The threshold values in Sobel

vertical edge detection is set the same. As expected, Figure 4.12(d) appears more

vertical line than Figure 4.12(b). Therefore, the vertical line detection includes

inputting an image, finding projection center, expanding the panorama, using

histogram equalization, using Sobel vertical mask, and using area filtering, as shown
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in Figure 4.13.

-1 0 1
-2 0 2
-1 0 1

Figure 4.11 The Sobel Vertical Edge Detector

137 141 115 200 142 55

137 151 115 200 152 55

137 161 115 200 162 55
(@) (b)

Figure 4.12 The Example of Two Image for Sobel Vertical Edge Detector
(a) The intensity of left column and right column is nearly
(b) The intensity of left column and right column is sparse

Input Image

Find Projection
Center

Expand the Panorama
|
v
Histogram
Equalization

Sobel Edge Detection
in Ver’cicalI Direction

|
Area Filter

|
Vertical Line
Detection

Figure 4.13 The Process of Vertical Line Detection
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Figure 4.14 Vfertical Edge Detector in the Same Threshold Value
(a) The original image converts to gray
(b) The edge detector result of (a)
(c) Using histogram equalization process
(d) The edge detector result of (c) and the real scene in digital camera
(e) The histogram from (a)
(f) The histogram from (b)
(9) The histogram from (c)
(h) The real-scene with digital camera in Ming-Da Building 2F

4.2.4 Data Association

In the sensors calibration, the data association is an important task. However, the

distance in LRF scan matches the pixel in color image is a problem. In [13: Bacca et
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al. 2013], the corner point matches the vertical line like in Figure 4.15(a). What is

more, the dashed plane means the LRF scan plane. In [12: Ueda et al. 2011] and [14:

Scaramuzza et al. 2006], the corner of vertical line is estimated in omnidirectional

image. With the above transform function, the rotation angle can be estimated at the

polar coordinates. From vertical line, matching the corner point needs a polynomial

function with order 4. In unknown indoor environment, the corner of LRF scan in

specific plane and vertical line of color image in digital camera are obvious features.

The results show in Section 5.2.2.

Line

Hallway S

(a) (b)

Figure 4.15 The Data Association Conception Matching the Feature Points

(@) The dashed plane means the LRF scan plane. From vertical line, matching the
corner point needs a polynomial function with order 4. The height convert pixel
shows in Section 5.2.

(b) A door of Real-Scene for Vertical Line and Corner. In door, the corner of LRF
scan in specific plane and vertical line of color image in digital camera are
obvious features.
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4.3 Pedestrian Detection

In pedestrian detection, both omnidirectional camera and LRF are used in the
thesis. Section 4.3.1 presents a preprocessing for pedestrian detection with LRF scan.
Both the left line and the right line of bounding box are from LRF scan. Section 4.3.2
states the lower line of bounding box extraction in pedestrian detection. However, the
upper line of bounding box extraction for pedestrian needs to judge the pedestrian
since the height of pedestrian is unknown. Section 4.3.3 provides judgment for
pedestrian detection. Color distribution and Hough circle transform are used to
estimate the head of pedestrian. Section 4.3.4 states the idea that the pedestrian

extraction corrects the global static map.

4.3.1 Pedestrian Detection Preprocessing with Laser Range Finder

For pedestrian detection, inverse observation model is used in [3: Chen et al.
2011]. However, the inverse observation model with LRF scan does not detect the
pedestrian whose state is from unknown to occupied. In summary, the moving object
in LRF scan is sometimes regarded as static object in environment. Take for example,
the dynamic map in Cartesian coordinate shows in Figure 4.16(a). However, the

pedestrian in dynamic map is not obviously. Therefore, that the preprocessing for
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Figure 4.17(a) includes data segmentation, distance factor, and cluster size is used in

the thesis. The following states the data segmentation for LRF scan, distance factor

for LRF scan, and cluster size for LRF scan.

(a) (b)
Figure 4.16 The Moving Objects in Dynamic Map with LRF scan (a grid: 200cm)
(a) By inverse observation model, some moving objects points are noise points in
Cartesian coordinate.
(b) The color image in omnidirectional camera with semi-image
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(@) (b)

Figure 4.17 The Measurement Points in LRF scan (unit : 10cm)

(@) The points in measurement map are error in Cartesian coordinate. The
unreasonable pedestrian points should be eliminated. The LRF scan shows the
LRF points needed to be solved.

(b) The color image in omnidirectional camera with semi-image

The idea of data segmentation is same as Section 3.2.2. For each cluster, if two
consecutive points distance D(r;,7;,4) with Equation (3.4) in Section 3.2.2 is larger

than D, with Equation (3.5) in Section 3.2.2. Then the cluster divides into two
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clusters. With the method, the points cluster around several groups. Each group is

regarded as an object. The measurement point divides into four groups ‘A’, ‘B’, ‘C’,

and ‘D’, as shown in Figure 4.18(a).

(a) (b)
Figure 4.18 The Data Segmentation Result in LRF scan (unit : 10cm)
(a) The data segmentation divides into four groups as the picture in Cartesian
Coordinate. In picture, the scan divides into four groups A, B, C, and D.
(b) The color image in omnidirectional camera with semi-image

In general, the distance from the mobile robot affects the accuracy. Therefore, the

threshold distance for measurement points is set. The distance from the mobile robot

is far. Then, the confidence is low. In Figure 4.19(a), the distance of wall achieves

eight meter. The far distance for measurement points is eliminated.
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(a) (b)

Figure 4.19 The Distance Factor in LRF Scan (unit : 10cm)

(a) The distance is far, and then the confidence is low. In this picture, the distance
achieves eight meter. The error increases with distance. The LRF scan is in
Cartesian Coordinate.

(b) The color image in omnidirectional camera with semi-image

Finally, the cluster size should be considered in the pedestrian detection. For the
pedestrian data, the points in each cluster contain specific number. For example, the
wall in Figure 4.20 is detected as a moving object. However, the number of
measurement points obviously is non-pedestrian. Using the three judgments, the

pedestrian is roughly extracted.

100

(a) (b)
Figure 4.20 The Cluster Size of Elimination in LRF Scan (unit : 10cm)
(@) The pedestrian size owns specific size, and the unreasonable points are
eliminated. The LRF scan is in Cartesian Coordinate.
(b) The color image in omnidirectional camera with semi-image.
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4.3.2 Lower Line of Bounding Box Extraction

For the pedestrian detection, the LRF scan only the distance information seems
to be insufficient. However, the pedestrian information includes not only the distance
from mobile robot but also the color of pedestrian. Hence, the color image is regarded
as an additional condition for the judgment based on the laser range finder (LRF)
scan.

The omnidirectional camera is used to detect pedestrian since the field of view
(FOV) is wide. For fusion of LRF and omnidirectional camera, the bounding box
needs to be extracted. The left line of bounding box and the right line of bounding box
are from the LRF scan. Therefore, the upper line of bounding box and the down line
of bounding box states in Section 4.3.2 and Section 4.3.3.

Through the sensor calibration in Section 4.2, the sensors are directly used. To
acquire lower line of bounding box, the operation principle of omnidirectional camera
is used. Therefore, the omnidirectional camera mirror is discussed. Figure 4.21 shows
the undistrtion image by a toolbox in [46: Bouguet 2013]. Hence, the omnidirectional

camera mirror model can be estimated.
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(a) (b)
Figure 4.21 The Omnidirectional Camera Model
(@) The original image with digital camera
(b) The undistortion image with digital camera

From [5: Yagi et al. 2005], the omnidirectional mirror is a hyperbolic surface. To
acquire the mirror equation, image processing is necessary. The hyperbolic surface
region is selected from Figure 4.22(a), as shown in Figure 4.22(b). Canny edge
detector [6: Gonzalez & Woods 2008] is used. Generally, the Canny edge detector is a
powerful tool to deal with edge problems [6: Gonzalez & Woods 2008]. The result by

the Canny edge detector is shown in Figure 4.22(c).

(a) (b) (©
Figure 4.22 The Hyperbolic Surface Extraction
(a) The original image with digital camera
(b) Select the hyperbolic surface region in Figure 4.22(a)
(c) Using the Canny edge detector in Figure 4.22(b)

After acquiring the edge information, the hyperbolic surface equation is the next
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problem. Least-square fitting (LSF) of Hyperbolae [47: O’Leary & Murray 2004] is
minimum error method for curve fitting. In [47: O’Leary & Murray 2004], the process
uses the single value decomposition (SVD) to fit the hyperbolic surface equation. In

Figure 4.23(b), the curve is the Least-Square Fitting curve from Figure 4.23(a).
g \

1t
J
c?=a?+b?

(a) (b)
Figure 4.23 The Curve Fitting of SVD algorithm
(a) Using the Canny edge detector in Figure 4.22 (c)
(b) The curve is the Least-Square Fitting curve from Figure 4.23(a).

The above paragraph describes the curve fitting with SVD algorithm. Figure 4.24
shows the model of omnidirectional camera in [5: Yagi et al. 2005]. The
parameters (d4, z,), (d., z.), and (d,, z,) are HPVCL parameters. By optical relation
of hyperbolic surface, it needs the parameter a, b, and c. Then, the light from (d,, z,)
to (0,c) on the hyperbolic surface is (d,z), and it turns to (0, —c) on the image
plane (dp,z,) . From Equation (4.6) in Section 4.2.3, (do,z,) is known.
Therefore, (d,, z,) is obviously acquired by the optical relation of hyperbolic surface.

The equations are from following Equation (4.7) to (4.12). The known parameters
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are dq, dy, z1, Z, d¢, Z¢, dy, Z9,Zp, a, b, and c. The parameters d, z, and d,, is used.
Through the following equation, the result is shown in Figure 4.25. However, the
arrow represents the error measurement in LRF scan. The LRF scan converts the pixel
in omnidirectional camera image. The LRF mounts on 90 centimeter as same as the
wall Height. So the measurement in LRF scan may be some error. Figure 4.26(c)

shows the left line, the right line, and the lower line of bounding box.

Q

(0,-0.5¢)

(dp,

(d1,z1)

Figure 4.24 The Omnidirectional Camera Model with Pedestrian Estimation in
Omnidirectional Camera Image Pixel from Projection Center
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(4.7)

(4.8)
X
—dis.z; — |(dis.z,)? — <di52 - (E) >-(le —b?)

(4.9)

d= b 2

dis* - (3)

z =2z, +dis.d (4.10)
do = 0.25d, (4.11)
zy =z, = —0.5¢ (4.12)
P 2(c+2) @49
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Figure 4.25 The Ground Bounding Box Result Demonstration (unit: pixel & meter)
The LRF scan converts the pixel in omnidirectional camera image. The LRF
mounts on 90 centimeter as same as the wall Height. So the measurement in LRF

scan may be some error.
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(a) (b)
Figure 4.26 The Left Line, the Right Line, and the Lower Line of Bounding Box.
(a) The measurement points in LRF scan with some preprocessing
(b) Omnidirectional camera color image with semi image
(c) Left line, right line, and lower line of bounding box with panorama image

4.3.3 Upper Line of Bounding Box Extraction

For the bounding box, the upper line of bounding box extraction is a difficult
task owing to unknown height of pedestrian. In the pedestrian detection, head
detection is a practical method. In this thesis, Hough circle transform and color
distribution are conditional judgments for the pedestrian detection [48: Zhao et al.
2012].

Hough circle transform is a circle with radius r and center (x,,y,) can be
expressed as the following parametric equations:

X = Xg +19.c0s 6 (4.14)

y = Yo +1p.5in6 (4.15)
where the angle 6 is the full range 360 degree. Hough circle transform owns a voting
mechanism from (x,y) coordinate to (x,, yo,1r) coordinate [48: Zhao et al. 2012], [36:

Ballard 1981]. Figure 4.27 illustrates the Hough circle transform procedure. First, any
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point in (x,y) coordinate converts to a circular cone in (xq,Yo,%,) Coordinate

through Equation (4.14) and (4.15), as shown in Figure 4.27(a) and (b). Next, owing

to adding other point, another circular cone in (x,, v,,7,) appears, as shown in Figure

4.27(c) and (d). Finally, the voting number decides the circle. That the (x,y)

coordinate converts to the (xq,y,,7,) coordinate is two-dimension converts to

three-dimension. So the radius usually is fixed in some range, as shown in Figure

4.27(e) and (f). For the pedestrian detection, circle radius in real-life is approximately

from 15 cm to 20 cm. And head body ratio is 4 to 9.

For the color distribution [33: Zhao et al. 2008], [49: Rahimi et al. 2013], YCbCr

color space extracts luminance in Y channel. The color space decides pedestrian

model with both Cb channel and Cr channel. Equation (4.16) describes RGB color

space converts to YCbCr color space [50: YCbCr from wiki 2014]. Equation (4.17)

and (4.18), the color space threshold value in pedestrian detection is presented in [33:

Zhao et al. 2008], [49: Rahimi et al. 2013], [48: Zhao et al. 2012].

For above conditional judgment, the pedestrian can be distinguished. Figure 4.28

shows a test of pedestrian detection. As expected, the Hough circle transform can

detect the head of pedestrian, as shown Figure 4.28(d). In summary, the Hough circle

transform and the color distribution are efficiently the methods for pedestrian

detection.
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Figure 4.27 The Hough Circle Transform

(@) The (xg,y,, 1) coordinate with Equation (4.14) and Equation(4.15)

(b) The (x,y) coordinate from (a) with Equation (4.14) and Equation(4.15)

(c) and (d) two points in (x,y) coordinate make a line intersection

(e) and (f) set the specific plane r value for Hough circle transform making the
dimension reduction.

Then (a)~(f) is Hough circle transform operation process
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Y 16 65.481 128.533 24.966 || R
Cb|=|128 |+| -37.797 -74.203 112.000 || G (4:16)
Cr 128 | |112.000 -93.786 -18.214| B

Re, =[111,170] (4.17)

R., =[115,195] (4.18)

(d)

(b)

Figure 4.28 Test of Pedestrian Detection

(a) Original panorama image in Ming-Da 5F

(b) Original image in specific region

(c) Histogram equalization, Canny edge detection, and Hough circle transform
(d) Circle radius, head body ratio, and color distribution verification

4.3.4 Pedestrian Points Filtering in Static Map Construction

To obtain accurate the global static map, the pedestrian filtering is an important
item in static global map construction. When the pedestrian points are filtered, the

other points in scan are matched by PSO algorithm in Section 3.2. The static global
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map is accurate owing to the pedestrian points filtering. The procedure is shown in
Figure 4.29. The pedestrians are detected with LRF scan at time t and t+1, as shown
in Figure 4.29(a). However, the pedestrians are filtered at time t and t+1, as shown in
Figure 4.29(b). The scan matching between two LRF scans, as shown in Figure
4.29(c). However, the thesis only states the idea. In the future work, pedestrian points

filtering in global static map may be a practical method.

N

40 -
T T

Figure 4.29 Pedestrian Points Filtering Process

(@) Origin raw data in time t and t+1

(b) Pedestrian points filtering in time t and t+1

(c) Static global map in pedestrian points filtering in time t and t+1
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4.4 Target Pedestrian Tracking

For target pedestrian tracking, the color image is important. However, the color
image seems to solve the problems in Section 1.2. Section 4.4.1 and Section 4.4.2
describe the color distribution and the color texture. Section 4.4.3 provides a method
Bhattacharyya distance for two histograms comparison. With the coefficients, Section

4.4.4 states the update method.

4.4.1 Color Distribution

Color distribution is a method to track target pedestrian. Color distribution can
divide into three independent channels. In this thesis, YCbCr color space is presented
in [50: YCbCr from wiki 2014]. The RGB color space converts the YCbCr color
space with Equation (4.16) in Section 4.3.3. The YCbCr color space is widely used to
digital video. Y is the luma component, Cb is the blue-difference chroma component,
and Cr is the red-difference chroma component.

In the target pedestrian tracking, the color image is used. Generally, color spaces
of two near images are similar. Therefore, the all channels of YCbCr color space are

simultaneously adopted.
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4.4.2 Local Binary Patterns

To track target pedestrian, the color distribution is obviously insufficient. For
each pixel, neighbor relative intensity is also important. In [49: Rahimi et al. 2013],
LBP is a texture operator. The LBP algorithm states the neighbor relative intensity for
each pixel. Owing to the LBP algorithm, the target pedestrian tracking is robust
against pedestrian deformation.

LBP algorithm is often used because of low computational complexity [49:
Rahimi et al. 2013]. The LBP value represents relative intensity with neighbor. In an
intensity of 3x3 cells, the center cell 10 compares with neighbor. If 10 is larger than
the cell, the cell marks 0. Likely, if the I0 is smaller than the cell, the cell marks 1.
Figure 4.30(b) is a result through the LBP operator in Figure 4.30(a). The LBP value
is binary bit from I1 to I8, as shown in Figure 4.30(b). The LBP value
i (10100100),. The decimal is 164 in Equation (4.19). Each pixel in image does the

LBP operator. Therefore, the result is LBP image.
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65 71 155 0 0 1

18 10 14 18 10 14

127 93 51 1 0

17 16 15 17 16 15

19 162 63 0 1 0
@) (b)

Figure 4.30 The Example for LBP Operator
(a) The intensity of 3*3 cell from pixel 10
(b) The LBP result from Figure 4.30 (a)

Decimal: 1 28=D + 1 % 206-D 4 1 % 26D = 164 (4.19)

4.4.3 Bhattacharyya Distance

Bhattacharyya distance is used to judge the similarity of two histograms [51:
Bhattacharyya distance from wiki 2014]. Equation (4.20) represents the
Bhattacharyya distance coefficient (BC), N is the number of intensity, Nyy¢q; IS the
total number of pixels in image, a; is the number of previous color space for
intensity i, and b; is the number of current color space for intensity i. That the BC
equals one means two histograms is same. That the BC is close to zero means two

histograms are different. Figure 4.31 are examples for the BC.

BC =) Y 2 (4.20)
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(a) previous color histogram  (b) current color histogram (c)BC
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Figure 4.31 The Bhattacharyya Distance Coefficient Illumination
(a)~(c) The two same histogram and Bhattacharyya distance coefficient
(d)~(f) The two different histogram and Bhattacharyya distance coefficient

(9)~(i) The more different the two histogram are, the closer to 0 the Bhattacharyya
distance coefficient is
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4.4.4 Database Update

For each candidate pedestrian data, it owns four Bhattacharyya distance
coefficients including Y color intensity histogram, Cb color intensity histogram, Cr
color intensity histogram, and LBP intensity histogram. If the four Bhattacharyya
distance coefficients are larger than threshold values, the pedestrian is the target
pedestrian. The new pedestrian replaces the original target pedestrian to the new target
pedestrian.

For data association, spatial constraint needs to be considered. If the Euclidean
distance between original pedestrian data and new pedestrian data is larger than a
threshold value in a period time, the spatial constraint deletes the pedestrian data.
Over the period time, the pedestrian location is not important.

With both the four Bhattacharyya distance coefficients and the spatial constraint,

the target pedestrian tracking is complete.
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Chapter 5
Experimental Results and

Analysis

Several experiments are undertaken in Ming-Da Building. Self-localization,
mapping, pedestrian detection, and target pedestrian tracking are evaluated with the
offline experimental systems. Section 5.1 states the equipment in the experiments.
Section 5.2 states the sensors calibration between the LRF and the omnidirectional
camera. What is more, Section 5.2 discusses the error of sensor measurement. In
Self-localization and mapping, Section 5.3 states methods including PSO algorithm
and occupancy grid map. The accuracy of mapping results by ICP algorithm and PSO
algorithm is shown in Section 5.4. For pedestrian detection, Section 5.5 shows the
performance and the process. Likely, Section 5.6 shows the performance and the

process in target pedestrian tracking.

5.1 Hardware Platform

The following equipment is used in the experiment, as shown in Figure 5.1.

The Pioneer 3-DX in Figure 5.1(a) is a differential-drive mobile robot. The
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LMS-100 is a LRF providing the distance scan in a plane. And the VS-C14U-80-ST is
an omnidirectional camera, and the field of view (FOV) of the omnidirectional
camera covers the 360 degree. Both the LRF and the omnidirectional camera are
mounted on the mobile robot, as shown in Figure 5.2. The VS-C14U-80-ST is
mounted on the mobile robot at 180 cm from ground. What is more, the LMS 100 is
mounted on the mobile robot at 90 cm from ground.

The URG-04LX-UGO01 is also LRF used in these experiments as a ground truth

of the robotic position, as shown in Figure 5.1(d).

(©) (d)
Figure 5.1: The Experimental Instrument
(a) The model number Pioneer 3DX from mobile robot
(b) The model number LMS-100 from LRF
(c) The model number VS-C14U-80-ST from omnidirectional camera
(d) The model number URG-04LX-UGO01 from LRF
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- ———1LMS100

~__— Pioneer 3DX

Figure 5.2 The Experimental Mobile Robot
The VS-C14U-80-ST is mounted on the mobile robot at 180 cm from ground.
And the LMS 100 is mounted on the mobile robot at 90 cm from ground.

5.2 Accuracy of Sensor Measurement

In Section 5.2.1, the LRF scan accuracy is tested. Section 5.2.2 analyzes

accuracy in both the panorama image of omnidirectional camera and rotation

calibration.

5.2.1 Laser Range Finder Accuracy

LMS-100
The experimental results probe into the accuracy of LRF before using the

equipment. The main tasks include two analyses. One is acceptance rate, and the other
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is error. The details are presented as follows.

Acceptance rate means the sensor accepts the emissive light. Table 5.1 shows the

total acceptance in each angle with 100 pieces of data in the environment with glass.

The measurement points in the environment with glass, as shown in Figure 5.3(a).

In this experiment, Section 3.1.2 states the glass environment affecting the

acceptance rate. Then, Figure 5.4 demonstrates the analysis of acceptance rate in the

glass environment. Here, the x-axis is angle, and the y-axis is percentage. The glass

environment may cause the acceptance rate reduction. To prove the thinking, the same

style experiment is also implemented in network control systems laboratory (NCSLab)

with non-glass environment, as shown in Figure 5.5. The measurement points in 60

cm plane from ground and the acceptance rate achieve 100% with LRF in each angle

in Figure 5.6. In addition, the acceptance rate in glass environment is 95.6% in Table

5.1. In this condition, the glass environment affects the acceptance rate.
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Figure 5.3 Experimental Environment with Glass in Ming-Da Building 2F (unit:m)
(a) Measurement points in 60 cm plane from ground, some distances exceed 20 m
(b) The measurement points contain less 20 m for LRF scan from (a).

(c) Real-scene in environment with digital camera

Table 5.1 Acceptance Rate in the Ming-Da Building 2F

Measurement Number Total of Each Angle
Percentage
(Total 100 data) (361 angle)
0 12 3.3%
1~99 4 1.1%
100 345 95.6%

100
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Figure 5.4 Plot the Acceptance Rate with Each Angle in the Table 5.1
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(a) (b)
Figure 5.5 Experimental Environment in Ming-Da Building Lab 601 (NCSLab)
(a) Measurement points in 60 cm plane from ground and the acceptance rate
achieve 100% with LRF in each angle (unit: meter)
(b) Real-scene with digital camera in non-glass environment

To judge the data performance, the mean and the error are presented. Equation

(5.1) and (5.2) show the mean and the error:

Y all data
item number
Y.(data — mean(data)) 100%
item number "mean(data)

mean(data) = (5.1)

error = (5.2)
The following results in Figure 5.6 indicate the error analysis from Equation (5.2)
with different distance. In length 4.5 meter with maximum error, the error achieves up

to 2%. For the data number from 100 pieces of data to 650 pieces of data, the error

does not obviously change.
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Figure 5.6 Data Number of Sampling in Distance Length with Error Percentage
Analysis

x-axis: distance length

y-axis: error percentage

The maximum error is about 4.5 meter achieving up to 2%.
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Il. URG-04LX-UGO01

Similarly, both acceptance rate and error are presented in above paragraph. And

the experiments are the same with above paragraph. In NCSLab, the results are the

following in Table 5.2, Figure 5.7, Figure 5.8, and Figure 5.9. The real-scene in

NCSLab is shown in Figure 5.7. However, the measurement unstable with different

value for corner, as shown in Figure 5.7(c) and (d). The acceptance rate is only 54.8%.

However, the acceptance rate of LMS-100 in NCSLab can achieve 100%. In the error

analysis, the error in different number data is shown in Figure 5.6. The error analysis

is for URG-04LX-UGO01 from Equation (5.1) and (5.2). Although, the regular is not

found, there are two peaks close to 0.5m and 2m in these data. Compared with

LMS-100, the mean error is 0.56%. The mean error is smaller than LMS-100 0.81%.

But the maximum error in URG-04LX-UGO01 achieves 40.02%. The maximum error

in LMS-100 is only 2.33%. In summary, the error of URG-04LX-UGO01 has smaller

mean error than LMS-100. However, the maximum error of URG-04LX-UGO01 is

larger than LMS-100. Table 5.3 states the details.
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Figure 5.7 The Measurement Points of the LRF Scans

(a) Real-scene with digital camera

(b) Plot measurement points in NCSLab (unit: m)

(c) The left value of 124.3 degree: 1.743% error with 100 pieces of data

(d) The right value of 124.3 degree: 0.432% error with 100 pieces of data

(c) and (d) represent the measurement unstable with different value for corner

Table 5.2 Acceptance Rate in the NCSLab in 100 data

Measurement Number Total of Each Angle
Percentage
(Total 100 data) (361 angle)
0 253 37.1%
1~99 55 8.1%
100 374 54.8%
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Figure 5.8 Plot the Acceptance Rate Result with Each Angle in Table 5.2
The x-axis is angular information, and the y-axis is measurement number. In this
picture, the acceptance is about 50%.
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Figure 5.9 Errors with Equation (5.1) and Equation (5.2)
x-axis: distance length
y-axis: error percentage
The regular of measurement error is not found. But, there are two peaks close to
0.5m and 2m in these data.
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The LMS100 and the URG-04LX-UGO01 have their advantages. Table 5.3 states

the properties of LRFs. The items include measurement range, measurement angle,
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resolution, measurement full ratio, maximum error, mean error, and scan time.

Table 5.3 Properties of Laser Range Finder

URG-04LX-UGO01 Item LMS100
0.02m ~4m Measurement Range 0.05m~20m
240 ° Measurement Angle 180 °
0.36 ° Resolution 05°
54.8 % Measurement Full Ratio 95.6 %
40.02 % Maximum Error 2.33%
0.56 % Mean Error 0.81%
100 msec Scan Time 20 msec

5.2.2 Sensors Calibration

I.  Break Point and Angular Point Detection

The LRF uses the distance of two consecutive points to do segmentation. Then,

the dynamic threshold D,, and & are selected. The partitions divide into break

points and angular points in Figure 5.11. In Figure 5.10(a), ‘*’ represents the break

point and ‘o’ represents the angular point. Hence, the x-axis represents the number of

angle. The 361 angle numbers cover the 180 degree, and the angle resolution is 0.5

degree, In addition, the LRF is mounted on the mobile robot at 90 cm from ground.
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(@) (b)
Figure 5.10 The Break Points and Angular Points with LRF Data in Ming-Da
Building 6F

(@) The break point is “** and the angular points ‘o’

(b) The stem plot represents the break points and angular points with the number
of angle

x-axis: 0.5 degree is a number

y-axis: 1(true), O(false)

Take for example in Figure 5.11, the ‘0°:14.5°(1.72)’ means that 14.5° is angular
points from Section 4.2, 0° is angular point in Section 4.2, and 1.72 meter is the
maximum distance in the point to the line from start to end. Similarly, the
“26°:75.5°(3.55)’ means that 26° and 75.5° are break points in Section 4.2, and 3.55

meter is the maximum distance in the point to the line from start to end.
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Figure 5.11 The classification represents the break point ‘+* and

the angular point ‘o’.
For example, 0°:14.5°(1.72) is a symbol. 0° and 14.5° are angular points, and
1.72 meter is the maximum distance in the point to the line from start to end.
Similarly, 26°:75.5°(3.55) is a symbol. 26° and 75.5° are break points, and 3.55
meter is the maximum distance in the point to the line from start to end.

[1.  Vertical Line Detection

To do the panorama of omnidirectional camera, the projection center needs to be
found. In the Ming-Da Building 4F, the floor owns the gray board considering the
feature. The omnidirectional camera is put on the floor and turned over. The position

of the omnidirectional camera in Ming-Da Building 4F is shown in Figure 5.12.
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(b)
Figure 5.12 The Position of the Omnidirectional Camera in Ming-Da Building 4F
The omnidirectional camera is put on the floor and turned over.

m -
(@) (b)
m m

(d) (e)
Figure 5.13 The Process in Finding the Projection Center in Ming-Da Building 4F
(a) Cut image in omnidirectional camera
(b) Set the threshold value in RGB color space from (a)
(c) Region growing in specific point from (b)
(d) Image fill the holes from (c)
(e) Least square fitting circle from points in (d)

And then, Figure 5.13 shows the procedure in finding the projection center
through the HPVCL. First, Figure 5.13(a) is an input image. Then, the lower image is
cut. Using the RGB filter, the gray color data is shown in Figure 5.13(b).Next, using
the region growing, and the image is shown in Figure 5.13(c). Using the image filling,
the image is shown in Figure 5.13(d). Finally, Table 5.4 shows the iterative results, the

initial guess is the center of image (512,384). The second iterative result converges to
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the projection center (530,394). Hence, the positive x-axis is right, and the positive

y-axis is down.

Table 5.4 Projection Center Search

Initial result First iterative Second iterative Final result
X (pixel) 512 530.147 530.1288 530
Y (pixel) 384 394.2445 394.2285 394

The resolution of panorama image is 350x721, as shown in Figure 5.14(b). The

resolution in Figure 5.14(a) is 1024x768. And the analysis of panorama needs to be

deeply probed. In Figure 5.15, the gray board is the feature extracted. The extracted

feature compares to the radius of projection center. First, using the RGB filter for

input image gets the imagel. Then, using the Sobel horizontal edge detector in [6:

Gonzalez & Woods 2008] for the imagel gets image2. In image 2, picking the lower

line in two lines can get image3. Finally, using the opening algorithm in [6: Gonzalez

& Woods 2008] can get image4. The image4 includes the radius of projection center

names HPVCL.
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Figure 5.14 The Panorama Image from Omnidirectional Camera
(a) The original image from omnidirectional camera

(b) The panorama image from (a)




(b)

(e) ()
Figure 5.15 The SHL Extraction Method from Omnidirectional Camera in
Ming-Da Building 4F
(&) The original image from omnidirectional camera
(b) The panorama image from (a)
(c) Using the RGB filter from (b)
(d) The Sobel horizontal edge detector in [6: Gonzalez & Woods 2008] from (c)
(e) Pick the down line in two line in (d)
(f) Using the opening algorithm in [6: Gonzalez & Woods 2008] from (e)

The accuracy of the HPVCL is shown in Figure 5.16 and the formulas are from
Equation (5.3) and (5.4). In Figure 5.16, Current_Radius is the radius from projection
center to gray board, and Pixel_Radius means the radius in Figure 5.13(e) is 308. The

histograms are shown in Figure 5.16.
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Figure 5.16 The analysis of Figure 5.15
(a) Difference of Pixel = Current_Radius - Pixel Radius
x-axis is the difference number, and y-axis is the number of pixels
(b) Error Pixel = abs(Difference of Pixel)/Pixel Radius*100 %
x-axis is the error percentage, and y-axis is the number of pixels

Error Percentage

Difference of Pixel = Current Radius — Pixel Radius (5.3

Difference of Pixel (5.4)

) _ o
Error Pixel Pixel Radius .100%

The Sobel vertical edge detector results in Figure 5.17. And the histogram
equalization improves the edge detection. Figure 5.17(c) is the original panorama
image. However, Figure 5.17(g) is the vertical lines by Sobel vertical detector. As
expected, Figure 5.17(g) appears more vertical line than Figure 5.17(c). The stem plot
for vertical line is extracted, as shown in Figure 5.17(g). The data association needs to

the specific pixel in vertical line of image, and the next paragraph states the detail.
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Figure 5.17 The Sobel Vertical Edge Detector for Ming-Da Building 6F
(a) Original image gray value from omnidirectional camera
(b) The histogram equalization process from (a)
(c) The panorama original image from 5.14(a)
(d) The vertical line angle from (c)
(e) The histogram from (a)
(f) The histogram from (b)
(9) The Sobel vertical line detection in (c)
(h) The stem plot for the real-scene in (d)

I1l.  Angular Rotation Calibration

To pick the specific pixel matching the LRF scan point, the distance and pixel

relationship needs to be acquired. In Figure 5.18 and Table 5.5 with the distance and
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the pixel relationship [12: Ueda et al. 2011], the LRF is mounted the same height of
the suitcase. The corner in LRF scan matches the suitcase corner pixel in color image.
The distance from LRF scan and pixel from color image relationship is shown in
Table 5.5. Therefore, the curve fitting of the distance and pixel is presented in Figure
5.19. The curve fits with a polynomial function with order four [14: Scaramuzza et al.
2006]. The function is y = 0.0015x* - 0.0245x> - 1.0363x* + 22.4902x + 160.0462.
The following six cases are shown in Figure 5.18. And the complete 20 cases are

shown in Appendix A.1.
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Figure 5.18 (a)~(f) The Distance Converts the Pixel (Remainder in Appendix A.1)
The LRF mounts on mobile robot, and the height is 60 cm.
The corner in LRF scan matches the suitcase corner pixel in color image.
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Table 5.5 The Distance Data and The Pixel Data

Distance Pixel from Projection Distance Pixel from Projection

(meter) Center (Pixel) (meter) Center (Pixel)
2.48 208 7.21 263
3.12 223 7.70 261
3.93 226 8.11 268
4.09 236 8.50 268
4.70 241 8.91 272
5.23 244 9.43 271
5.66 250 9.71 272
5.63 255 10.23 271
6.40 259 10.32 270
6.89 263 10.46 272

T T
®  Real Cune
270}-| —® Fitting Cune

Omni Image: pixel
N
Iy
o

r r r
6 7 8
LRF Distance: meter

Figure 5.19 The Curve Fitting in Table 5.5
Using least square method to fit curve with a polynomial function with order 4
Quadratic function:
y = 0.0015x" - 0.0245x - 1.0363x* + 22.4902x + 160.0462

r r
9 10 11

With the relationship, the LRF scan and the color image are picked by manual

operation. The rotation data is shown in Table 5.6. And the rotation is 4.75°.

82



Table 5.6 The Rotation Angle with Each Feature

Item Angle with Corner or Vertical Line
Laser Range
) 158.0° 117.5° 25.5° 14.5°
Finder
Omnidirectional
156.5° 113.0° 19.0° 9.0°
Camera
Difference
2.5° 4.5° 6.5° 5.5°
(4.75°)

5.3 Static and Dynamic Map

Section 5.3.1 shows the results in different algorithm including ICP and PSO in

SLAM. And Section 5.3.2 displays the map construction results.

5.3.1 The Algorithms of Localization

When the robot moves, the localization is important for the robot. To correct the
robotic position, the PSO algorithm is used to LRF scans. In the experiments, three
cases, including straight path, circle path, and square path, are discussed. Figure 5.20

shows the experimental scene and the robotic path.
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Figure 5.20 The Robotic Position with Encoder in Ming-Da Building 4F
with Different Path
(&) The robot walks straight path
(b) The robot walks circle path
(c) The robot walks square path

Therefore, Figure 5.21 shows the results with the odometry results, the ICP

algorithm results, and the PSO algorithm results in three cases. In Figure 5.21, both

the ICP algorithm and PSO algorithm possess good performance in the straight path

case and the circle path. However, the wall divides two parts with the ICP algorithm

in the square path, as shown in Figure 5.21(f). Then, the PSO algorithm result is

shown in Figure 5.21(i). The possible reason is that the robot initial position causes

the ICP to fall into the local minimum result. Then the PSO algorithm is an

approximate global search. However, once the robot owns good initial position, the

PSO algorithm affected by other particles causes the performance worse than the

performance of ICP algorithm. In summary, the PSO algorithm owns near truth

position in some cases. In Section 5.4, the location error is analyzed.
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Figure 5.21 The Localization with the Odometry, the ICP Algorithm, and the PSO

(h)

Algorithm in the Three Cases.

(a)~(c) The robot walks straight path, circle path, and square path with the

odometry information.

(d)~(f) The robot walks straight path, circle path, and square path with the ICP
algorithm. With the good initial position, the map is accuracy.

(9)~(i) The robot walks straight path, circle path, and square path with the PSO
algorithm. The PSO algorithm can solve the local minimum problem.

5.3.2 The Map Construction

To make mobile robot move arbitrarily, mapping is a necessary task. The map
state updates according to the occupancy grid map robustly demonstrating the state

not interfered by noise. The map shows in Figure 5.22. The Figure 5.22(b), (d), and (f)
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shows measurement points according to the raw data by PSO algorithm. Figure

5.22(a), (c), and (f) are the state of occupancy grid map from Figure 5.22(b), (d), and

(). Hence, the white is free, the black is occupied, and the gray is unknown. Figure

5.22 illustrates that the map construction is good in different conditions. First, the two

walls mean the near measurement with two sides. Next, the one wall and the one

empty mean the near measurement with one side and the far measurement with the

other side. Finally, the two far walls mean the far measurement with two sides.

86



(a) Two Walls (b) Two Walls

o

-

t

|
PP ]
&
-
2

@

]

f' §

g

. i

(c) One Wall, One Empty (d) One Wall, One Empty

o .
> i
(e) Two Far Walls (f) Two Far Walls

Figure 5.22 The Map Construction by the Occupancy Grid Map and PSO Algorithm
(@), (c), and (e): The occupancy grid map.

White: free. Black: occupied. Gray: unknown.

(b), (d), and (f): Measurement points in a plane when the robot moves.

5.3.3 The Dynamic Map

For the local dynamic map, the inverse observation model acquires the moving
objects in that time. However, the state from unknown to occupied causes false

judgment in Section 3.3. The global map is shown in Figure 5.23(e). What is more,
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the dynamic map is shown in Figure 5.23(a) and (c). But some noise measurements

exist owing to the inaccuracy position. Figure 5.24 shows the state from unknown to

occupancy in Ming-Da Building 5F. In Figure 5.24(e), whether the measurement

points are static objects or dynamic objects is not reasonable in the populated

environment. The dynamic maps are shown in Figure 5.24(a) and (c). In summary, the

state from unknown to occupancy needs to be judged by the color image. Therefore,

the pedestrian detection is solved the problem in Section 5.5.
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Figure 5.23 The State from Free to Occupancy in Pedestrian Walk
(@) and (c) the dynamic map are from free to occupancy, and the some noisy
measurement exists. (a grid: two meter)
(b) and (d) are the omnidirectional image in (a) and (c)
(e) The global map from frame 13~23 (unit: meter)
() The Real-Scene with digital camera in Ming-Da Building 5F
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Figure 5.24 The State from Unknown to Occupancy in Pedestrian Walk

(@) and (c) are the dynamic map from unknown to occupancy (a grid: two meter)

(b) and (d) are the omnidirectional image in (a) and (c)

(e) The global map from frame 1~35. However, that the pedestrian is considered as
static objects is false. (unit: meter)

(f) The Real-Scene in Ming-Da Building 5F
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5.4 Localization Accuracy

The stationary LRF URG-04LX-UGO01 measures the robot position as a ground
truth. The mobile robot owns the LRF LMS-100. The scene is in Ming-Da Building

4F, as shown in Figure 5.25.

LMS 100 URG 04-LX

(@) (b)
Figure 5.25 The Experimental Scene in Ming-Da Building 4F
(a) The LRF LMS100 mounts on the Pioneer 3-DX for localization
(b) The URG 04-LX measurement as a ground truth

Since the measurement is a plane, it needs two linear independent data. In the
analysis, the circle path and the square path are adopted. For ground truth robot points,
the URG-04LX-UG01 measurement data center is the average of first and last point.
The scheme is in Figure 5.26 [12: Ueda et al. 2011]. The error between the mapping

result and the ground truth is defined as follows:

m; = \/(xi - xground)z + (i — yground)2 (5.5)
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where x; and y; are i-th position, Xg,ounq and Ygrouna are the ground truth from

Figure 5.26. Then, the standard derivation is defined as follows:

o= ’Z (milg m) (5.6)

where m; is the i-th datum, m is the mean of all data, and N is the total number

of all data.

Y axis

& X axis

Figure 5.26 The Measurement Center of Robot Points for Ground Truth

I.  Circle Path

Figure 5.27(b) shows the circle path in Ming-Da Building 4F. Figure 5.27(a)

includes the odometry position, the ICP algorithm, the PSO algorithm, and the ground

truth position. The results of mean error and standard deviation (SD) error are shown

in Table 5.7. The position error shows in Figure 5.28 through Equation (5.5) and (5.6).
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(@) (b)
Figure 5.27 The Location of Each Results in Ming-Da Building 4F
(a) The odometry position, the ICP algorithm position, the PSO algorithm position,
and the ground truth position. (unit: meter)
(b) Real scene with the path

Table 5.7 The Error of Each Algorithm with Ground Truth in Figure 5.26

Item Encoder ICP algorithm PSO algorithm
Mean (meter) 0.0788 0.0288 0.0553
SD (meter) 0.0017 0.0003 0.0012

For Table 5.7, the mean error results of the ICP algorithm and the PSO algorithm

are 0.0288 meter and 0.0533 meter. However, the mean error result of the encoder is

0.0788 meter. Owing to the robot position, the ICP algorithm owns the lower error

than PSO algorithm. The mean error of the PSO algorithm is only 0.0533 meter.

Figure 5.28 demonstrates the distance error results. The x axis is the scan number, and

the y axis is the distance error.
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Figure 5.28 The Error Mean of each Scan Matching with Ground Truth Difference
Owing to the robot position, the ICP algorithm owns the lower error than PSO
algorithm.

x-axis: scan number (unit: meter)

y-axis: distance error

Il. Square Path

Figure 5.29(b) shows the square path in Ming-Da Building 4F. Figure 5.29(a)
includes the odometry position, the ICP algorithm, the PSO algorithm, and the ground
truth position. The results of mean error and standard deviation (SD) error are in Table

5.8. The position error shows in Figure 5.30 through Equation (5.5) and (5.6).
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Figure 5.29 The Location of Each Results in Ming-Da Building 4F
(a) The encoder position, the ICP algorithm position, the PSO algorithm position,
and the ground truth position. (unit: meter)
(b) Real scene with the path

Table 5.8 The Error of Each Algorithm with Ground Truth in Figure 5.28

Item Encoder ICP algorithm PSO algorithm
Mean (m) 0.3814 0.3652 0.1053
Standard (m) 0.0656 0.0718 0.0038

Mean error of the ICP algorithm is 0.3652 meter. However, mean error of the

Encoder is 0.3814 meter. Owing to the robot position is not good. In circle path, the

mean error difference of ICP algorithm and PSO algorithm is 0.0265 m. In square

path, the mean error difference of ICP algorithm and PSO algorithm is 0.2599 meter.

The ICP algorithm with excessive differences causes local optimal solution, as shown

in Figure 5.29. So, the PSO algorithm can correct the local optimal solution owing to

inaccurate robot position.
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Figure 5.30 The Error of each Scan with Ground Truth

Owing to the robot position, the ICP algorithm owns the higher error than PSO
algorithm.

X-axis: scan number

y-axis: mean error (unit: meter)

5.5 Pedestrian Detection Performance

In pedestrian detection, bounding box selection is important. Section 5.5.1 states
lower line of bounding box. Then, the accuracy of the lower line of bounding box is
evaluated. Section 5.5.2 states the true or false for pedestrian detection in the color

image. Section 5.5.3 states the rate of accuracy in pedestrian detection.

5.5.1 Lower Line of Bounding Box

In color image, the lower line of bounding box needs the omnidirectional camera

model. In Figure 5.31(a), the omnidirectional camera in original image owns
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distortion phenomenon. Therefore, the image in digital camera needs to be calibrated.

In [46: Bouguet 2013], the camera calibration toolbox uses 20 pieces of data with

checkerboard to calibrate the image in Figure 5.31(a). Figure 5.31 shows the results of

the image calibration. The 20 pieces of data with checkerboard are shown in Figure

5.31(b). Table 5.9 shows the camera intrinsic parameters. After calibrating the image

in the digital camera, the omnidirectional camera in calibrating image is shown in

Figure 5.31(d).

50 -

100

150 [

200~
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300
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400
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(© (d)
Figure 5.31 The Calibration of Omnidirectional Camera in Digital Camera Image
(@) The omnidirectional camera in the original camera image
(b) The different camera position with checkerboard image
(c) The camera position on fixed checkerboard
(d) The omnidirectional camera after calibrating camera image
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Table 5.9 The Camera Intrinsic Parameter (uint: pixel)

Focal Length: fc [ 688.99 688.99 ]
Principal point: cc [319.50 239.50 ]
Skew: alpha_c [0.00]

Distortion: kc [0.00 0.00 0.00 0.00 0.00]

For the omnidirectional camera, the hyperbolic surface is used, as shown in
Figure 5.32. Then, the selected area in the image shows in Figure 5.32(a). Using
Canny edge detector, the edge demonstrates in Figure 5.32(b). Using SVD for least
square method, the parameters in hyperbolic surface are a, b, and c in Figure 5.32(c).

The hyperbolic surface equation and function shows as follows:

2 2

y? x
i 1 (5.7)
f(x,y) = —0.69x% + 0.02x.y + 0.72y% + 2.00x — 2.36y + 0.07 (5.8)

x2 .
= 1. The function

2
Equation (5.7) is the hyperbolic surface equation %—b—z
f(x,y) = —0.69x% + 0.02x.y + 0.72y% + 2.00x — 2.36y + 0.07 is shown in
Equation (5.8). The parameters are obviously that a is 0.81 cm, b is 0.79 cm, and c is

1.13 cm.
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Figure 5.32 The Omnidirectional Camera Hyperbolic Surface
(a) The selected area in the hyperbolic surface in calibration image
(b) Canny edge detector for the image in (a)
(c) The edge points in least square with SVD

With Equation (5.7) and (5.8), the omnidirectional camera model can be used.

From Equation (4.7) to (4.13), the lower line of bounding box can be extracted. Figure

5.33 shows the lower line of bounding box and the difference with the gray board.

Here, the horizontal axis is the percentage of error. What is more, the vertical axis is

the number of the each point in laser scan owning 361 pieces of data. Therefore, the

far the LRF distance is, the worse the error may be. Then, the error is under 10%. The

lower line of bounding box owns high accuracy. The difference between the lower

line of bounding box and gray board is shown in Table5.10. Then, Figure 5.34(a)
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shows the mean error. Figure 5.34(b) shows the standard difference error. The mean
and the standard difference are from Equation (5.1) and (5.6). The lower line of
bounding box is shown in Figure 5.33(a) to (e). With the LRF scan in omnidirectional
camera, the pixel in omnidirectional camera can be acquired in semi-circle. Then the
error estimation is in the histogram. Figure 5.33 demonstrates the five pieces of data

in Appendix A.2.
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(d) 37.4 cm (e) 30.8 cm
Figure 5.33 The Height Convert Pixel in Ming-Da Building 4F (Remainder in
Appendix A.2)
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Table 5.10 The Results in Figure A.2

Height(cm) Mean Standard Difference
30.8 1.85 0.89
374 2.35 0.99
47.3 2.80 1.23
58.0 2.72 1.46
67.8 3.21 1.33
76.6 3.27 1.28
87.2 3.36 1.41
97.4 3.73 151
106.3 3.93 1.53
115.6 3.96 1.43
125.8 3.42 1.73
136.4 4.20 1.75
144.2 4.90 1.91
162.2 5.05 1.62
168.8 5.30 1.53
174.2 4.82 1.72
187.9 3.98 1.38

Error (percentage)
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Figure 5.34 The Mean and Standard Difference in Table 5.10
(a) Mean Error in Table 5.10.
(b) Standard Difference Error in Table 5.10
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5.5.2 Pedestrian Map

In the scenes, the dynamic objects are only the pedestrians. In this thesis, two
cases are discussed in Section 1.2. One is the target pedestrian with pillars
environment. The other is the target pedestrian with other pedestrians abruptly
appearing. Figure 5.35 shows the conditions with LRF scan in Ming-Da Building 5F.
Hence, the blue points represent the pedestrian, the green points represent the mobile

robot, and the red points represent the static objects.
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Figure 5.35 The Scene illumination with Laser Range Finder and Omnidirectional
Camera (unit: meter)
(a) The target pedestrian with other pedestrians abruptly appearing
(b) The target pedestrian with pillars environment

To acquire accurate pedestrian map, the color image needs to be added in LRF

scan. Figure 5.36 shows candidates in the color image. In Figure 5.36, the resolution

with (a) is 350x721, (b) is 68x257, (c) is 44x257, (d) is 40x253, and (e) is 81x322.

With the Hough circle transform method and color distribution method, the results are
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pedestrian, as shown in Figure 5.37. Figure 5.37(a) depicts all candidates in the color
image. However, Figure 5.37(b), (c), (d), and (e) show the Hough circle transform in
each candidate. For the pedestrian detection, circle radius in real-life is approximately
from 15 cm to 20 cm. And head body ratio is 4 to 9. Therefore, using the conditional

judgment can acquire result, as shown in Figure 5.37(f).

(b) (©) (d) (e)
Figure 5.36 The Candidates in Dynamic Map
(a) The panorama image for down, left, right bound
(b)~(e) Each candidate in dynamic map in (a)
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(b) (©) (d) (€)

)
Figure 5.37 The Hough Circle Transform for Each Candidate

(a) The panorama image for lower line, left line, right line of bounding box
(b)~(e) Hough circle transform for each candidate in color image
(F) The pedestrian candidate for complete bounding box
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5.5.3 The Detection Accuracy

In the pedestrian detection, receiver operating characteristic (ROC) is a method
confirming the performance in statistic. In [54: Kay 1988], the basic definition
contains true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). In Figure 5.38, P is a reasonable result in the condition, and N is an
unreasonable result in the condition. Similarly, P’ is a reasonable result in test

outcome, and N’ is an unreasonable result in test outcome.

Condition
P N
P*1 TP | FP
Ou-It—i:)tme
N'| FN | TN

Figure 5.38 The Illustration of Receiver Operating Characteristic

P is a reasonable result in the condition, and N is an unreasonable result in the
condition. Similarly, P’ is a reasonable result in test outcome, and N’ is an
unreasonable result in test outcome.

In [54: Kay 1988], accuracy (ACC) is a judgment for ROC analysis. The

following cases are discussed through ACC as follows:

_TP+TN

ACC = 5.9
CC TN (5.9)

For the cases, the accuracy is as following:
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I.  Dynamic Environment with New Pedestrian Appearing Nearby

For the new pedestrian appearing, Figure 5.35(a) shows the pedestrian and the
robot path. And the detection result is shown in Table 5.11. The ACC of detection is
74%, and total frame are 126. Hence, the true frame is like Figure 5.37(e). And the
false frame is like Figure 5.37(b), (c), and (d). In this case, the true detection is 110

and the false detection is 37.

Table 5.11 The ACC of detection with new pedestrian appearing nearby

ACC Pedestrian Detection Rate

Case | 74 % (110:37)

[1.  Dynamic Environment with Pillars Occlusion

For the pillars occlusion, Figure 5.35(b) shows the pedestrian and the robot path.
And the detection results show in Table 5.12. The ACC of detection for Case II-1 is
58% and total frame are 148. And for Case 11-2, the ACC of detection is 63% and total
frame is 159. Hence, the true frame is like Figure 5.37(e). And the false frame is like
Figure 5.37(b), (c), and (d). With Table 5.12, the pedestrian detection achieves 58%
and 63%. In Case IlI-1, the true detection is 88 and the false detection is 35. In Case
[1-2, the true detection is 85 and the false detection is 50. The ACC is low. The
caution may be the pillar occlusion without pedestrian detection. The caution causes
the false increasing. And in next section, the target pedestrian tracking is discussed.
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Table 5.12 The ACC of detection with Pillars Occlusion

ACC Pedestrian Detection Rate
Case II-1 58 % (88:35)
Case I1-2 63 % (85:50)

5.6 Target Pedestrian Tracking Performance

Section 5.6.1 shows results in target pedestrian tracking problem. Section 5.6.2
provides the rate of accuracy in target pedestrian tracking. The algorithms are based

on the color image. The target pedestrian tracking is discussed.

5.6.1 The Tracking Results and Accuracy

For target pedestrian tracking, laser range finder scan may cause data association
error in pillar occlusion or new pedestrian appearing. However, color image owns the
color information but does not own accuracy distance. For the color image, the color
distribution and local binary pattern (LBP) are used in target pedestrian tracking.
Section 5.6.2 discusses the accuracy.

The following two cases may cause data association error. First, Case 1 is that the
mobile robot follows the target pedestrian, as shown in Figure 5.35(a). When the new
pedestrian appears nearly, the laser data may match error. Then, Case II-1 is the
mobile robot follows the target pedestrian in Figure 5.35(b). However, the mobile
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robot loses the target pedestrian owing to a pillar occlusion. Then both the target
pedestrian and the other pedestrian simultaneously appear. Finally, Case II-2 is also
the mobile robot follows the target pedestrian in Figure 5.35(b). The target pedestrian
and the other pedestrian are occluded by the same pillar. When the other pedestrian
walks for a long time, the target pedestrian walks in front the mobile robot. This
section discusses the problems.

The following are the results for target pedestrian tracking. Some true target

pedestrian tracking results are shown in Figure 5.39, Figure 5.40, and Figure 5.41.
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(a) Frame 1 (b) Frame 16

(c) Frame 20 (d) Frame 23

(e) Frame 24 (f) Frame 39
(g) Frame 43 (h) Frame 44

Figure 5.39 Tracking Target Results in Case | from Figure 5.34(a)
(a)~(h) For the target tracking results for true frame in Case |
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(a) Frame 18 (b) Frame 38

(c) Frame 42
Figure 5.40 Tracking Target Results in Case 11-1 from Figure 5.34(b)
(a)~(c) For the target tracking results in Case 11-1

(a) Frame 15 (b) Frame 157
Figure 5.41 Tracking Target Results in Case 11-2 from Figure 5.34(b)
(a)~(b) For the target tracking results in Case I1-2

5.6.2 The Tracking Results and Accuracy

Similarly, the accuracy of the target pedestrian tracking is shown in Table 5.13

and Table 5.14. The analysis of above cases is ACC in Equation (5.9).
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I.  Dynamic Environment with New Pedestrian Appearing Nearby

For the new pedestrian appearing, Figure 5.35(a) shows the pedestrian and the
robot path. And the target pedestrian tracking result is shown in Table 5.13. The ACC
of target pedestrian tracking is 73%, and total frame are 126. Hence, the true frames
are like Figure 5.39(a) to (e). In this case, the true target pedestrian tracking is 84 and

the false target pedestrian tracking is 31.

Table 5.13 The ACC of Tracking with New Pedestrian Appearing Nearby

ACC Target Pedestrian Tracking Rate

Case | 73 % (84:31)

[1.  Dynamic Environment with Pillars Occlusion

For the pillars occlusion, Figure 5.35(b) shows the pedestrian and the robot path.
And the target pedestrian tracking result is shown in Table 5.14. The ACC of target
pedestrian tracking for Case 11-1 is 48% and total frame are 148. The true frames are
in Figure 5.40(a) to (c). And for Case II-2, the ACC of target pedestrian tracking is
53% and total frame is 159. Hence, the true frames are like Figure 5.41(a) and (b). In
Case II-1, the true target pedestrian tracking is 29 and the false target pedestrian
tracking is 32. In Case 11-2, the true target pedestrian tracking is 41 and the false
target pedestrian tracking is 36. In summary, the ACC is low. The caution may be the
pillar occlusion without target pedestrian tracking. The caution causes the false
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increasing.

Table 5.14 The ACC of Tracking with Pillars Occlusion

ACC Target Pedestrian Tracking Rate
Case 11-1 48 % (29:32)
Case 11-2 53 % (41:36)
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Chapter 6
Conclusions and Future Works

In this chapter, Section 6.1 presents the conclusions in the research. And Section

6.2 states the future works in the future.

6.1 Conclusions

In this thesis, the main issue is pedestrian tracking with a mobile robot mounted
on the laser range finder and the omnidirectional camera. The LRF operation principle
and the LRF limitation are presented.

For simultaneous localization and mapping, the robot position and the map
construction are two important tasks. The particle swarm optimization (PSO) is used
to robot position inaccuracy. Therefore, the PSO algorithm can correct the odometry
in local minimum solution. Once odometry of mobile robot is known, building a map
is also a task which can be effectively solved at the same time [39: Birk & Carpin
2006]. For the occupancy grid map, the Bayesian rule in the occupancy grid map is
according to the previous estimation and current measurement. Next, the inverse
observation model divides into the static objects and dynamic objects based on the

global accuracy map. With the information, the robot preliminary judges possible
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pedestrians and avoids the obstacles.

For the detection pedestrians and tracking target pedestrian, many factors are

considered. The color distribution and the Hough circle transformation are methods

for the pedestrian detection. By the experimental tests, the methods are reasonable.

For the target pedestrian tracking, the color distribution and the local binary pattern

(LBP) are used to the data association error in the real scene. Through the

experiments, the idea is practical. However, the resolution of pedestrian in color

image is low owing to the omnidirectional camera. In the same color image, the FOV

is complementary to the resolution.

6.2 Future Works

For the future works, the vertical edge can make the accumulation error of robot

position eliminate in simultaneous localization and mapping in [13: Bacca et al. 2013].

In [39: Birk & Carpin 2006], the multiple robots can communicate each other to

construct the map increasing exploration rate. The pedestrian detection and the target

pedestrian tracking can use more feature. Take for example, the shape of pedestrian

[35: Dalal & Triggs 2005], the database construction in specific pedestrian [40: Wang

et al. 2011], or combining the skeleton [28: Lin & Huang 2011] is a research direction.

The 3D distance sensor such as Kinect, stereo camera, or 3D LRF is an available
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operation for the indoor robot. To acquire the resolution in color image, the digital

camera is used for pedestrian detection and target pedestrian tracking.

In summary, the moving object detection with inverse observation model in LRF

can be a preprocessing for pedestrian detection and target pedestrian tracking. With

the inverse observation model for LRF scan, the performance of the pedestrian

detection and the target pedestrian tracking should increase. In this thesis, the methods

provide an idea for office assistant robot. In the future, the office assistant robot is

widely used.
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Appendix

Owing to the numerous data, appendix shows the complete data. Appendix A.1
presents distance convert pixel in 20 pieces of image data. Appendix A.2 provides the

accuracy of lower line of bounding box extraction.

A.1 Distance Convert Pixel

To pick the specific pixel matching the LRF scan, the distance and pixel
relationship needs to be acquired. In Figure A.1 and Table A.1 with the distance and
the pixel relationship [12: Ueda et al. 2011], the LRF is mounted the same height 60
cm of the suitcase. In Figure A.1, the corner in LRF scan matches the suitcase corner
pixel in color image. The distance from LRF scan and pixel from color image

relationship is shown in Table A.1.

(@) 10.46 m (b) 10.32 m (c) 10.23 m
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Figure A.1 (a)~(t) The Distance Converts the Pixel (From Figure 5.18)
The LRF mounts on mobile robot, and the height is 60 cm.
The corner in LRF scan matches the suitcase corner pixel in color image
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Table A.1 The Distance Data and The Pixel Data in Figure A.1

Distance Pixel from Projection Distance Pixel from Projection

(m) Center (Pixel) (m) Center (Pixel)
2.48 208 7.21 263
3.12 223 7.70 261
3.93 226 8.11 268
4.09 236 8.50 268
4.70 241 8.91 272
5.23 244 9.43 271
5.66 250 9.71 272
5.63 255 10.23 271
6.40 259 10.32 270
6.89 263 10.46 272

A.2 Lower Line of Bounding Box Extraction

With Equation (5.7) and Equation (5.8), the lower line of bounding box
extraction shows from omnidirectional camera model in Figure A.2. From Figure A.2,
the far the LRF distance is, the worse the error may be. However, the error is
under 10%. The lower line of bounding box extraction has high accuracy. Figure A.2
demonstrates the 20 pieces of data form Figure 5.33. The lower line of bounding box
shows from Figure A.2(a) to (g). With the LRF scan in omnidirectional camera, the
pixel in omnidirectional camera can be acquired in semi-circle. Then the error
estimation is in the histogram. Hence, the x axis is error pixel percentage and the y

axis is the error pixel number.
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Figure A.2 The Height Convert Pixel in Difference Height (From Figure 5.33)

The height convert pixels show from (a) to (g). With the LRF scan in
omnidirectional camera, the pixel in omnidirectional camera can be acquired. Then
the error estimation is in the histogram. The x-axis is error pixel percentage and the

y-axis is the error pixel number.

Table A.2 The Results in Figure A.2

Height(cm) Mean Standard Difference
30.8 1.85 0.89
374 2.35 0.99
47.3 2.80 1.23
58.0 2.72 1.46
67.8 3.21 1.33
76.6 3.27 1.28
87.2 3.36 1.41
97.4 3.73 1.51
106.3 3.93 1.53
115.6 3.96 1.43
125.8 3.42 1.73
136.4 4.20 1.75
144.2 4.90 1.91
162.2 5.05 1.62
168.8 5.30 1.53
174.2 4.82 1.72
187.9 3.98 1.38
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