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利用色彩資訊及深度資訊之室內行動機器人對行人偵

測與追蹤 

 

研究生:林俊榮                          指導教授:連豊力 博士 

 

國立臺灣大學  電機工程學系 

摘要 

生活之中，人機互動是一門重要的學問。如果機器人可以隨時隨地去跟人互

動，那麼在生活上必定會便利不少。其中與人互動的情況中，追蹤行人就是其中

一個必須研究的課題。機器人追蹤行人的問題，主要分成兩類:自我定位與地圖

建構、行人偵測與追蹤。這些問題都是在做機器人追蹤行人時會碰到的項目。 

以自我定位與地圖建構來說，要在未知路徑的情況下，得到行動機器人周邊

及本身存在的資訊是一件困難的事。在本篇論文裡，主要解決行動機器人編碼器

的硬體因素造成殘存誤差。利用粒子群最佳化演算法去找出更準確的機器人位置，

然後利用這些資訊可以估測出機器人周遭環境地圖。由於雷射測距儀是一個相當

精確的儀器，所以得到的距離資訊準確度是很高，在實驗部分會有驗證。在得到

行動機器人的位置和周遭地圖之後，就可以分辨出靜態物地圖和動態物地圖。對

行動機器人而言，是非常有用的資訊。然而，動態物的地圖推測會有一些問題，
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這部分會在論文中詳細的描述到。  

另外，在行人偵測部分，除了用雷射測距儀所得到的動態點之外，也可以用

點的分群、大小以及資料可信度去判斷。另外，色彩資訊的添加可以當成是一個

更強韌的條件。偵測邊緣形狀的霍式圓形轉換、色彩判定以及頭的所在位置都是

偵測行人的準則。利用這些準則，幾乎可以更精確的去判斷行人。基於行動機器

人追蹤，由於追蹤目標行人在生活環境中可能會有靜態障礙物擋住或者附近突然

出現的行人，造成雷射測距儀的資料誤判。場景設定是在一般研究室或宿舍，通

常人的穿著色彩分佈及紋理分佈會不盡相同，所以可以透過色彩資訊去加以判斷。

並且使用距離資訊空間連續性去做一個強韌性判斷的準則。利用這些準則，就可

以強韌地去判斷行人，並且去做目標行人的追蹤。在本篇論文中，最主要的就是

用色彩資訊去解決在使用雷射測距儀時，行人偵測的判斷以及突然出現的人進而

造成追蹤判斷的錯誤。 

在實驗結果顯示出在這些環境當中，可以解決雷射測距儀資料連結的不足，

並且可以做到追蹤目標行人。 

 

 

關鍵字:雷射測距儀、全向攝影機、機器人自我定位、動態物偵測、行人偵測、

行人追蹤。 

  



iii 
 

Pedestrian Detection and Tracking with Indoor Mobile 

Robot Using both Color Information and Distance 

Information 

Student: Jun-Rong Lin                   Advisor: Dr. Feng-Li Lian 

 

Department of Electrical Engineering 

National Taiwan University 

 

ABSTRACT 

In daily life, that mobile robot communicates with pedestrian needs many tasks. 

The applications are used in guided vehicle, shopping cart, or office assistance. In this 

thesis, the tasks include self-localization, mapping, pedestrian detection, and target 

pedestrian tracking in unknown indoor environment. 

To do self-localization and mapping, the accurate odometry of mobile robot is 

important. However, skidding and slipping can induce that the odometry is not equal 

to the real distance. In this thesis, particle swarm optimization (PSO) algorithm 

correct odometry in unknown indoor environment. The combination of the 

self-localization and the mapping is referred to as the simultaneous localization and 

mapping (SLAM) [39: Birk & Carpin 2006]. In the SLAM, once odometry of mobile 

robot is known, building a map is also a task which can be effectively solved at the 
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same time [39: Birk & Carpin 2006]. Afterward, moving object detection is based on 

the precise map. 

After the moving objects are detected, the next steps are pedestrian detection and 

target pedestrian tracking. In the pedestrian detection, the color image is regarded as 

an additional condition for the judgment based on the laser range finder (LRF) scan. 

In target pedestrian tracking, owing to pillars hindering or new pedestrians appearing, 

the data association may be error between two consecutive LRF scans. In this thesis, a 

method based on color distribution and color texture to track pedestrian in color 

images is proposed. The experiment demonstrates the target pedestrian in the new 

pedestrian appearing and the pillars hindering. Through the experiments, the 

performance of pedestrian detection and target pedestrian tracking is not good. 

However, the performance of pedestrian in color image is low owing to the resolution.  

In the future, the detection and tracking moving object (DATMO) with LRF scan 

in Chapter 3 can combine the pedestrian detection and target pedestrian tracking with 

color image in this thesis. 

 

Keywords: laser range finder, omnidirectional camera, robot self-localization, 

moving objects detection, pedestrian detection, target pedestrian tracking. 
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Chapter 1  

Introduction 

In this chapter, Section 1.1 states pedestrian tracking for mobile robot 

applications in daily life. In pedestrian tracking, two problems often occur in the 

sounding environment. The tasks include self-location, mapping, pedestrian detection, 

and target pedestrian tracking. The method of solutions states in Section 1.2. In this 

thesis, Section 1.3 states the contribution in this research field. Section 1.4 states the 

architecture in this thesis. 

 

1.1 Motivation 

The mobile robot applications in the surrounding environment are widely 

discussed such as automatic guided vehicle [1: Seifert & Kay 1995], shopping cart [2: 

Nishimura et al. 2007], or office assistance [3: Chen et al. 2011]. In the office 

assistance application, target pedestrian tracking is often hindered by pillar or is 

associated to other pedestrian. To track pedestrian, the research works include 

self-localization, mapping, pedestrian detection, and target pedestrian tracking. The 

primary objective is to construct the perception system using both the distance scan 
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and the color image to track the pedestrian for both LRF and omnidirectional camera 

mounting on mobile robot. 

In the real-life, the mobile robot tracking the pedestrian needs self-localization, 

mapping, detection, and tracking. Self-localization and mapping are two of the 

fundamental capabilities for mobile robot [39: Birk & Carpin 2006]. Detection and 

tracking are also discussed in [24: Chang & Lian 2012], [27: Carballo et al. 2010], [35: 

Dalal & Triggs 2005]. However, the following two cases often occur in the sounding 

environment. There are many pillars in Figure 1.1 scene. One case is that the target 

pedestrian is hindered by pillar. The other case is that new pedestrian appears. The 

detail states in Section 1.2. 

In this thesis, the objective can provide office assistance mobile robot in 

unknown indoor environment. The mobile robot in real-life can deal with the static 

pillar hindering the target pedestrian and other pedestrian suddenly appearing. After 

the target pedestrian hindered by pillars in the Figure 1.1 scene, the target pedestrian 

is not predictable with the LRF scan information. However, the color distribution is 

regarded as a condition for the judgment. In summary, the additional color image can 

provide additional information to detect the pedestrian and track the target pedestrian. 
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(a) (b) (c) 

Figure 1.1 The Scene Shows the Pillars in the Indoor Environment.  

(a) The 1st Men’s Dorm in NTU 

(b) Electrical Engineering Building No. 2 in NTU 

(c) Ming-Da Building in NTU 

 

1.2 Problem Formulation 

That the mobile robot tracks the target pedestrian needs many tasks including 

localization, mapping, detection, and tracking. However, that the mobile robot tracks 

the target pedestrian is difficult in dynamic environment with pillars or other 

pedestrians. Figure 1.2 shows that multiple pedestrians make the mobile robot confuse 

with pillars. In Figure 1.2, there are pedestrian A1, pedestrian A2, pillar, robot, and 

LRF scan. Figure 1.2(a) shows the LRF scan at time t-2. The robot detects the 

pedestrian A1, pedestrian A2, and pillar. However, the robot only detects the pillar at 

time t-1 with LRF scan in Figure 1.2(b). At time t, two possible results appear in 

Figure 1.2(c) and Figure 1.2(d). However, the robot cannot distinguish between 

pedestrian A1 and pedestrian A2 from LRF scan. It is pillar hindering case. And 

Figure 1.3 shows that new pedestrian appears near the target pedestrian. In Figure 1.3, 
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there are pedestrian A1, pedestrian A2, pillar, robot, and LRF scan. In Figure 1.3(a), 

the robot only detects the pedestrian A1 with LRF scan. However, the pedestrian A1 

and pedestrian A2 are detected with LRF scan in Figure 1.3(b). The robot cannot 

distinguish between pedestrian A1 and pedestrian A2 owing to the position. It is new 

pedestrian case. Two cases are discussed in this thesis. 

In the mobile robotic field, the mobile robot localization and mapping is 

important. For robot position, skidding and slipping can induce mobile robot 

odometry is not equal to the real distance. Therefore, PSO algorithm [38: Li et al. 

2011] corrects the mobile robot odometry through map construction. For map 

construction, the occupancy gird is mainly used in construct the map [39: Birk & 

Carpin 2006]. 
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(a) (b) 

  

(c) (d) 

Figure 1.2 Dynamic Environment with Pillars Occlusion (with LRF Scan Grid Map 

in Specific Plane) 

(a) The robot detects A1 and A2 candidate pedestrians and pillar at time t-2 

(b) The robot only detects pillar at time t-1 

(c) and (d) are two case making the robot confuse the candidate pedestrians with 

LRF sensor at time t. 

 

  

(a) (b) 

Figure 1.3 Dynamic Environment with New Pedestrian Appearing Nearby (with 

LRF Scan Grid Map in Specific Plane) 

(a) The robot only detects A1 candidate pedestrian at time t-1. 

(b) That A1 and A2 candidate pedestrians appear simultaneously makes the robot 

confuse at time t. 
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Pedestrian detection and target pedestrian tracking in Figure 1.2 and Figure 1.3 

are difficult. The data association between two LRF scans may be error. Therefore, the 

color image is regarded as an additional condition for the judgment based on the LRF 

scan. In [22: Wolf & Sukhatme 2004], Wolf and Sukhatme propose static map and 

dynamic map. The static map includes many dynamic obstacles owing to inverse 

observation model. Since inverse observation model predicts that the state from 

unknown to occupied is static object, the pedestrian detected with LRF scan by robot 

may be regarded as static object. Therefore, the pedestrian detection with color image 

is necessary. In this thesis, it is necessary to adopt the features of head to detect 

pedestrian. Both Hough circle transform and color distribution are used in head 

detection in each candidate pedestrian [48: Zhao et al. 2012]. Although the pedestrian 

candidates are selected, the target pedestrian tracking is still a difficult issue because 

of data association in unexpected position in Figure 1.2 and Figure 1.3. Using color 

distribution and local binary map (LBP) algorithm is a powerful method to track 

pedestrian in the dynamic environment with pillars or other pedestrians. The color 

distribution means that the histogram is calculated in each color channel. And the LBP 

algorithm calculates the relative neighbor value in each pixel [49: Rahimi et al. 2013]. 

With the target pedestrian, the mobile robot can continuously track the target 

pedestrian. 
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1.3 Contribution 

The thesis proposes a system structure includes localization, mapping, pedestrian 

detection, and tracking target pedestrian. 

For the localization and the mapping, the initial position and the map 

construction are two problems. The PSO algorithm [38: Li et al. 2011] corrects the 

mobile robot odometry. In experimental result, the PSO algorithm compares to the 

ICP algorithm. For ICP algorithm [24: Chang & Lian 2012], the distance error is 

minimized. However, local optimal solution is a problem in scan matching. The PSO 

algorithm in this thesis can overcome the problem. In static map construction and 

dynamic map construction through inverse observation model in [22: Wolf & 

Sukhatme 2004], the color feature can robustly judge the moving pedestrians in 

previous unknown area. 

For pedestrian detection and target pedestrian tracking in pillar hindering or new 

pedestrian appearing, the data association may be error [12: Ueda et al. 2011]. In color 

image, the Hough circle transformation, size, and color distribution are methods to 

judge pedestrian and track the same person. In this thesis, the pillar hindering case and 

the new pedestrian appearing case are solved in pedestrians with different color space 

and color texture. 

The experimental results show in Chapter 5. The experimental results and 
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analysis shows the performance of the pedestrian detection and the target pedestrian 

tracking in unknown indoor environment. In the future works, the DATMO with LRF 

scan in Chapter 3 can combine the pedestrian detection and target pedestrian tracking 

with color image in this thesis. 

 

1.4 Organization of the Thesis 

This thesis includes six chapters. The remainder of this thesis is organized as 

follows. Chapter 2 states the literature of past research. This chapter includes two 

sections: simultaneous localization and mapping (SLAM), and pedestrian detection 

and tracking. Chapter 3 states robot localization and map construction. The tasks have 

the LRF usage, the robot localization, and the map construction in specific 

environment. Chapter 4 states the omnidirectional camera structure, the pedestrian 

detection by LRF scan spatial continuity, image color feature, and image edge feature, 

and target tracking by image color histogram, image LBP, and LRF scan. Chapter 5 

shows the experimental result and analysis. In addition, the PSO algorithm compares 

to the ICP algorithm in SLAM. Both conclusions and feature works are presented in 

Chapter 6. 
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Chapter 2  

Literature Survey 

This chapter states the literature survey in the mobile robotic field. Section 2.1 

states the simultaneous localization and mapping including self-localization and 

mapping. Self-localization and mapping are two of the fundamental capabilities for 

mobile robot [39: Birk & Carpin 2006]. In addition, pedestrian detection and target 

pedestrian tracking are researchable topics for the mobile robot. Section 2.2 states 

pedestrian detection and target pedestrian tracking. Figure 2.1 shows the SLAM 

categories in Section 2.1. And Figure 2.2 shows pedestrian detection and target 

pedestrian tracking categories in Section 2.2. 

 

2.1 Simultaneous Localization and Mapping 

SLAM is an important topic for a mobile robot in unknown indoor environment. 

Although many sensors can be selected, the laser range finder (LRF) often is used to 

SLAM [15: Wu et al. 2013], [16: Rusdinar et al. 2010]. LRF is a sensor commonly 

used owing to its accuracy in distance measurement [15: Wu et al. 2013]. 

In terms of methods, iterative close point (ICP) algorithm is commonly used [17: 
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Zhang 1994], [18: Lu & Milios 1994]. However, local optimal solution is a problem 

in scan matching. To overcome the problem relating to the local optimal solution, 

particle filter (PF) is proposed to correct the error pose [16: Rusdinar et al. 2010]. And 

extended Kalman filter (EKF) is used to decrease odometric error of the robot [20: 

Kang et al. 2010]. To overcome the problem relating to the outliers, random sample 

consensus (RANSAC) algorithm is used to filter outliers [19: Tong & Barfoot 2011]. 

To build the map, the occupancy grid map is used [21: Moravec & Elfes 1985], 

[39: Birk & Carpin 2006]. Since arbitrary data can be mapped, occupancy grid map is 

focused [55: Winner et al. 2012]. The occupancy grid map needs a resolution to 

discretize the environment [55: Winner et al. 2012]. Therefore, the occupancy grid 

map can be chosen depending on the requirements of the precision of the data [55: 

Winner et al. 2012]. The Bayesian probability grid map is used in [23: Thrun et al. 

2005], [55: Winner et al. 2012]. The Bayesian probability grid map expresses the 

possibility of grid is occupied and there is a lot of merits of calculation [55: Winner et 

al. 2012]. 

In the dynamic environment, the occupancy grid map is difficultly built for the 

full of people. The inverse observation model is used to build static occupancy grid 

map [22: Wolf & Sukhatme 2004].  

In this thesis, the PSO algorithm is proposed to overcome the local minimum 
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solution with ICP in [24: Chang & Lian 2012]. Figure 2.1 demonstrates simultaneous 

localization and mapping categories. 

 
Figure 2.1 Simultaneous Localization and Mapping Categories 

 

2.2 Pedestrian Detection and Tracking 

Pedestrian detection and target pedestrian tracking play an important role in the 

robotic field. Many sensors are implemented for pedestrian detection and target 

pedestrian tracking. The sensors include laser-based sensor and vision-based sensor. 

The laser-based sensor is used for distance measurement application [55: Winner et al. 

2012]. And the vision-based sensor is used for color image application [55: Winner et 

al. 2012]. 

For distance information such as LRF scan, many approaches are presented in 

pedestrian detection and target pedestrian tracking. For pedestrian detection, inverse 
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observation model is used to differentiate between the dynamic objects and static 

objects [22: Wolf & Sukhatme 2004]. However, the method detects the moving object. 

In [26: Sung & Chung 2011] and [9: Chung et al. 2012], the clustering legs into a 

pedestrian is presented. And using LRF scan in a two-layered arrangement to detect 

features is presented in [27: Carballo et al. 2010]. For target pedestrian tracking, K 

nearest neighbor (KNN) algorithm [3: Chen et al. 2011] and multiple hypothesis 

tracking (MHT) algorithm [24: Chang & Lian 2012] are used with LRF scan in target 

pedestrian tracking. 

In the color image, background subtraction method acquires the moving objects 

in static scene [29: Stauffer & Grimson 1999], [28: Lin & Huang 2011]. In [30: Lee et 

al. 2003], background model updates based on Gaussian mixture model. In dynamic 

scene, optical flow algorithm is applied [31: Enzweiler et al. 2008]. For pedestrian 

detection, the image feature includes corner [34: Xu & Xu 2013], edge geometry [33: 

Zhao et al. 2008], texture [32: Leithy et al. 2010], [41: Kun et al. 2012], and color 

distribution [33: Zhao et al. 2008]. The image features are regarded as condition 

judgments for pedestrian detection. What is more, Dalal and Triggs [35: Dalal & 

Triggs 2005] present histograms of oriented gradients (HOG) feature vectors to detect 

the pedestrian. Moreover, there are various approaches to track target pedestrian with 

color image. For handle the occlusion case, Lin and Huang [28: Lin & Huang 2011] 
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use either Kalman-filter or mean-shift algorithm in different conditions. Cox and 

Hingorani [25: Cox & Hingorani 1996] enumerate multiple models of targets from the 

latest three frames through multiple hypothesis tracking (MHT) algorithm.  

For fusion of LRF scan and color image, a recognition method to track running 

pedestrians is presented [12: Ueda et al. 2011]. In [37: Kristou et al. 2011], the target 

pedestrian tracking uses the LRF scan. However, the pedestrian detection uses the 

color image. 

In this thesis, the pedestrian extraction uses LRF scan spatial continuity, image 

color feature, and image edge feature. For tracking target pedestrian, color distribution 

is regard as a conditional judgment. The mobile robot robustly detects pedestrian and 

tracks target pedestrian. Figure 2.2 shows the pedestrian detection and target 

pedestrian tracking categories. 

 

Figure 2.2 Pedestrian Detection and Target Pedestrian Tracking Categories 
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Chapter 3  

Simultaneous Localization and 

Mapping 

Self-localization and mapping are two of the fundamental capabilities for mobile 

robot [39: Birk & Carpin 2006]. The combination of the self-localization and the 

mapping is referred to as the simultaneous localization and mapping (SLAM) [39: 

Birk & Carpin 2006]. In unknown indoor environment, SLAM is a researchable task 

in this chapter. In this thesis, LRF is used owing to its accuracy in distance 

measurement [15: Wu et al. 2013]. The LRF operation principle and the LRF 

limitation are presented in Section 3.1. For self-localization, skidding and slipping can 

induce that the odometry is not equal to the real distance. To solve the problem, PSO 

algorithm [38: Li et al. 2011] is presented in Section 3.2. In the SLAM, once 

odemetry of mobile robot is known, building a map is also a task which can be 

effectively solved at the same time [39: Birk & Carpin 2006]. To build the map, the 

occupancy grid map is used in Section 3.3. 
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3.1 Laser Range Finder Usage and Limitation 

LRF is a sensor measuring the distance. To use the LRF, the LRF operation 

principle and the LRF limitation should be known. In Section 3.1.1, the operation 

principle of LRF is presented. Section 3.1.2 states the limitation of LRF in specific 

scene. 

 

3.1.1 Introduction of Laser Range Finder 

For mobile robot, LRF is a common sensor. Compared with other sensors, LRF 

is a sensor commonly used owing to its accuracy in distance measurement. So the 

LRF is prevailing in the mobile robot. 

The operation principle of LRF uses time of flight (ToF) to estimate the distance 

from specific angle [4: Okubo et al. 2009]. Figure 3.1 shows the operation principle of 

LRF. First, the laser emits an infrared beam and rotating mirror changes the beam’s 

direction [4: Okubo et al. 2009]. Then the laser hits the surface of an object and is 

reflected [4: Okubo et al. 2009]. ToF is proportional to distance measurement. Since 

the infrared beam is rapid, the scan rate can achieve at least ten scans per second. 

From the direction of mirror, the phase of emitted can be estimated. Finally, the 

position of object is calculated. 
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Figure 3.1 The Operation Principle of Laser Range Finder 

 

3.1.2 The Limitation of Usage in the Glass Environment 

LRF is a sensor commonly used owing to its accuracy in distance measurement 

[15: Wu et al. 2013]. However, the limitation of LRF is about environment texture. In 

the environment with glass, the light may refract the ray of light in the environment 

with glass like Figure 3.2(a). The incident light, laser beam, can be divided into 

diffusive reflection, specular reflection, and refraction, as shown in Figure 3.2(a). The 

diode only absorbs the diffusive reflection. Therefore, the missing data may occur. 

The real-scene is Ming-Da Building 2F having two glass window, as shown in Figure 

3.2(b). In this scene, the data may miss. 
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(a) (b) 

Figure 3.2: The Texture Influence in Glass Environment 

(a) Theorem of the optical relation 

(b) Scene in Ming-Da Building 2F 

 

3.2 Robot Localization 

Self-localization is an important task for mobile robot in unknown indoor 

environment. Although the mobile robot estimates the position with encoder, the scan 

matching technique can acquire precise position of the mobile robot. Generally, 

iterative closest point (ICP) algorithm [43: Besl & McKay 1992] is widely used to the 

scan matching. However, local optimal solution is a problem for ICP algorithm. The 

scan matching technique needs another algorithm. 

  PSO algorithm [44: Kennedy & Eberhart 1995] is a feasible method in scan 

matching technique. The PSO algorithm applies to minimize the distance energy 

function      in the approximately global optimization problem [45: Eberhart & Shi 

1998]. The particle swarm model sets the   particles in the  -dimensional problem 

space. The  -th particle owns the self-position   
 , self-velocity   

 , and distance 

Incident Light 

Diffusive

Reflection 

Refraction

Specular 

Reflection

Glass
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energy function    
     in the search domain at time  . Let each particle know the best 

its position        
  and the best position in   particles       

  before time   . 

Therefore, the position and the velocity of each particle with N particles are expressed 

as follows: 

  
 =    1

 ,   2
 , … ,   𝑁

   (3.1) 

  
 =    1

 ,   2
 , … ,   𝑁

   (3.2) 

The  -th particle is expressed as a point owning the position   
  1 and velocity 

  
  1 at time t+1 according to the following equations: 

   
  1 = 𝜔.   

 + 𝑐1. 𝑟𝑎𝑛𝑑  .        
 −   

  + 𝑐2. 𝑟𝑎𝑛𝑑  .        
 −   

   (3.3) 

   
  1 =   

 +   
 . ∆  (3.4) 

where ω is an inertia weight, 𝑐1 is a cognitive coefficient, 𝑐2 is a social coefficient, 

and rand   is a random probability in [0, 1].    
  1 updates through Equation (3.4). 

However, to avoid overshooting the global solution,   
  sets the threshold value  𝑚𝑎𝑥. 

Figure 3.4 shows the illustration of particle motion and the process of particle motion. 

In Figure 3.3(a), the plane represents the distance energy function. The curve 

represents the pass path for each particle by time t. The circle represents current 

position for each particle. The square presents the best position for each particle. And 

the triangle represents best position for all particles. Each particle owns its position 

and velocity. The velocity of each particle is determined by Equation (3.3) and the 

position of each particle is determined by Equation (3.4). Every particle can affect 
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each other. Figure 3.4(b) shows the flow chart of particle motion. For all particles, the 

position and the velocity are set. The energy function      is calculated. Then the 

pbes  and the gbes  are picked in the particles. And the particles move to next 

position. Until the particles stay the same positions, the particles are global optimal 

positions. If the particles do not stay the same positions, the steps are iterative. 

 

(a) 

 

(b) 

Figure 3.3 The Illustration and Process of Particle Selection 

(a) The illustration of each particle moving 

i. The line represents the pass path;  

ii. The circle represents current position.  

iii. The triangle represents best position in all particles.  

iv. And the square is the best position in its particle. 

(b) The particle selections of the PSO algorithm 

 

Figure 3.4 shows scan matching points of two data sets results with the LRF. The 

scan matching points of two data sets include the red points and the blue points, as 
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shown in Figure 3.4. When the measurement error is not eliminated in time, it causes 

the inaccurate map. Figure 3.4(a) and (c) show the LRF scan based on odometry in 

Ming-Da 5F and Ming-Da 4F. Generally, PSO algorithm can reduce the measurement 

error to enhance the map accuracy, as shown in Figure 3.4 (b) and (d). The other 

experimental results in scan matching are shown in Section 5.3. 

To acquire the more accurate robot position in populated environment, the 

pedestrian need to be detected. Section 3.3 states dynamic map concept. And Section 

4.3 states pedestrian detection based on dynamic map. 
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(a) (b) 

  

(c) (d) 

Figure 3.4 Scan Matching 2 Data Result (Target and Source are in the LRF scans)  

(unit: meter) 

(a) Encoder in Ming-Da Building 5F 

(b) PSO algorithm process from (a)  

(c) Encoder in Ming-Da Building 4F 

(d) PSO algorithm process from (c)  

 

3.3 Map Construction 

In map construction, occupancy grid map is an important method. Section 3.3.1 uses 

the occupancy grid map to construct the map. The inverse observation model is used 

to build static occupancy grid map and dynamic occupancy grid map [22: Wolf & 

Sukhatme 2004] in Section 3.3.2. 
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3.3.1 Grid Map Construction 

To make mobile robot move arbitrarily, mapping is a necessary task. However, 

map construction is difficult for the mobile robot in dynamic environment. What is 

more, the inaccuracy measurement of LRF scan may cause the map false. 

Occupancy grid map is a main method in map construction [23: Thrun et al. 

2005]. The occupancy grid map needs a resolution to discretize the environment [55: 

Winner et al. 2012]. Therefore, the occupancy grid map can be chosen depending on 

the requirements of the precision of the data [55: Winner et al. 2012]. In occupancy 

grid map, three states include free, occupancy, and unknown. Bayesian probability 

update robustly applies to the occupancy grid map state as follows: 

p 𝑆 |𝑍 , 𝑆 −1 = α. p 𝑆 |𝑍  . p 𝑆 −1|𝑍 −1, 𝑆 −2  (3.5) 

Bel 𝑆  = α. p 𝑆 |𝑍 −1 . Bel 𝑆 −1  (3.6) 

where the Bayesian probability p 𝑆 |𝑍 , 𝑆 −1  represents Bel 𝑆  . 𝑆  is map state 

in the specific position at time  , and 𝑍  is the measurement in the specific position at 

time  . α is a normalization coefficient.  

By Equation (3.6), the occupancy grid map updates the state through iterative 

method. With this method, the grid occupancy probability only knows the previous 

occupancy grid map Bel 𝑆 −1  and the inverse observation probability p 𝑆 |𝑍 −1 . 
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3.3.2 Static Map and Dynamic Map 

For the occupancy grid map, both the static map concept and the dynamic map 

concept are proposed [22: Wolf & Sukhatme 2004]. The dynamic map can be 

estimated from the following equation: 

  𝐷 |𝑍1, … 𝑍 , 𝑆 −1 

1 −   𝐷 |𝑍1, … , 𝑍 , 𝑆 −1 
=

  𝐷 |𝑍 , 𝑆 −1 

1 −   𝐷 |𝑍 , 𝑆 −1 
.
1 −   𝐷 

  𝐷 
.

  𝐷 −1 

1 −   𝐷 −1 
 (3.7) 

where 𝑆  is the state at time t, 𝑍  is the measurement at time t, and 𝐷  is the 

dynamic state at time t. 

However, the p 𝐷 |𝑍 , 𝑆 −1  needs the inverse observation model to update. 

Table 3.1 shows the occupancy probability p S  in map construction with state. 

Three states include free, occupancy, and unknown. The threshold is set to 0.2 and 

0.8. 

 

Table 3.1 The Occupancy Probability of Each State S 

State Occupancy probability 

Free p S  ≤ 0.2 

Unknown 0.2 < p  S  < 0.8 

Occupied 0.8 ≤ p  S  

With Table 3.1 result, the inverse observation model establishes in Table 3.2 [22: 

Wolf & Sukhatme 2004]. In [22: Wolf & Sukhatme 2004], Wolf and Sukhatme 

propose static map and dynamic map. The static map includes many dynamic 
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obstacles owing to inverse observation model. Since inverse observation model 

predicts that the state from unknown to occupied is static object, the pedestrian 

detected with LRF scan by robot may be regarded as static object. The probability is 

low in dynamic objects. It means that the objects are static. p 𝐷 |𝑍 , 𝑆 −1  is 

estimated as follows: 

 

Table 3.2 Inverse Observation Model 

𝑆 −1 𝑍  p 𝐷 |𝑍 , 𝑆 −1  

Free Free Low 

Unknown Free Low 

Occupied Free Low 

Free Occupied High 

Unknown Occupied Low 

Occupied Occupied Low 

 Figure 3.5 demonstrates an example of the inverse observation model analysis of 

two consecutive LRF scan. The state of pillar and the state of pedestrian are unknown 

for the robot at time t-1, while the pillar and the pedestrian are detected for robot at 

time t. Therefore, the pillar and the pedestrian are regarded as static objects from 

Table 3.2. In fact, the pillar should be regarded as a static object and the pedestrian 

should be regarded as a dynamic object. Table 3.2 is not obviously sufficient. In this 

scene, the moving object is only pedestrian. The pedestrian detection in Section 4.4 

can solve the problem of inverse observation model in Table 3.2. 
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(a) 

 

(b) 

Figure 3.5 The Inverse Observation Model Problem (with LRF Scan Grid Map) 

(a) The pillar and the pedestrian are unknown for the robot at time t-1. 

(b) Either the pillar or the pedestrian is regarded as the static in inverse 

observation model in LRF scan at time t. The pedestrian detection judgment 

describes in Section 4.3. 
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Chapter 4  

Pedestrian Detection and Target 

Pedestrian Tracking 

For pedestrian detection and target pedestrian tracking, both LRF scan and color 

image are used in this chapter. Section 4.1 states the operation principle of 

omnidirectional camera and states the problem of the equipment. However, the 

combination of LRF and omnidirectional camera is difficult since the sensors are not 

calibrated. The calibration between LRF and omnidirectional camera can be divided 

into horizontal adjustment, translation, and rotation. In the calibration, the rotation 

calibration of the combination of LRF and omnidirectional camera is a researchable 

question. Section 4.2 states rotation calibration of the combination of LRF and 

omnidirectional camera. For pedestrian detection, the non-pedestrian needs to be 

filtered out. In this thesis, the methods with the LRF scan and the color image are 

presented in Section 4.3. LRF scan roughly judges pedestrian. Then the Hough circle 

transform and the color distribution are the judgment with the color image. With the 

above methods, the pedestrian detection can be implemented. In target pedestrian 

tracking, owing to pillars hindering or new pedestrians appearing, the data association 
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may be error between two consecutive LRF scans. The color distribution and the local 

binary pattern (LBP) algorithm are used in the problems of Section 4.4. 

 

4.1 The Operation Principle of Omnidirectional Camera 

In the pedestrian detection problem and the target pedestrian tracking problem of 

Section 1.2, the LRF scan and the color image should be used. Owing to wide field of 

view (FOV), the omnidirectional camera is necessarily used in the problems. Section 

4.1.1 states the operation principle of omnidirectional camera. What is more, Section 

4.1.2 presents the histogram equalization for low-light omnidirectional camera image. 

 

4.1.1 Introduction of Omnidirectional Camera 

The color image is widely used in the mobile robotic field. The color feature 

plays an important role in pedestrian detection and target pedestrian tracking. 

Therefore, the camera is often mounted on the mobile robot. 

In this thesis, one of the problems is pillars hindering. The data association may 

be error between two consecutive LRF scans. To search the target pedestrian, the 

omnidirectional camera is necessarily used. The omnidirectional camera’s field of 

view is 360 degree. Therefore, the omnidirectional camera is regarded as an available 
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tool to track the target pedestrian in the pillars hindering problem. 

The structure of omnidirectional camera includes a hyperbolic mirror and a 

camera under the mirror like Figure 4.1 [5: Yagi et al. 2005]. The horizontal passing 

through the virtual center line (HPVCL) maintains the same height in projection [53: 

Yang & Lian 2012], [5: Yagi et al. 2005]. The operation principle makes a light flight 

to the upper center  0, c . When the light touches the hyperbolic mirror, the light 

reflects to the other center  0, −c . The image appears in the process. 

 

Figure 4.1 The Omnidirectional Camera Structure 

 

4.1.2 The Lightness of Omnidirectional Camera 

Although the omnidirectional camera owns many advantages, it still overcomes a 

low-light problem in Figure 4.2. Since the light does not directly flight to image plane, 

Camera
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the color image is dark. The low-light causes the image dark, as shown in Figure 

4.3(a). However, the real scene from digital camera is bright, as shown in Figure 

4.3(b). That the lighting sources in the beginning put on the floor seems unworkable 

because of the unknown environment. The caution leads to two influences. One is the 

edge threshold value sets small. As a result, the noise easily interfaces the results. The 

other is each color channel distribution is dense. Therefore, using the color space to 

tracking target pedestrian is more difficult. Two methods are present to improve the 

influences. One uses the histogram equalization [6: Gonzalez & Woods 2008] stated 

in the next paragraph. The other enhances light through the aperture. In this thesis, the 

histogram equalization is used. With the process, the color image results obtain more 

robust. 

 

Figure 4.2 The Light Depends on the Active Lighting Source 
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(a) (b) 

Figure 4.3 Display Image with Lightness Problem in Ming-Da Building 2F 

(a) The omnidirectional image has the light problem 

(b) The real-scene with digital camera 

 

Histogram Equalization is a method making the intensity in image uniform [6: 

Gonzalez & Woods 2008]. The variables are shown in Figure 4.4. Let 𝑃𝑟 𝑟  be the 

probability of the intensity. Assume the output intensity s, and the definition of s is 

the following: 

s = T r = ∫ 𝑃𝑟 𝑤 𝑑𝑤
𝑟

0

 (4.1) 

In this transform, the probability of s is the cumulative distribution function 

(CDF) of the input 𝑟. And that is proved in [6: Gonzalez & Woods 2008]. The 

definition of 𝑃𝑠 is the following: 

𝑃𝑠 = {
1         0 ≤  ≤ 1
 0        𝑜 ℎ 𝑟𝑤𝑖   

 (4.2) 

where the probability of 𝑃𝑠  is a uniform function. Owing to digital signal, the 

intensity  𝑘 of image from Equation (4.1) is a discontinuous function in the image 

process as follows: 
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 𝑘 = ∑ 𝑟 𝑟𝑗 

𝑘

𝑗=0

 (4.3) 

 

The distribution of intensity is sparse, as shown in Figure 4.3(c), while it is 

uniform. The edge extraction is more consistent than unprocessed image in dark 

image. The detail states in Section 5.2. 

      

(a) (b) (c) 

Figure 4.4 Each Variable in Histogram Equalization 

(a) The probability of original intensity: 𝑃𝑟 𝑟  

(b) The original intensity transforms output intensity: T r  

(c) The probability of the output intensity: 𝑃𝑠    

 

4.2 Sensors Calibration 

 Before using the sensor, the calibration is an important task. In Section 4.2.1, the 

calibration is divided into horizontal adjustment, translation, and rotation. And the 

solutions are presented. Section 4.2.2, Section 4.2.3, and Section 4.2.4 are a series of 

the solutions for the rotation calibration. 
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4.2.1 The Description of Calibration 

Combining the LRF and the omnidirectional camera can acquire the abundant 

information in signal process. Most of all, the data association is the most important 

problem in sensors calibration. In this calibration, the adjustment of six freedoms is 

divided into horizontal adjustment, translation, and rotation. The horizontal 

adjustment uses the gradienter to calibrate the inclination. The translation is to align 

the geometry center of the LRF and geometry center of the omnidirectional camera in 

different horizontal plane. The rotation problem is discussed in Section 4.2.2, 4.2.3, 

and 4.2.4. Figure 4.5 shows the calibration problem for horizontal adjustment, 

translation, and rotation. The gradienter is used to calibrate the horizontal adjustment. 

Furthermore, the vernier caliper is used to align the geometry center. For the rotation 

problem, the angle matching is a method. In this thesis, the break point and the 

angular point in LRF scan and vertical line in color image are regarded as feature and 

presented in Section 4.2.2 and Section 4.2.3. 
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(a) (b) 

  

 (c) (d) 

Figure 4.5 Calibration Problems: Horizontal Adjustment, Translation, and Rotation 

(a) The laser range finder and omnidirectional camera 

(b) The gradienter for the horizontal adjustment in different plane 

(c) The vernier for the translation adjustment 

(d) The plane rotation problem sketch 

 

4.2.2 Break Point and Angular Point Detection 

To do data association, using the feature of data is necessary. The indoor 

environment is full of the walls. The break point for LRF scan and the angular point 

for LRF scan are shown in Figure 4.6 [7: Jia et al. 2010]. Here, the break point is 

presented based on point-distance-based segmentation method [8: Rebai et al. 2009]. 

The distance between two continuous points in LRF scan is expressed as follows: 

𝐷 𝑟 , 𝑟  1 = √𝑟  1
2 + 𝑟  

2 − 2. 𝑟  1
2 . 𝑟  

2. 𝑐𝑜 ∆𝛼 (4.4) 

If the distance is more than the threshold value 𝐷 ℎ, the two points are the break 
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points. Therefore the threshold value sets as follows: 

𝐷 ℎ = 𝐶0 +
𝐶1. 𝑚𝑖𝑛{𝑟 , 𝑟  1}

𝑐𝑜   𝛽 .  cos (
∆𝛼
2 ) − s n  

∆𝛼
2   

 (4.5) 

The parameters 𝐶1, 𝐶0, and β are presented in [8: Rebai et al. 2009]. Next, the 

angular point is introduced in [7: Jia et al. 2010]. The start point links end point to be 

a line. If the distance in point to the line is more than the threshold value δ, the 

angular point appears. In Figure 4.6, the idea of feature detection in LRF scan is 

presented. The ‘V’ presents the break point and the ‘X’ presents the angular point. For 

the indoor scene, both the break point and the angular point may be corner.  

 

Figure 4.6 The Break Points and Angular Points (With LRF Scan Grid Map) 

  In LRF scan, two consecutive points determinate the corner. Finding the break 

point, the angular point owns max distance large a threshold value between two 

break points link. 
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4.2.3 Vertical Line Detection 

The vertical line for color image is also an important feature in unknown indoor 

environment. The image of omnidirectional camera has distortion. Because of both 

angular matching and image distortion, the panorama is necessary. To expand the 

panorama, the projection center search is first of all. To sum up, the process needs to 

find the projection center, expand the panorama, and detect the vertical line, as shown 

in Figure 4.13. 

The flow chart of projection center search is shown in Figure 4.7. The projection 

center searching through the HPVCL is set in image center. First, the lower image is 

cut. The gray broad in image appears with RGB filter. Then, the region growing and 

the image filling are used to the image. The data  , y, and R relationship is shown as 

follows:  

  − 𝑐1 
2 +  𝑦 − 𝑐2 

2 = 𝑅2 (4.6) 

where the coefficients 𝑐1, and 𝑐2 are unknown. Next, through least square method [10: 

Gander et al. 1994], the optimal projection center can be obtained. Finally, the 

iterative method is continuous until it converges. 

  With above method, the optimal projection center converges in the omnidirectional 

camera image. 
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Figure 4.7 The Flow Chart of Projection Center Search 

 

  



37 
 

 

 

(c) 

 

(a) (d) 

  

(b) (e) 

Figure 4.8 Results of the Projection Center Search Algorithm 

(a) Cut image 

(b) Set the threshold value 

(c) Region growing 

(d) Image fill the holes 

(e) Least square fitting circle 

 

The panorama remedies the distortion image. For [11: Grassi & Okamoto 2006], 

that the panorama image depends on radius and angle from projection center is shown 

in Figure 4.9. The vertical axis of panorama is radius and the horizontal axis of 

panorama is angle. The larger the radius from projection center is, and the less the 

distortion in omnidirectional image is. The idea of panorama is that the Cartesian 

coordinate converts the polar coordinate. Figure 4.10 demonstrates an example for 

panorama image in real scene. Panorama image is shown in Figure 4.10(b). 
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Figure 4.9 The Idea Process of Panorama Image 

  The vertical axis is radius and the horizontal axis is angle. The larger the radius is, 

and the less the distortion is. 

 

 

(a) 

 

(b) 

Figure 4.10 Real Scene Image Process in Ming-Da Building 5F 

(a) Omnidirectional camera image 

(b) Panorama image in (a) from the idea of Figure 4.9 
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For the vertical line detection, many edge detectors can be used. For the 

panorama image, the Sobel vertical edge detection as shown in Figure 4.11 presented 

in [6: Gonzalez & Woods 2008] seems to be a practical method. Using the Sobel mask 

in Figure 4.11 does convolution with the original image. If the intensity difference in 

vertical direction is more than threshold value, the pixel is considered as a vertical 

edge. The main problem is the lightness of color image stated in Section 4.1.2. If the 

gradient ∇f is more than threshold T, the vertical edge is detected. However, the 

threshold value in Sobel vertical edge detection can vary dramatically because of the 

low-light environment for omnidirectional camera. Figure 4.12 demonstrates an 

example of low-light environment for omnidirectional camera. The threshold is small, 

as shown in Figure 4.12(a), the edge can be detected. However, the threshold is large, 

as shown in Figure 4.12(b). The low-light problem causes the edge threshold often 

needs to change. Figure 4.14 presents the vertical line extraction results with 

histogram equalization of low-light environment for omnidirectional camera. 

Histogram equalization is used to Figure 4.14(c). The threshold values in Sobel 

vertical edge detection is set the same. As expected, Figure 4.12(d) appears more 

vertical line than Figure 4.12(b). Therefore, the vertical line detection includes 

inputting an image, finding projection center, expanding the panorama, using 

histogram equalization, using Sobel vertical mask, and using area filtering, as shown 
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in Figure 4.13. 

 
Figure 4.11 The Sobel Vertical Edge Detector 

 

137 I41 115 

137 I51 115 

137 I61 115 
 

 

200 I42 55 

200 I52 55 

200 I62 55 
 

(a) (b) 

Figure 4.12 The Example of Two Image for Sobel Vertical Edge Detector 

(a) The intensity of left column and right column is nearly 

(b) The intensity of left column and right column is sparse 

 

 

Figure 4.13 The Process of Vertical Line Detection 
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(a) (e) 

  

(b) (f) 

  

(c) (g) 

  

(d) (h) 

Figure 4.14 Vertical Edge Detector in the Same Threshold Value 

(a) The original image converts to gray 

(b) The edge detector result of (a) 

(c) Using histogram equalization process 

(d) The edge detector result of (c) and the real scene in digital camera 

(e) The histogram from (a) 

(f) The histogram from (b) 

(g) The histogram from (c) 

(h) The real-scene with digital camera in Ming-Da Building 2F 

 

4.2.4 Data Association 

In the sensors calibration, the data association is an important task. However, the 

distance in LRF scan matches the pixel in color image is a problem. In [13: Bacca et 

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250



42 
 

al. 2013], the corner point matches the vertical line like in Figure 4.15(a). What is 

more, the dashed plane means the LRF scan plane. In [12: Ueda et al. 2011] and [14: 

Scaramuzza et al. 2006], the corner of vertical line is estimated in omnidirectional 

image. With the above transform function, the rotation angle can be estimated at the 

polar coordinates. From vertical line, matching the corner point needs a polynomial 

function with order 4. In unknown indoor environment, the corner of LRF scan in 

specific plane and vertical line of color image in digital camera are obvious features. 

The results show in Section 5.2.2. 

 

 

(a) (b) 

Figure 4.15 The Data Association Conception Matching the Feature Points 

(a) The dashed plane means the LRF scan plane. From vertical line, matching the 

corner point needs a polynomial function with order 4. The height convert pixel 

shows in Section 5.2. 

(b) A door of Real-Scene for Vertical Line and Corner. In door, the corner of LRF 

scan in specific plane and vertical line of color image in digital camera are 

obvious features. 
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4.3 Pedestrian Detection 

 In pedestrian detection, both omnidirectional camera and LRF are used in the 

thesis. Section 4.3.1 presents a preprocessing for pedestrian detection with LRF scan. 

Both the left line and the right line of bounding box are from LRF scan. Section 4.3.2 

states the lower line of bounding box extraction in pedestrian detection. However, the 

upper line of bounding box extraction for pedestrian needs to judge the pedestrian 

since the height of pedestrian is unknown. Section 4.3.3 provides judgment for 

pedestrian detection. Color distribution and Hough circle transform are used to 

estimate the head of pedestrian. Section 4.3.4 states the idea that the pedestrian 

extraction corrects the global static map. 

 

4.3.1 Pedestrian Detection Preprocessing with Laser Range Finder 

For pedestrian detection, inverse observation model is used in [3: Chen et al. 

2011]. However, the inverse observation model with LRF scan does not detect the 

pedestrian whose state is from unknown to occupied. In summary, the moving object 

in LRF scan is sometimes regarded as static object in environment. Take for example, 

the dynamic map in Cartesian coordinate shows in Figure 4.16(a). However, the 

pedestrian in dynamic map is not obviously. Therefore, that the preprocessing for 
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Figure 4.17(a) includes data segmentation, distance factor, and cluster size is used in 

the thesis. The following states the data segmentation for LRF scan, distance factor 

for LRF scan, and cluster size for LRF scan. 

  

(a) (b) 

Figure 4.16 The Moving Objects in Dynamic Map with LRF scan (a grid: 200cm) 

(a) By inverse observation model, some moving objects points are noise points in 

Cartesian coordinate. 

(b) The color image in omnidirectional camera with semi-image 

  

(a) (b) 

Figure 4.17 The Measurement Points in LRF scan (unit : 10cm) 

(a) The points in measurement map are error in Cartesian coordinate. The 

unreasonable pedestrian points should be eliminated. The LRF scan shows the 

LRF points needed to be solved. 

(b) The color image in omnidirectional camera with semi-image 

 

The idea of data segmentation is same as Section 3.2.2. For each cluster, if two 

consecutive points distance   𝑟 , 𝑟  1  with Equation (3.4) in Section 3.2.2 is larger 

than 𝐷 ℎ with Equation (3.5) in Section 3.2.2. Then the cluster divides into two 
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clusters. With the method, the points cluster around several groups. Each group is 

regarded as an object. The measurement point divides into four groups ‘A’, ‘B’, ‘C’, 

and ‘D’, as shown in Figure 4.18(a). 

  

(a) (b) 

Figure 4.18 The Data Segmentation Result in LRF scan (unit : 10cm) 

(a) The data segmentation divides into four groups as the picture in Cartesian 

Coordinate. In picture, the scan divides into four groups A, B, C, and D. 

(b) The color image in omnidirectional camera with semi-image 

 

In general, the distance from the mobile robot affects the accuracy. Therefore, the 

threshold distance for measurement points is set. The distance from the mobile robot 

is far. Then, the confidence is low. In Figure 4.19(a), the distance of wall achieves 

eight meter. The far distance for measurement points is eliminated. 
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(a) (b) 

Figure 4.19 The Distance Factor in LRF Scan (unit : 10cm) 

(a) The distance is far, and then the confidence is low. In this picture, the distance 

achieves eight meter. The error increases with distance. The LRF scan is in 

Cartesian Coordinate. 

(b) The color image in omnidirectional camera with semi-image 

 

Finally, the cluster size should be considered in the pedestrian detection. For the 

pedestrian data, the points in each cluster contain specific number. For example, the 

wall in Figure 4.20 is detected as a moving object. However, the number of 

measurement points obviously is non-pedestrian. Using the three judgments, the 

pedestrian is roughly extracted. 

  

(a) (b) 

Figure 4.20 The Cluster Size of Elimination in LRF Scan (unit : 10cm)  

(a) The pedestrian size owns specific size, and the unreasonable points are 

eliminated. The LRF scan is in Cartesian Coordinate. 

(b) The color image in omnidirectional camera with semi-image. 
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4.3.2 Lower Line of Bounding Box Extraction 

For the pedestrian detection, the LRF scan only the distance information seems 

to be insufficient. However, the pedestrian information includes not only the distance 

from mobile robot but also the color of pedestrian. Hence, the color image is regarded 

as an additional condition for the judgment based on the laser range finder (LRF) 

scan.  

The omnidirectional camera is used to detect pedestrian since the field of view 

(FOV) is wide. For fusion of LRF and omnidirectional camera, the bounding box 

needs to be extracted. The left line of bounding box and the right line of bounding box 

are from the LRF scan. Therefore, the upper line of bounding box and the down line 

of bounding box states in Section 4.3.2 and Section 4.3.3. 

Through the sensor calibration in Section 4.2, the sensors are directly used. To 

acquire lower line of bounding box, the operation principle of omnidirectional camera 

is used. Therefore, the omnidirectional camera mirror is discussed. Figure 4.21 shows 

the undistrtion image by a toolbox in [46: Bouguet 2013]. Hence, the omnidirectional 

camera mirror model can be estimated. 
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(a) (b) 

Figure 4.21 The Omnidirectional Camera Model 

(a) The original image with digital camera 

(b) The undistortion image with digital camera 

 

From [5: Yagi et al. 2005], the omnidirectional mirror is a hyperbolic surface. To 

acquire the mirror equation, image processing is necessary. The hyperbolic surface 

region is selected from Figure 4.22(a), as shown in Figure 4.22(b). Canny edge 

detector [6: Gonzalez & Woods 2008] is used. Generally, the Canny edge detector is a 

powerful tool to deal with edge problems [6: Gonzalez & Woods 2008]. The result by 

the Canny edge detector is shown in Figure 4.22(c). 

 

  

(a) (b) (c) 

Figure 4.22 The Hyperbolic Surface Extraction 

(a) The original image with digital camera 

(b) Select the hyperbolic surface region in Figure 4.22(a) 

(c) Using the Canny edge detector in Figure 4.22(b) 

 

After acquiring the edge information, the hyperbolic surface equation is the next 
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problem. Least-square fitting (LSF) of Hyperbolae [47: O’Leary & Murray 2004] is 

minimum error method for curve fitting. In [47: O’Leary & Murray 2004], the process 

uses the single value decomposition (SVD) to fit the hyperbolic surface equation. In 

Figure 4.23(b), the curve is the Least-Square Fitting curve from Figure 4.23(a). 

 

 
(a) (b) 

Figure 4.23 The Curve Fitting of SVD algorithm  

(a) Using the Canny edge detector in Figure 4.22 (c) 

(b) The curve is the Least-Square Fitting curve from Figure 4.23(a). 

 

The above paragraph describes the curve fitting with SVD algorithm. Figure 4.24 

shows the model of omnidirectional camera in [5: Yagi et al. 2005]. The 

parameters  𝑑1, 𝑧1 ,  𝑑𝑐, 𝑧𝑐 , and  𝑑0, 𝑧0  are HPVCL parameters. By optical relation 

of hyperbolic surface, it needs the parameter a, b, and c. Then, the light from  𝑑2, 𝑧2  

to  0, c  on the hyperbolic surface is  d, z , and it turns to  0, −c  on the image 

plane   𝑑𝑝, 𝑧𝑝 . From Equation (4.6) in Section 4.2.3,  𝑑0, 𝑧0  is known. 

Therefore,  𝑑𝑝, 𝑧𝑝  is obviously acquired by the optical relation of hyperbolic surface. 

The equations are from following Equation (4.7) to (4.12). The known parameters 
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are 𝑑1, 𝑑2, 𝑧1, 𝑧2, 𝑑𝑐, 𝑧𝑐, 𝑑0, 𝑧0,𝑧𝑝, a, b, and c. The parameters d, z, and 𝑑𝑝 is used. 

Through the following equation, the result is shown in Figure 4.25. However, the 

arrow represents the error measurement in LRF scan. The LRF scan converts the pixel 

in omnidirectional camera image. The LRF mounts on 90 centimeter as same as the 

wall Height. So the measurement in LRF scan may be some error. Figure 4.26(c) 

shows the left line, the right line, and the lower line of bounding box. 

 

Figure 4.24 The Omnidirectional Camera Model with Pedestrian Estimation in 

Omnidirectional Camera Image Pixel from Projection Center 
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d s = (
𝑧2 − 𝑧1

𝑑1
) (4.7) 

𝑑𝑐 = √
𝑎2

−1 + (
𝑐
 
)
2 (4.8) 

d =

−𝑑𝑖 . 𝑧1 − √ 𝑑𝑖 . 𝑧1 2 − (𝑑𝑖 2 − (
 
𝑎)

2

) .  𝑧12 −  2 

𝑑𝑖 2 − (
 
𝑎)

2  
(4.9) 

z = 𝑧1 + 𝑑𝑖 . 𝑑 (4.10) 

𝑑0 = 0.25𝑑𝑐 (4.11) 

𝑧0 = 𝑧𝑝 = −0.5𝑐 (4.12) 

𝑑𝑝 =
𝑑. 𝑐

2 𝑐 + 𝑧 
 (4.13) 

 

 

Figure 4.25 The Ground Bounding Box Result Demonstration (unit: pixel & meter) 

  The LRF scan converts the pixel in omnidirectional camera image. The LRF 

mounts on 90 centimeter as same as the wall Height. So the measurement in LRF 

scan may be some error. 
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(a) (b) (c) 

Figure 4.26 The Left Line, the Right Line, and the Lower Line of Bounding Box. 

(a) The measurement points in LRF scan with some preprocessing 

(b) Omnidirectional camera color image with semi image 

(c) Left line, right line, and lower line of bounding box with panorama image 

 

4.3.3 Upper Line of Bounding Box Extraction 

For the bounding box, the upper line of bounding box extraction is a difficult 

task owing to unknown height of pedestrian. In the pedestrian detection, head 

detection is a practical method. In this thesis, Hough circle transform and color 

distribution are conditional judgments for the pedestrian detection [48: Zhao et al. 

2012]. 

Hough circle transform is a circle with radius r and center   0, 𝑦0  can be 

expressed as the following parametric equations: 

 =  0 + 𝑟0. cos 𝜃 (4.14) 

y = 𝑦0 + 𝑟0. s n 𝜃 (4.15) 

where the angle 𝜃 is the full range 360 degree. Hough circle transform owns a voting 

mechanism from   , y  coordinate to   0, 𝑦0, r  coordinate [48: Zhao et al. 2012], [36: 

Ballard 1981]. Figure 4.27 illustrates the Hough circle transform procedure. First, any 
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point in    , y  coordinate converts to a circular cone in    0, 𝑦0, 𝑟𝑜  coordinate 

through Equation (4.14) and (4.15), as shown in Figure 4.27(a) and (b). Next, owing 

to adding other point, another circular cone in   0, 𝑦0, 𝑟𝑜  appears, as shown in Figure 

4.27(c) and (d). Finally, the voting number decides the circle. That the   , y  

coordinate converts to the   0, 𝑦0, 𝑟𝑜  coordinate is two-dimension converts to 

three-dimension. So the radius usually is fixed in some range, as shown in Figure 

4.27(e) and (f). For the pedestrian detection, circle radius in real-life is approximately 

from 15 cm to 20 cm. And head body ratio is 4 to 9. 

For the color distribution [33: Zhao et al. 2008], [49: Rahimi et al. 2013], YCbCr 

color space extracts luminance in Y channel. The color space decides pedestrian 

model with both Cb channel and Cr channel. Equation (4.16) describes RGB color 

space converts to YCbCr color space [50: YCbCr from wiki 2014]. Equation (4.17) 

and (4.18), the color space threshold value in pedestrian detection is presented in [33: 

Zhao et al. 2008], [49: Rahimi et al. 2013], [48: Zhao et al. 2012]. 

For above conditional judgment, the pedestrian can be distinguished. Figure 4.28 

shows a test of pedestrian detection. As expected, the Hough circle transform can 

detect the head of pedestrian, as shown Figure 4.28(d). In summary, the Hough circle 

transform and the color distribution are efficiently the methods for pedestrian 

detection.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.27 The Hough Circle Transform 

(a) The   0, 𝑦0, r  coordinate with Equation (4.14) and Equation(4.15) 

(b) The   , y  coordinate from (a) with Equation (4.14) and Equation(4.15) 

(c) and (d) two points in   , y  coordinate make a line intersection 

(e) and (f) set the specific plane r value for Hough circle transform making the 

dimension reduction. 

Then (a)~(f) is Hough circle transform operation process 
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16 65.481 128.533 24.966

128 37.797 74.203 112.000

128 112.000 93.786 18.214
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 (4.16) 

[111,170]CbR   (4.17) 

[115,195]CrR   (4.18) 

 

 

(a) 

   

(b) (c) (d) 

Figure 4.28 Test of Pedestrian Detection 

(a) Original panorama image in Ming-Da 5F 

(b) Original image in specific region 

(c) Histogram equalization, Canny edge detection, and Hough circle transform 

(d) Circle radius, head body ratio, and color distribution verification 

 

4.3.4 Pedestrian Points Filtering in Static Map Construction 

To obtain accurate the global static map, the pedestrian filtering is an important 

item in static global map construction. When the pedestrian points are filtered, the 

other points in scan are matched by PSO algorithm in Section 3.2. The static global 



56 
 

map is accurate owing to the pedestrian points filtering. The procedure is shown in 

Figure 4.29. The pedestrians are detected with LRF scan at time t and t+1, as shown 

in Figure 4.29(a). However, the pedestrians are filtered at time t and t+1, as shown in 

Figure 4.29(b). The scan matching between two LRF scans, as shown in Figure 

4.29(c). However, the thesis only states the idea. In the future work, pedestrian points 

filtering in global static map may be a practical method. 

 

(a) 

 

(b) 

 

(c) 

Figure 4.29 Pedestrian Points Filtering Process 

(a) Origin raw data in time t and t+1 

(b) Pedestrian points filtering in time t and t+1 

(c) Static global map in pedestrian points filtering in time t and t+1 
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4.4 Target Pedestrian Tracking 

For target pedestrian tracking, the color image is important. However, the color 

image seems to solve the problems in Section 1.2. Section 4.4.1 and Section 4.4.2 

describe the color distribution and the color texture. Section 4.4.3 provides a method 

Bhattacharyya distance for two histograms comparison. With the coefficients, Section 

4.4.4 states the update method. 

 

4.4.1 Color Distribution 

Color distribution is a method to track target pedestrian. Color distribution can 

divide into three independent channels. In this thesis, YCbCr color space is presented 

in [50: YCbCr from wiki 2014]. The RGB color space converts the YCbCr color 

space with Equation (4.16) in Section 4.3.3. The YCbCr color space is widely used to 

digital video. Y is the luma component, Cb is the blue-difference chroma component, 

and Cr is the red-difference chroma component. 

In the target pedestrian tracking, the color image is used. Generally, color spaces 

of two near images are similar. Therefore, the all channels of YCbCr color space are 

simultaneously adopted.  
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4.4.2 Local Binary Patterns 

To track target pedestrian, the color distribution is obviously insufficient. For 

each pixel, neighbor relative intensity is also important. In [49: Rahimi et al. 2013], 

LBP is a texture operator. The LBP algorithm states the neighbor relative intensity for 

each pixel. Owing to the LBP algorithm, the target pedestrian tracking is robust 

against pedestrian deformation. 

LBP algorithm is often used because of low computational complexity [49: 

Rahimi et al. 2013]. The LBP value represents relative intensity with neighbor. In an 

intensity of 3 3 cells, the center cell I0 compares with neighbor. If I0 is larger than 

the cell, the cell marks 0. Likely, if the I0 is smaller than the cell, the cell marks 1. 

Figure 4.30(b) is a result through the LBP operator in Figure 4.30(a). The LBP value 

is binary bit from  I1  to  I8 , as shown in Figure 4.30(b). The LBP value 

is  10100100 2. The decimal is 164 in Equation (4.19). Each pixel in image does the 

LBP operator. Therefore, the result is LBP image. 
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(a) (b) 

Figure 4.30 The Example for LBP Operator 

(a) The intensity of 3*3 cell from pixel I0 

(b) The LBP result from Figure 4.30 (a) 

 

 ec mal: 1 ∗ 2 8−1 + 1 ∗ 2 6−1 + 1 ∗ 2 3−1 = 164 (4.19) 

 

4.4.3 Bhattacharyya Distance 

Bhattacharyya distance is used to judge the similarity of two histograms [51: 

Bhattacharyya distance from wiki 2014]. Equation (4.20) represents the 

Bhattacharyya distance coefficient (BC), 𝑁 is the number of intensity, 𝑁 𝑜 𝑎𝑙 is the 

total number of pixels in image,  𝑎  is the number of previous color space for 

intensity  , and    is the number of current color space for intensity  . That the BC 

equals one means two histograms is same. That the BC is close to zero means two 

histograms are different. Figure 4.31 are examples for the BC. 

1

*N
i i
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  (4.20) 
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Figure 4.31 The Bhattacharyya Distance Coefficient Illumination 

(a)~(c) The two same histogram and Bhattacharyya distance coefficient 

(d)~(f) The two different histogram and Bhattacharyya distance coefficient 

(g)~(i) The more different the two histogram are, the closer to 0 the Bhattacharyya 

distance coefficient is 
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4.4.4 Database Update 

For each candidate pedestrian data, it owns four Bhattacharyya distance 

coefficients including Y color intensity histogram, Cb color intensity histogram, Cr 

color intensity histogram, and LBP intensity histogram. If the four Bhattacharyya 

distance coefficients are larger than threshold values, the pedestrian is the target 

pedestrian. The new pedestrian replaces the original target pedestrian to the new target 

pedestrian. 

For data association, spatial constraint needs to be considered. If the Euclidean 

distance between original pedestrian data and new pedestrian data is larger than a 

threshold value in a period time, the spatial constraint deletes the pedestrian data. 

Over the period time, the pedestrian location is not important. 

With both the four Bhattacharyya distance coefficients and the spatial constraint, 

the target pedestrian tracking is complete. 
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Chapter 5  

Experimental Results and 

Analysis 

Several experiments are undertaken in Ming-Da Building. Self-localization, 

mapping, pedestrian detection, and target pedestrian tracking are evaluated with the 

offline experimental systems. Section 5.1 states the equipment in the experiments. 

Section 5.2 states the sensors calibration between the LRF and the omnidirectional 

camera. What is more, Section 5.2 discusses the error of sensor measurement. In 

Self-localization and mapping, Section 5.3 states methods including PSO algorithm 

and occupancy grid map. The accuracy of mapping results by ICP algorithm and PSO 

algorithm is shown in Section 5.4. For pedestrian detection, Section 5.5 shows the 

performance and the process. Likely, Section 5.6 shows the performance and the 

process in target pedestrian tracking. 

 

5.1 Hardware Platform 

The following equipment is used in the experiment, as shown in Figure 5.1.  

The Pioneer 3-DX in Figure 5.1(a) is a differential-drive mobile robot. The 
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LMS-100 is a LRF providing the distance scan in a plane. And the VS-C14U-80-ST is 

an omnidirectional camera, and the field of view (FOV) of the omnidirectional 

camera covers the 360 degree. Both the LRF and the omnidirectional camera are 

mounted on the mobile robot, as shown in Figure 5.2. The VS-C14U-80-ST is 

mounted on the mobile robot at 180 cm from ground. What is more, the LMS 100 is 

mounted on the mobile robot at 90 cm from ground. 

The URG-04LX-UG01 is also LRF used in these experiments as a ground truth 

of the robotic position, as shown in Figure 5.1(d). 

  

(a) (b) 

  

(c) (d) 

Figure 5.1: The Experimental Instrument 

(a) The model number Pioneer 3DX from mobile robot 

(b) The model number LMS-100 from LRF 

(c) The model number VS-C14U-80-ST from omnidirectional camera 

(d) The model number URG-04LX-UG01 from LRF 
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Figure 5.2 The Experimental Mobile Robot 

The VS-C14U-80-ST is mounted on the mobile robot at 180 cm from ground. 

And the LMS 100 is mounted on the mobile robot at 90 cm from ground. 

 

5.2 Accuracy of Sensor Measurement 

In Section 5.2.1, the LRF scan accuracy is tested. Section 5.2.2 analyzes 

accuracy in both the panorama image of omnidirectional camera and rotation 

calibration. 

 

5.2.1 Laser Range Finder Accuracy 

I. LMS-100 

The experimental results probe into the accuracy of LRF before using the 

equipment. The main tasks include two analyses. One is acceptance rate, and the other 
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is error. The details are presented as follows. 

Acceptance rate means the sensor accepts the emissive light. Table 5.1 shows the 

total acceptance in each angle with 100 pieces of data in the environment with glass. 

The measurement points in the environment with glass, as shown in Figure 5.3(a). 

In this experiment, Section 3.1.2 states the glass environment affecting the 

acceptance rate. Then, Figure 5.4 demonstrates the analysis of acceptance rate in the 

glass environment. Here, the x-axis is angle, and the y-axis is percentage. The glass 

environment may cause the acceptance rate reduction. To prove the thinking, the same 

style experiment is also implemented in network control systems laboratory (NCSLab) 

with non-glass environment, as shown in Figure 5.5. The measurement points in 60 

cm plane from ground and the acceptance rate achieve 100% with LRF in each angle 

in Figure 5.6. In addition, the acceptance rate in glass environment is 95.6% in Table 

5.1. In this condition, the glass environment affects the acceptance rate. 
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(a) (b) 

 

 

(c)  

Figure 5.3 Experimental Environment with Glass in Ming-Da Building 2F (unit:m) 

(a) Measurement points in 60 cm plane from ground, some distances exceed 20 m  

(b) The measurement points contain less 20 m for LRF scan from (a). 

(c) Real-scene in environment with digital camera 

 

Table 5.1 Acceptance Rate in the Ming-Da Building 2F 

Measurement Number 

(Total 100 data) 

Total of Each Angle 

(361 angle) 
Percentage 

0 12 3.3% 

1~99 4 1.1% 

100 345 95.6% 

 

 

Figure 5.4 Plot the Acceptance Rate with Each Angle in the Table 5.1 
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(a) (b) 

Figure 5.5 Experimental Environment in Ming-Da Building Lab 601 (NCSLab) 

(a) Measurement points in 60 cm plane from ground and the acceptance rate 

achieve 100% with LRF in each angle (unit: meter) 

(b) Real-scene with digital camera in non-glass environment 

 

To judge the data performance, the mean and the error are presented. Equation 

(5.1) and (5.2) show the mean and the error: 

mean da a =
∑𝑎𝑙𝑙 𝑑𝑎 𝑎

𝑖  𝑚 𝑛𝑢𝑚  𝑟
 (5.1) 

error =
∑ 𝑑𝑎 𝑎 − 𝑚 𝑎𝑛 𝑑𝑎 𝑎  

𝑖  𝑚 𝑛𝑢𝑚  𝑟
.

100%

𝑚 𝑎𝑛 𝑑𝑎 𝑎 
 (5.2) 

The following results in Figure 5.6 indicate the error analysis from Equation (5.2) 

with different distance. In length 4.5 meter with maximum error, the error achieves up 

to 2%. For the data number from 100 pieces of data to 650 pieces of data, the error 

does not obviously change. 
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(a) 100 Sampling data (b) 150 Sampling data (c) 200 Sampling data 

   

(d) 250 Sampling data (e) 300 Sampling data (f) 350 Sampling data 

   

(g) 400 Sampling data (h) 450 Sampling data (i) 500 Sampling data 

  

 

(j) 600 Sampling data (k) 650 Sampling data  

Figure 5.6 Data Number of Sampling in Distance Length with Error Percentage 

Analysis 

x-axis: distance length 

y-axis: error percentage 

The maximum error is about 4.5 meter achieving up to 2%. 
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II. URG-04LX-UG01 

Similarly, both acceptance rate and error are presented in above paragraph. And 

the experiments are the same with above paragraph. In NCSLab, the results are the 

following in Table 5.2, Figure 5.7, Figure 5.8, and Figure 5.9. The real-scene in 

NCSLab is shown in Figure 5.7. However, the measurement unstable with different 

value for corner, as shown in Figure 5.7(c) and (d). The acceptance rate is only 54.8%. 

However, the acceptance rate of LMS-100 in NCSLab can achieve 100%. In the error 

analysis, the error in different number data is shown in Figure 5.6. The error analysis 

is for URG-04LX-UG01 from Equation (5.1) and (5.2). Although, the regular is not 

found, there are two peaks close to 0.5m and 2m in these data. Compared with 

LMS-100, the mean error is 0.56%. The mean error is smaller than LMS-100 0.81%. 

But the maximum error in URG-04LX-UG01 achieves 40.02%. The maximum error 

in LMS-100 is only 2.33%. In summary, the error of URG-04LX-UG01 has smaller 

mean error than LMS-100. However, the maximum error of URG-04LX-UG01 is 

larger than LMS-100. Table 5.3 states the details. 
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(a) (b) 

  

(c) (d) 

Figure 5.7 The Measurement Points of the LRF Scans 

(a) Real-scene with digital camera 

(b) Plot measurement points in NCSLab (unit: m) 

(c) The left value of 124.3 degree: 1.743% error with 100 pieces of data 

(d) The right value of 124.3 degree: 0.432% error with 100 pieces of data 

(c) and (d) represent the measurement unstable with different value for corner 

 

Table 5.2 Acceptance Rate in the NCSLab in 100 data 

Measurement Number 

(Total 100 data) 

Total of Each Angle 

(361 angle) 
Percentage 

0 253 37.1% 

1~99 55 8.1% 

100 374 54.8% 
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Figure 5.8 Plot the Acceptance Rate Result with Each Angle in Table 5.2 

The x-axis is angular information, and the y-axis is measurement number. In this 

picture, the acceptance is about 50%. 

 

   

(a) 100 data (b) 150 data (c) 200 data 

   

(d) 250 data (e) 300 data   (f) 350 data 

Figure 5.9 Errors with Equation (5.1) and Equation (5.2) 

x-axis: distance length 

y-axis: error percentage 

The regular of measurement error is not found. But, there are two peaks close to 

0.5m and 2m in these data. 

 

The LMS100 and the URG-04LX-UG01 have their advantages. Table 5.3 states 

the properties of LRFs. The items include measurement range, measurement angle, 
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resolution, measurement full ratio, maximum error, mean error, and scan time. 

 

Table 5.3 Properties of Laser Range Finder 

URG-04LX-UG01 Item LMS100 

0.02m ~ 4m   Measurement Range    0.05 m ~ 20 m 

240 ° Measurement Angle 180 ° 

    0.36 ° Resolution 0.5 ° 

54.8 % Measurement Full Ratio 95.6 % 

40.02 % Maximum Error 2.33 % 

0.56 % Mean Error 0.81 % 

100 msec Scan Time 20 msec 

 

5.2.2 Sensors Calibration 

I. Break Point and Angular Point Detection 

The LRF uses the distance of two consecutive points to do segmentation. Then, 

the dynamic threshold 𝐷 ℎ  and δ are selected. The partitions divide into break 

points and angular points in Figure 5.11. In Figure 5.10(a), ‘∗’ represents the break 

point and ‘o’ represents the angular point. Hence, the x-axis represents the number of 

angle. The 361 angle numbers cover the 180 degree, and the angle resolution is 0.5 

degree, In addition, the LRF is mounted on the mobile robot at 90 cm from ground. 
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(a) (b) 

Figure 5.10 The Break Points and Angular Points with LRF Data in Ming-Da 

Building 6F 

(a) The break point is ‘∗’ and the angular points ‘o’ 

(b) The stem plot represents the break points and angular points with the number 

of angle 

x-axis: 0.5 degree is a number 

y-axis: 1(true), 0(false) 

 

 Take for example in Figure 5.11, the ‘0°:14.5°(1.72)’ means that 14.5° is angular 

points from Section 4.2, 0° is angular point in Section 4.2, and 1.72 meter is the 

maximum distance in the point to the line from start to end. Similarly, the 

‘26°:75.5°(3.55)’ means that 26° and 75.5° are break points in Section 4.2, and 3.55 

meter is the maximum distance in the point to the line from start to end. 
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Figure 5.11 The classification represents the break point ‘∗’ and  

the angular point ‘o’. 

For example, 0°:14.5°(1.72) is a symbol. 0° and 14.5° are angular points, and 

1.72 meter is the maximum distance in the point to the line from start to end. 

Similarly, 26°:75.5°(3.55) is a symbol. 26° and 75.5° are break points, and 3.55 

meter is the maximum distance in the point to the line from start to end. 

 

II. Vertical Line Detection 

To do the panorama of omnidirectional camera, the projection center needs to be 

found. In the Ming-Da Building 4F, the floor owns the gray board considering the 

feature. The omnidirectional camera is put on the floor and turned over. The position 

of the omnidirectional camera in Ming-Da Building 4F is shown in Figure 5.12. 
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(a) (b) 

Figure 5.12 The Position of the Omnidirectional Camera in Ming-Da Building 4F 

The omnidirectional camera is put on the floor and turned over. 

  

   

(a) (b) (c) 

  

 

(d) (e)  

Figure 5.13 The Process in Finding the Projection Center in Ming-Da Building 4F 

(a) Cut image in omnidirectional camera 

(b) Set the threshold value in RGB color space from (a) 

(c) Region growing in specific point from (b) 

(d) Image fill the holes from (c) 

(e) Least square fitting circle from points in (d) 

 

And then, Figure 5.13 shows the procedure in finding the projection center 

through the HPVCL. First, Figure 5.13(a) is an input image. Then, the lower image is 

cut. Using the RGB filter, the gray color data is shown in Figure 5.13(b).Next, using 

the region growing, and the image is shown in Figure 5.13(c). Using the image filling, 

the image is shown in Figure 5.13(d). Finally, Table 5.4 shows the iterative results, the 

initial guess is the center of image (512,384). The second iterative result converges to 
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the projection center (530,394). Hence, the positive x-axis is right, and the positive 

y-axis is down. 

 

Table 5.4 Projection Center Search 

 Initial result First iterative Second iterative Final result 

X (pixel) 512 530.147 530.1288 530 

Y (pixel) 384 394.2445 394.2285 394 

The resolution of panorama image is 350x721, as shown in Figure 5.14(b). The 

resolution in Figure 5.14(a) is 1024x768. And the analysis of panorama needs to be 

deeply probed. In Figure 5.15, the gray board is the feature extracted. The extracted 

feature compares to the radius of projection center. First, using the RGB filter for 

input image gets the image1. Then, using the Sobel horizontal edge detector in [6: 

Gonzalez & Woods 2008] for the image1 gets image2. In image 2, picking the lower 

line in two lines can get image3. Finally, using the opening algorithm in [6: Gonzalez 

& Woods 2008] can get image4. The image4 includes the radius of projection center 

names HPVCL. 

 
 

(a) (b) 

Figure 5.14 The Panorama Image from Omnidirectional Camera 

(a) The original image from omnidirectional camera 

(b) The panorama image from (a) 
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(a) (b) 

  

(c) (d) 

  

(e)    (f) 

Figure 5.15 The SHL Extraction Method from Omnidirectional Camera in 

Ming-Da Building 4F 

(a) The original image from omnidirectional camera 

(b) The panorama image from (a) 

(c) Using the RGB filter from (b) 

(d) The Sobel horizontal edge detector in [6: Gonzalez & Woods 2008] from (c) 

(e) Pick the down line in two line in (d) 

(f) Using the opening algorithm in [6: Gonzalez & Woods 2008] from (e) 

 

The accuracy of the HPVCL is shown in Figure 5.16 and the formulas are from 

Equation (5.3) and (5.4). In Figure 5.16, Current_Radius is the radius from projection 

center to gray board, and Pixel_Radius means the radius in Figure 5.13(e) is 308. The 

histograms are shown in Figure 5.16. 
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(a) (b) 

Figure 5.16 The analysis of Figure 5.15 

(a) Difference of Pixel = Current_Radius - Pixel_Radius 

x-axis is the difference number, and y-axis is the number of pixels 

(b) Error Pixel = abs(Difference of Pixel)/Pixel_Radius*100 % 

x-axis is the error percentage, and y-axis is the number of pixels 

 

  fference of P  el =  Curren _Rad us −  P  el_Rad us (5.3) 

Error P  el = | 
  fference of P  el

P  el_Rad us
. 100% | (5.4) 

The Sobel vertical edge detector results in Figure 5.17. And the histogram 

equalization improves the edge detection. Figure 5.17(c) is the original panorama 

image. However, Figure 5.17(g) is the vertical lines by Sobel vertical detector. As 

expected, Figure 5.17(g) appears more vertical line than Figure 5.17(c). The stem plot 

for vertical line is extracted, as shown in Figure 5.17(g). The data association needs to 

the specific pixel in vertical line of image, and the next paragraph states the detail. 

  

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

20

40

60

80

100

120

140

160

180

200

Difference of Pixel

N
u
m

b
e
rs

-1 0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

Error Percentage

N
u
m

b
e
rs



79 
 

  

(a) (e) 

  

(b) (f) 

  
(c) (g) 

 
 

(d) (h) 

Figure 5.17 The Sobel Vertical Edge Detector for Ming-Da Building 6F 

(a) Original image gray value from omnidirectional camera 

(b) The histogram equalization process from (a) 

(c) The panorama original image from 5.14(a) 

(d) The vertical line angle from (c) 

(e) The histogram from (a) 

(f) The histogram from (b) 

(g) The Sobel vertical line detection in (c) 

(h) The stem plot for the real-scene in (d) 

 

III. Angular Rotation Calibration 

To pick the specific pixel matching the LRF scan point, the distance and pixel 

relationship needs to be acquired. In Figure 5.18 and Table 5.5 with the distance and 
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the pixel relationship [12: Ueda et al. 2011], the LRF is mounted the same height of 

the suitcase. The corner in LRF scan matches the suitcase corner pixel in color image. 

The distance from LRF scan and pixel from color image relationship is shown in 

Table 5.5. Therefore, the curve fitting of the distance and pixel is presented in Figure 

5.19. The curve fits with a polynomial function with order four [14: Scaramuzza et al. 

2006]. The function is y = 0.0015x
4
 - 0.0245x

3
 - 1.0363x

2
 + 22.4902x + 160.0462. 

The following six cases are shown in Figure 5.18. And the complete 20 cases are 

shown in Appendix A.1. 
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(a) 10.46 m (b) 10.32 m (c) 10.23 m 

   

   

(d) 9.71 m (e) 9.43 m (f) 8.91 m 

Figure 5.18 (a)~(f) The Distance Converts the Pixel (Remainder in Appendix A.1) 

The LRF mounts on mobile robot, and the height is 60 cm. 

The corner in LRF scan matches the suitcase corner pixel in color image. 

 

  

-15 -10 -5 0 5

2

4

6

8

10

12

14

16

-15 -10 -5 0 5

2

4

6

8

10

12

14

16

-15 -10 -5 0 5

2

4

6

8

10

12

14

16

-14 -12 -10 -8 -6 -4 -2 0 2 4

2

4

6

8

10

12

14

16

-14 -12 -10 -8 -6 -4 -2 0 2 4

2

4

6

8

10

12

14

16

-12 -10 -8 -6 -4 -2 0 2 4 6

2

4

6

8

10

12

14

16



82 
 

Table 5.5 The Distance Data and The Pixel Data 

Distance 

(meter) 

Pixel from Projection 

Center (Pixel) 

Distance 

(meter) 

Pixel from Projection 

Center (Pixel) 

2.48 208 7.21 263 

3.12 223 7.70 261 

3.93 226 8.11 268 

4.09 236 8.50 268 

4.70 241 8.91 272 

5.23 244 9.43 271 

5.66 250 9.71 272 

5.63 255 10.23 271 

6.40 259 10.32 270 

6.89 263 10.46 272 

 

 

Figure 5.19 The Curve Fitting in Table 5.5 

Using least square method to fit curve with a polynomial function with order 4 

Quadratic function:  

y = 0.0015x
4
 - 0.0245x

3
 - 1.0363x

2
 + 22.4902x + 160.0462 

 

With the relationship, the LRF scan and the color image are picked by manual 

operation. The rotation data is shown in Table 5.6. And the rotation is 4.75°. 
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Table 5.6 The Rotation Angle with Each Feature 

Item Angle with Corner or Vertical Line 

Laser Range 

Finder 
158.0° 117.5° 25.5° 14.5° 

Omnidirectional 

Camera 
156.5° 113.0° 19.0° 9.0° 

Difference 

(4.75°) 
2.5° 4.5° 6.5° 5.5° 

 

5.3 Static and Dynamic Map 

Section 5.3.1 shows the results in different algorithm including ICP and PSO in 

SLAM. And Section 5.3.2 displays the map construction results. 

 

5.3.1 The Algorithms of Localization 

When the robot moves, the localization is important for the robot. To correct the 

robotic position, the PSO algorithm is used to LRF scans. In the experiments, three 

cases, including straight path, circle path, and square path, are discussed. Figure 5.20 

shows the experimental scene and the robotic path. 
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(a) (b) (c) 

Figure 5.20 The Robotic Position with Encoder in Ming-Da Building 4F  

with Different Path 

(a) The robot walks straight path 

(b) The robot walks circle path 

(c) The robot walks square path 

 

Therefore, Figure 5.21 shows the results with the odometry results, the ICP 

algorithm results, and the PSO algorithm results in three cases. In Figure 5.21, both 

the ICP algorithm and PSO algorithm possess good performance in the straight path 

case and the circle path. However, the wall divides two parts with the ICP algorithm 

in the square path, as shown in Figure 5.21(f). Then, the PSO algorithm result is 

shown in Figure 5.21(i). The possible reason is that the robot initial position causes 

the ICP to fall into the local minimum result. Then the PSO algorithm is an 

approximate global search. However, once the robot owns good initial position, the 

PSO algorithm affected by other particles causes the performance worse than the 

performance of ICP algorithm. In summary, the PSO algorithm owns near truth 

position in some cases. In Section 5.4, the location error is analyzed. 
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 5.21 The Localization with the Odometry, the ICP Algorithm, and the PSO 

Algorithm in the Three Cases. 

(a)~(c) The robot walks straight path, circle path, and square path with the 

odometry information. 

(d)~(f) The robot walks straight path, circle path, and square path with the ICP 

algorithm. With the good initial position, the map is accuracy. 

(g)~(i) The robot walks straight path, circle path, and square path with the PSO 

algorithm. The PSO algorithm can solve the local minimum problem. 

 

5.3.2 The Map Construction 

To make mobile robot move arbitrarily, mapping is a necessary task. The map 

state updates according to the occupancy grid map robustly demonstrating the state 

not interfered by noise. The map shows in Figure 5.22. The Figure 5.22(b), (d), and (f) 
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shows measurement points according to the raw data by PSO algorithm. Figure 

5.22(a), (c), and (f) are the state of occupancy grid map from Figure 5.22(b), (d), and 

(f). Hence, the white is free, the black is occupied, and the gray is unknown. Figure 

5.22 illustrates that the map construction is good in different conditions. First, the two 

walls mean the near measurement with two sides. Next, the one wall and the one 

empty mean the near measurement with one side and the far measurement with the 

other side. Finally, the two far walls mean the far measurement with two sides. 
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(a) Two Walls (b) Two Walls 

  

(c) One Wall, One Empty (d) One Wall, One Empty 

  

(e) Two Far Walls (f) Two Far Walls 

Figure 5.22 The Map Construction by the Occupancy Grid Map and PSO Algorithm 

(a), (c), and (e): The occupancy grid map.  

White: free. Black: occupied. Gray: unknown. 

(b), (d), and (f): Measurement points in a plane when the robot moves. 

 

5.3.3 The Dynamic Map 

For the local dynamic map, the inverse observation model acquires the moving 

objects in that time. However, the state from unknown to occupied causes false 

judgment in Section 3.3. The global map is shown in Figure 5.23(e). What is more, 
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the dynamic map is shown in Figure 5.23(a) and (c). But some noise measurements 

exist owing to the inaccuracy position. Figure 5.24 shows the state from unknown to 

occupancy in Ming-Da Building 5F. In Figure 5.24(e), whether the measurement 

points are static objects or dynamic objects is not reasonable in the populated 

environment. The dynamic maps are shown in Figure 5.24(a) and (c). In summary, the 

state from unknown to occupancy needs to be judged by the color image. Therefore, 

the pedestrian detection is solved the problem in Section 5.5. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 5.23 The State from Free to Occupancy in Pedestrian Walk  

(a) and (c) the dynamic map are from free to occupancy, and the some noisy       

      measurement exists. (a grid: two meter) 

(b) and (d) are the omnidirectional image in (a) and (c) 

(e) The global map from frame 13~23 (unit: meter) 

(f) The Real-Scene with digital camera in Ming-Da Building 5F 
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(a) (c) 

  

(b) (d) 

  

(e) (f) 

Figure 5.24 The State from Unknown to Occupancy in Pedestrian Walk  

(a) and (c) are the dynamic map from unknown to occupancy (a grid: two meter) 

(b) and (d) are the omnidirectional image in (a) and (c) 

(e) The global map from frame 1~35. However, that the pedestrian is considered as 

static objects is false. (unit: meter) 

(f) The Real-Scene in Ming-Da Building 5F 
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5.4 Localization Accuracy 

The stationary LRF URG-04LX-UG01 measures the robot position as a ground 

truth. The mobile robot owns the LRF LMS-100. The scene is in Ming-Da Building 

4F, as shown in Figure 5.25. 

 
 

(a) (b) 

Figure 5.25 The Experimental Scene in Ming-Da Building 4F 

(a) The LRF LMS100 mounts on the Pioneer 3-DX for localization 

(b) The URG 04-LX measurement as a ground truth 

 

Since the measurement is a plane, it needs two linear independent data. In the 

analysis, the circle path and the square path are adopted. For ground truth robot points, 

the URG-04LX-UG01 measurement data center is the average of first and last point. 

The scheme is in Figure 5.26 [12: Ueda et al. 2011]. The error between the mapping 

result and the ground truth is defined as follows: 

𝑚 = √   −  𝑔𝑟𝑜𝑢𝑛𝑑 2 +  𝑦 − 𝑦𝑔𝑟𝑜𝑢𝑛𝑑 2 (5.5) 
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where    and 𝑦  are  -th position,  𝑔𝑟𝑜𝑢𝑛𝑑 and 𝑦𝑔𝑟𝑜𝑢𝑛𝑑 are the ground truth from 

Figure 5.26. Then, the standard derivation is defined as follows: 

σ = √∑
 𝑚 − 𝑚 

𝑁
 (5.6) 

where 𝑚  is the  -th datum, 𝑚 is the mean of all data, and   is the total number 

of all data. 

 

 

Figure 5.26 The Measurement Center of Robot Points for Ground Truth 

 

I. Circle Path 

Figure 5.27(b) shows the circle path in Ming-Da Building 4F. Figure 5.27(a) 

includes the odometry position, the ICP algorithm, the PSO algorithm, and the ground 

truth position. The results of mean error and standard deviation (SD) error are shown 

in Table 5.7. The position error shows in Figure 5.28 through Equation (5.5) and (5.6). 
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(a) (b) 

Figure 5.27 The Location of Each Results in Ming-Da Building 4F 

(a) The odometry position, the ICP algorithm position, the PSO algorithm position, 

and the ground truth position. (unit: meter) 

(b) Real scene with the path 

 

Table 5.7 The Error of Each Algorithm with Ground Truth in Figure 5.26 

Item Encoder ICP algorithm PSO algorithm 

Mean (meter) 0.0788 0.0288 0.0553 

SD (meter) 0.0017 0.0003 0.0012 

For Table 5.7, the mean error results of the ICP algorithm and the PSO algorithm 

are 0.0288 meter and 0.0533 meter. However, the mean error result of the encoder is 

0.0788 meter. Owing to the robot position, the ICP algorithm owns the lower error 

than PSO algorithm. The mean error of the PSO algorithm is only 0.0533 meter. 

Figure 5.28 demonstrates the distance error results. The x axis is the scan number, and 

the y axis is the distance error. 
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Figure 5.28 The Error Mean of each Scan Matching with Ground Truth Difference 

Owing to the robot position, the ICP algorithm owns the lower error than PSO 

algorithm. 

x-axis: scan number (unit: meter) 

y-axis: distance error  

 

II. Square Path 

Figure 5.29(b) shows the square path in Ming-Da Building 4F. Figure 5.29(a) 

includes the odometry position, the ICP algorithm, the PSO algorithm, and the ground 

truth position. The results of mean error and standard deviation (SD) error are in Table 

5.8. The position error shows in Figure 5.30 through Equation (5.5) and (5.6). 
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(a) (b) 

Figure 5.29 The Location of Each Results in Ming-Da Building 4F 

(a) The encoder position, the ICP algorithm position, the PSO algorithm position, 

and the ground truth position. (unit: meter) 

(b) Real scene with the path 

 

Table 5.8 The Error of Each Algorithm with Ground Truth in Figure 5.28 

Item Encoder ICP algorithm PSO algorithm 

Mean (m) 0.3814 0.3652 0.1053 

Standard (m) 0.0656 0.0718 0.0038 

 

Mean error of the ICP algorithm is 0.3652 meter. However, mean error of the 

Encoder is 0.3814 meter. Owing to the robot position is not good. In circle path, the 

mean error difference of ICP algorithm and PSO algorithm is 0.0265 m. In square 

path, the mean error difference of ICP algorithm and PSO algorithm is 0.2599 meter. 

The ICP algorithm with excessive differences causes local optimal solution, as shown 

in Figure 5.29. So, the PSO algorithm can correct the local optimal solution owing to 

inaccurate robot position. 
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Figure 5.30 The Error of each Scan with Ground Truth 

Owing to the robot position, the ICP algorithm owns the higher error than PSO 

algorithm. 

x-axis: scan number 

y-axis: mean error (unit: meter) 

 

5.5 Pedestrian Detection Performance 

In pedestrian detection, bounding box selection is important. Section 5.5.1 states 

lower line of bounding box. Then, the accuracy of the lower line of bounding box is 

evaluated. Section 5.5.2 states the true or false for pedestrian detection in the color 

image. Section 5.5.3 states the rate of accuracy in pedestrian detection. 

 

5.5.1 Lower Line of Bounding Box 

In color image, the lower line of bounding box needs the omnidirectional camera 

model. In Figure 5.31(a), the omnidirectional camera in original image owns 
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distortion phenomenon. Therefore, the image in digital camera needs to be calibrated. 

In [46: Bouguet 2013], the camera calibration toolbox uses 20 pieces of data with 

checkerboard to calibrate the image in Figure 5.31(a). Figure 5.31 shows the results of 

the image calibration. The 20 pieces of data with checkerboard are shown in Figure 

5.31(b). Table 5.9 shows the camera intrinsic parameters. After calibrating the image 

in the digital camera, the omnidirectional camera in calibrating image is shown in 

Figure 5.31(d). 

  

(a) (b) 

 

 

(c) (d) 

Figure 5.31 The Calibration of Omnidirectional Camera in Digital Camera Image 

(a) The omnidirectional camera in the original camera image  

(b) The different camera position with checkerboard image 

(c) The camera position on fixed checkerboard 

(d) The omnidirectional camera after calibrating camera image 
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Table 5.9 The Camera Intrinsic Parameter (uint: pixel) 

Focal Length: fc  [ 688.99  688.99 ] 

Principal point: cc  [ 319.50  239.50 ] 

Skew: alpha_c [ 0.00 ] 

Distortion: kc [ 0.00  0.00  0.00  0.00  0.00 ] 

For the omnidirectional camera, the hyperbolic surface is used, as shown in 

Figure 5.32. Then, the selected area in the image shows in Figure 5.32(a). Using 

Canny edge detector, the edge demonstrates in Figure 5.32(b). Using SVD for least 

square method, the parameters in hyperbolic surface are a, b, and c in Figure 5.32(c). 

The hyperbolic surface equation and function shows as follows: 

𝑦2

𝑎2
−

 2

 2
= 1 (5.7) 

f  , y = −0.69 2 + 0.02 . 𝑦 + 0.72𝑦2 + 2.00 − 2.36𝑦 + 0.07 (5.8) 

Equation (5.7) is the hyperbolic surface equation 
𝑦2

𝑎2 −
𝑥2

𝑏2
= 1. The function 

f  , y = −0.69 2 + 0.02 . 𝑦 + 0.72𝑦2 + 2.00 − 2.36𝑦 + 0.07  is shown in 

Equation (5.8). The parameters are obviously that a is 0.81 cm, b is 0.79 cm, and c is 

1.13 cm. 
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(a) (b) 

 

 

(c)  

Figure 5.32 The Omnidirectional Camera Hyperbolic Surface 

(a) The selected area in the hyperbolic surface in calibration image 

(b) Canny edge detector for the image in (a) 

(c) The edge points in least square with SVD  

 

With Equation (5.7) and (5.8), the omnidirectional camera model can be used. 

From Equation (4.7) to (4.13), the lower line of bounding box can be extracted. Figure 

5.33 shows the lower line of bounding box and the difference with the gray board. 

Here, the horizontal axis is the percentage of error. What is more, the vertical axis is 

the number of the each point in laser scan owning 361 pieces of data. Therefore, the 

far the LRF distance is, the worse the error may be. Then, the error is under 10%. The 

lower line of bounding box owns high accuracy. The difference between the lower 

line of bounding box and gray board is shown in Table5.10. Then, Figure 5.34(a) 
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shows the mean error. Figure 5.34(b) shows the standard difference error. The mean 

and the standard difference are from Equation (5.1) and (5.6). The lower line of 

bounding box is shown in Figure 5.33(a) to (e). With the LRF scan in omnidirectional 

camera, the pixel in omnidirectional camera can be acquired in semi-circle. Then the 

error estimation is in the histogram. Figure 5.33 demonstrates the five pieces of data 

in Appendix A.2. 

   

   

(a) 67.8 cm (b) 58.0 cm (c) 47.3 cm 

  

 

  

 

(d) 37.4 cm (e) 30.8 cm  

Figure 5.33 The Height Convert Pixel in Ming-Da Building 4F (Remainder in 

Appendix A.2) 
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Table 5.10 The Results in Figure A.2 

Height(cm) Mean Standard Difference 

30.8 1.85 0.89 

37.4 2.35 0.99 

47.3 2.80 1.23 

58.0 2.72 1.46 

67.8 3.21 1.33 

76.6 3.27 1.28 

87.2 3.36 1.41 

97.4 3.73 1.51 

106.3 3.93 1.53 

115.6 3.96 1.43 

125.8 3.42 1.73 

136.4 4.20 1.75 

144.2 4.90 1.91 

162.2 5.05 1.62 

168.8 5.30 1.53 

174.2 4.82 1.72 

187.9 3.98 1.38 

 

  

(a) (b) 

Figure 5.34 The Mean and Standard Difference in Table 5.10 

(a) Mean Error in Table 5.10. 

(b) Standard Difference Error in Table 5.10 
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5.5.2 Pedestrian Map 

In the scenes, the dynamic objects are only the pedestrians. In this thesis, two 

cases are discussed in Section 1.2. One is the target pedestrian with pillars 

environment. The other is the target pedestrian with other pedestrians abruptly 

appearing. Figure 5.35 shows the conditions with LRF scan in Ming-Da Building 5F. 

Hence, the blue points represent the pedestrian, the green points represent the mobile 

robot, and the red points represent the static objects. 

  

(a) (b) 

Figure 5.35 The Scene illumination with Laser Range Finder and Omnidirectional 

Camera (unit: meter) 

(a) The target pedestrian with other pedestrians abruptly appearing 

(b) The target pedestrian with pillars environment 

 

To acquire accurate pedestrian map, the color image needs to be added in LRF 

scan. Figure 5.36 shows candidates in the color image. In Figure 5.36, the resolution 

with (a) is 350x721, (b) is 68x257, (c) is 44x257, (d) is 40x253, and (e) is 81x322. 

With the Hough circle transform method and color distribution method, the results are 
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pedestrian, as shown in Figure 5.37. Figure 5.37(a) depicts all candidates in the color 

image. However, Figure 5.37(b), (c), (d), and (e) show the Hough circle transform in 

each candidate. For the pedestrian detection, circle radius in real-life is approximately 

from 15 cm to 20 cm. And head body ratio is 4 to 9. Therefore, using the conditional 

judgment can acquire result, as shown in Figure 5.37(f). 

 

(a) 

   

 
(b) (c) (d) (e) 

Figure 5.36 The Candidates in Dynamic Map 

(a) The panorama image for down, left, right bound 

(b)~(e) Each candidate in dynamic map in (a) 
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(a) 

   

 

(b) (c) (d) (e) 

 

(f) 

Figure 5.37 The Hough Circle Transform for Each Candidate 

(a) The panorama image for lower line, left line, right line of bounding box 

(b)~(e) Hough circle transform for each candidate in color image 

(f) The pedestrian candidate for complete bounding box 
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5.5.3 The Detection Accuracy 

In the pedestrian detection, receiver operating characteristic (ROC) is a method 

confirming the performance in statistic. In [54: Kay 1988], the basic definition 

contains true positive (TP), true negative (TN), false positive (FP), and false negative 

(FN). In Figure 5.38, P is a reasonable result in the condition, and N is an 

unreasonable result in the condition. Similarly, P’ is a reasonable result in test 

outcome, and N’ is an unreasonable result in test outcome. 

 

Figure 5.38 The Illustration of Receiver Operating Characteristic 

P is a reasonable result in the condition, and N is an unreasonable result in the 

condition. Similarly, P’ is a reasonable result in test outcome, and N’ is an 

unreasonable result in test outcome. 

 

In [54: Kay 1988], accuracy (ACC) is a judgment for ROC analysis. The 

following cases are discussed through ACC as follows: 

ACC =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 (5.9) 

For the cases, the accuracy is as following: 
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I. Dynamic Environment with New Pedestrian Appearing Nearby 

For the new pedestrian appearing, Figure 5.35(a) shows the pedestrian and the 

robot path. And the detection result is shown in Table 5.11. The ACC of detection is 

74%, and total frame are 126. Hence, the true frame is like Figure 5.37(e). And the 

false frame is like Figure 5.37(b), (c), and (d). In this case, the true detection is 110 

and the false detection is 37. 

 

Table 5.11 The ACC of detection with new pedestrian appearing nearby 

ACC Pedestrian Detection Rate 

Case I 74 % (110:37) 

 

II. Dynamic Environment with Pillars Occlusion 

For the pillars occlusion, Figure 5.35(b) shows the pedestrian and the robot path. 

And the detection results show in Table 5.12. The ACC of detection for Case II-1 is 

58% and total frame are 148. And for Case II-2, the ACC of detection is 63% and total 

frame is 159. Hence, the true frame is like Figure 5.37(e). And the false frame is like 

Figure 5.37(b), (c), and (d). With Table 5.12, the pedestrian detection achieves 58% 

and 63%. In Case II-1, the true detection is 88 and the false detection is 35. In Case 

II-2, the true detection is 85 and the false detection is 50. The ACC is low. The 

caution may be the pillar occlusion without pedestrian detection. The caution causes 

the false increasing. And in next section, the target pedestrian tracking is discussed. 
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Table 5.12 The ACC of detection with Pillars Occlusion 

ACC Pedestrian Detection Rate 

Case II-1 58 % (88:35) 

Case II-2 63 % (85:50) 

 

5.6 Target Pedestrian Tracking Performance 

Section 5.6.1 shows results in target pedestrian tracking problem. Section 5.6.2 

provides the rate of accuracy in target pedestrian tracking. The algorithms are based 

on the color image. The target pedestrian tracking is discussed. 

 

5.6.1 The Tracking Results and Accuracy 

For target pedestrian tracking, laser range finder scan may cause data association 

error in pillar occlusion or new pedestrian appearing. However, color image owns the 

color information but does not own accuracy distance. For the color image, the color 

distribution and local binary pattern (LBP) are used in target pedestrian tracking. 

Section 5.6.2 discusses the accuracy. 

The following two cases may cause data association error. First, Case I is that the 

mobile robot follows the target pedestrian, as shown in Figure 5.35(a). When the new 

pedestrian appears nearly, the laser data may match error. Then, Case II-1 is the 

mobile robot follows the target pedestrian in Figure 5.35(b). However, the mobile 
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robot loses the target pedestrian owing to a pillar occlusion. Then both the target 

pedestrian and the other pedestrian simultaneously appear. Finally, Case II-2 is also 

the mobile robot follows the target pedestrian in Figure 5.35(b). The target pedestrian 

and the other pedestrian are occluded by the same pillar. When the other pedestrian 

walks for a long time, the target pedestrian walks in front the mobile robot. This 

section discusses the problems. 

The following are the results for target pedestrian tracking. Some true target 

pedestrian tracking results are shown in Figure 5.39, Figure 5.40, and Figure 5.41. 
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(a) Frame 1 (b) Frame 16 

  

(c) Frame 20 (d) Frame 23 

  

(e) Frame 24 (f) Frame 39 

  

(g) Frame 43 (h) Frame 44 

Figure 5.39 Tracking Target Results in Case I from Figure 5.34(a) 

(a)~(h) For the target tracking results for true frame in Case I 
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(a) Frame 18 (b) Frame 38 

 

 

(c) Frame 42  

Figure 5.40 Tracking Target Results in Case II-1 from Figure 5.34(b) 

(a)~(c) For the target tracking results in Case II-1 

 

  

(a) Frame 15 (b) Frame 157 

Figure 5.41 Tracking Target Results in Case II-2 from Figure 5.34(b) 

(a)~(b) For the target tracking results in Case II-2 

 

5.6.2 The Tracking Results and Accuracy 

Similarly, the accuracy of the target pedestrian tracking is shown in Table 5.13 

and Table 5.14. The analysis of above cases is ACC in Equation (5.9). 
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I. Dynamic Environment with New Pedestrian Appearing Nearby 

For the new pedestrian appearing, Figure 5.35(a) shows the pedestrian and the 

robot path. And the target pedestrian tracking result is shown in Table 5.13. The ACC 

of target pedestrian tracking is 73%, and total frame are 126. Hence, the true frames 

are like Figure 5.39(a) to (e). In this case, the true target pedestrian tracking is 84 and 

the false target pedestrian tracking is 31. 

 

Table 5.13 The ACC of Tracking with New Pedestrian Appearing Nearby 

ACC Target Pedestrian Tracking Rate 

Case I 73 % (84:31) 

 

II. Dynamic Environment with Pillars Occlusion 

For the pillars occlusion, Figure 5.35(b) shows the pedestrian and the robot path. 

And the target pedestrian tracking result is shown in Table 5.14. The ACC of target 

pedestrian tracking for Case II-1 is 48% and total frame are 148. The true frames are 

in Figure 5.40(a) to (c). And for Case II-2, the ACC of target pedestrian tracking is 

53% and total frame is 159. Hence, the true frames are like Figure 5.41(a) and (b). In 

Case II-1, the true target pedestrian tracking is 29 and the false target pedestrian 

tracking is 32. In Case II-2, the true target pedestrian tracking is 41 and the false 

target pedestrian tracking is 36. In summary, the ACC is low. The caution may be the 

pillar occlusion without target pedestrian tracking. The caution causes the false 
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increasing. 

 

Table 5.14 The ACC of Tracking with Pillars Occlusion 

ACC Target Pedestrian Tracking Rate 

Case II-1 48 % (29:32) 

Case II-2 53 % (41:36) 
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Chapter 6  

Conclusions and Future Works 

In this chapter, Section 6.1 presents the conclusions in the research. And Section 

6.2 states the future works in the future. 

 

6.1 Conclusions 

In this thesis, the main issue is pedestrian tracking with a mobile robot mounted 

on the laser range finder and the omnidirectional camera. The LRF operation principle 

and the LRF limitation are presented.  

For simultaneous localization and mapping, the robot position and the map 

construction are two important tasks. The particle swarm optimization (PSO) is used 

to robot position inaccuracy. Therefore, the PSO algorithm can correct the odometry 

in local minimum solution. Once odometry of mobile robot is known, building a map 

is also a task which can be effectively solved at the same time [39: Birk & Carpin 

2006]. For the occupancy grid map, the Bayesian rule in the occupancy grid map is 

according to the previous estimation and current measurement. Next, the inverse 

observation model divides into the static objects and dynamic objects based on the 

global accuracy map. With the information, the robot preliminary judges possible 
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pedestrians and avoids the obstacles. 

For the detection pedestrians and tracking target pedestrian, many factors are 

considered. The color distribution and the Hough circle transformation are methods 

for the pedestrian detection. By the experimental tests, the methods are reasonable. 

For the target pedestrian tracking, the color distribution and the local binary pattern 

(LBP) are used to the data association error in the real scene. Through the 

experiments, the idea is practical. However, the resolution of pedestrian in color 

image is low owing to the omnidirectional camera. In the same color image, the FOV 

is complementary to the resolution. 

 

6.2 Future Works 

For the future works, the vertical edge can make the accumulation error of robot 

position eliminate in simultaneous localization and mapping in [13: Bacca et al. 2013]. 

In [39: Birk & Carpin 2006], the multiple robots can communicate each other to 

construct the map increasing exploration rate. The pedestrian detection and the target 

pedestrian tracking can use more feature. Take for example, the shape of pedestrian 

[35: Dalal & Triggs 2005], the database construction in specific pedestrian [40: Wang 

et al. 2011], or combining the skeleton [28: Lin & Huang 2011] is a research direction. 

The 3D distance sensor such as Kinect, stereo camera, or 3D LRF is an available 
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operation for the indoor robot. To acquire the resolution in color image, the digital 

camera is used for pedestrian detection and target pedestrian tracking. 

In summary, the moving object detection with inverse observation model in LRF 

can be a preprocessing for pedestrian detection and target pedestrian tracking. With 

the inverse observation model for LRF scan, the performance of the pedestrian 

detection and the target pedestrian tracking should increase. In this thesis, the methods 

provide an idea for office assistant robot. In the future, the office assistant robot is 

widely used. 
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Appendix 

Owing to the numerous data, appendix shows the complete data. Appendix A.1 

presents distance convert pixel in 20 pieces of image data. Appendix A.2 provides the 

accuracy of lower line of bounding box extraction. 

 

A.1 Distance Convert Pixel 

To pick the specific pixel matching the LRF scan, the distance and pixel 

relationship needs to be acquired. In Figure A.1 and Table A.1 with the distance and 

the pixel relationship [12: Ueda et al. 2011], the LRF is mounted the same height 60 

cm of the suitcase. In Figure A.1, the corner in LRF scan matches the suitcase corner 

pixel in color image. The distance from LRF scan and pixel from color image 

relationship is shown in Table A.1. 
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(d) 9.71 m (e) 9.43 m (f) 8.91 m 

   

   

(g) 8.50 m (h) 8.11 m (i) 7.70 m 
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(m) 5.63 m (n) 5.66 m (o) 5.23 m 

   

   

(p) 4.70 m (q) 4.09 m (r) 3.93 m 

  

 

  

 

(s) 3.12 m (t) 2.48 m  

Figure A.1 (a)~(t) The Distance Converts the Pixel (From Figure 5.18) 

The LRF mounts on mobile robot, and the height is 60 cm. 

The corner in LRF scan matches the suitcase corner pixel in color image 

 

 

-12 -10 -8 -6 -4 -2 0 2

6

8

10

12

14

16

-12 -10 -8 -6 -4 -2 0 2

6

8

10

12

14

16

-12 -10 -8 -6 -4 -2 0

6

7

8

9

10

11

12

13

14

15

16

-10 -8 -6 -4 -2 0

6

7

8

9

10

11

12

13

14

15

16

-10 -8 -6 -4 -2 0
6

7

8

9

10

11

12

13

14

15

16

-10 -8 -6 -4 -2 0

7

8

9

10

11

12

13

14

15

16

-10 -8 -6 -4 -2 0

7

8

9

10

11

12

13

14

15

16

-10 -8 -6 -4 -2 0

7

8

9

10

11

12

13

14

15

16

17



126 
 

Table A.1 The Distance Data and The Pixel Data in Figure A.1 

Distance 

(m) 

Pixel from Projection 

Center (Pixel) 

Distance 

(m) 

Pixel from Projection 

Center (Pixel) 

2.48 208 7.21 263 

3.12 223 7.70 261 

3.93 226 8.11 268 

4.09 236 8.50 268 

4.70 241 8.91 272 

5.23 244 9.43 271 

5.66 250 9.71 272 

5.63 255 10.23 271 

6.40 259 10.32 270 

6.89 263 10.46 272 

 

A.2 Lower Line of Bounding Box Extraction 

With Equation (5.7) and Equation (5.8), the lower line of bounding box 

extraction shows from omnidirectional camera model in Figure A.2. From Figure A.2, 

the far the LRF distance is, the worse the error may be. However, the error is 

under 10%. The lower line of bounding box extraction has high accuracy. Figure A.2 

demonstrates the 20 pieces of data form Figure 5.33. The lower line of bounding box 

shows from Figure A.2(a) to (q). With the LRF scan in omnidirectional camera, the 

pixel in omnidirectional camera can be acquired in semi-circle. Then the error 

estimation is in the histogram. Hence, the x axis is error pixel percentage and the y 

axis is the error pixel number. 
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(a) 187.9 cm (b) 174.2 cm (c) 168.8 cm 

   

   

(d) 162.2 cm (e) 144.2 cm (f) 136.4 cm 
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(g) 125.8 cm (h) 115.6 cm (i) 106.3 cm 

   

   

(j) 97.4 cm (k) 87.2 cm (l) 76.6 cm 

   

   

(m) 67.8 cm (n) 58.0 cm (o) 47.3 cm 
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(p) 37.4 cm (q) 30.8 cm  

Figure A.2 The Height Convert Pixel in Difference Height (From Figure 5.33) 

The height convert pixels show from (a) to (q). With the LRF scan in 

omnidirectional camera, the pixel in omnidirectional camera can be acquired. Then 

the error estimation is in the histogram. The x-axis is error pixel percentage and the 

y-axis is the error pixel number. 

 

Table A.2 The Results in Figure A.2 

Height(cm) Mean Standard Difference 

30.8 1.85 0.89 

37.4 2.35 0.99 

47.3 2.80 1.23 

58.0 2.72 1.46 

67.8 3.21 1.33 

76.6 3.27 1.28 

87.2 3.36 1.41 

97.4 3.73 1.51 

106.3 3.93 1.53 

115.6 3.96 1.43 

125.8 3.42 1.73 

136.4 4.20 1.75 

144.2 4.90 1.91 

162.2 5.05 1.62 

168.8 5.30 1.53 

174.2 4.82 1.72 

187.9 3.98 1.38 
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