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中文摘要 

    合作式影像系統是一個用於解決長時間觀察的方法。據此，我們建立了一套合

作式影像系統用來幫助農業環境中的管理者或是擁有者能夠更了解他們的設施運

作狀況、以及一些需要長時間觀察才能獲得的資訊。 

    本研究繼承了前代系統的架構並進行改良，舊系統採用環場影像以及 Pan-Tilt-

Zoom (PTZ) 攝影機的個別優勢，將其組合在一起同時取得廣角的全域影像以及局

部的高解析度影像；由於硬體效能上的限制以及環場影像攝影機的畫面品質較為

不足，因此新系統使用了廣角攝影機以及 PTZ 攝影機，其中廣角攝影機之角度高

達 135 度，能夠捕捉該地大部分所發生的事件影像，再利用能夠自由進行光學變

焦的 PTZ 取得欲觀察之局部高解析影像。 

    在軟體方面架構上我們從主從式影像系統改成合作式影像系統，讓攝影機由

單純的主從關係轉變成對等並能夠進行情報的交換，有助於個別攝影機在下次能

夠更容易地尋找到所要觀察之目標。為偵測所有活動區域的目標，尋找前景的部分

使用了多重解析度高斯混合模型背景相減法 (Multi-resolution Gaussian Mixture 

Model) 和靜態物體追蹤法  (Static Object Detection)，並使用動態歐式距離 

(Dynamic Euclidean Distance) 對抓取目標的演算法閥值進行自動化參數調整，為了

使每個攝影機都能夠獨立運作並進行目標的追蹤，系統改為多重並序的架構進行

運作，並且利用 PTZ 影像進行像差  (frame differential) 與質心預測  (centroid 

estimation) 演算法讓 PTZ 也能夠自動進行物件追蹤以增加抓到目標細節影像的準

確率。這些來自攝影機的資料將會被送到系統後端進行分析產生工作模式分析，辨

識物體的類別是透過由加柏濾波器 (Gabor Filter) 和詞袋模型 (Bag of Words) 組

成的混合特徵擷取演算法進行追蹤物件的擷取，再透過支持向量機演算法 

(Support Vector Machine, SVM) 分析結果，為了讓系統能夠在不同環境下使用，我

們建立了一套自定義規則系統，讓使用者能夠使用軌跡資訊以及支持向量機演算
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法分類的類別對該地進行組態的客製化以符合需求，並且提供使用者一個良好的

使用者介面去觀察分析的結果。 

    本研究進行了五次實驗以驗證系統的有效性，第一次實驗在台大園藝系溫室

驗證並改進了物體追蹤演算法；第二次實驗在紫城農場進行農業環境簡單條件下

的測試，透過該實驗設計並改良自定義追蹤系統；第三次實驗在第三班蔬菜集貨包

裝廠測試農業環境下集貨區的工作模式，確保系統能夠有環性的自適性；第四次實

驗在台大知武館，強化了 PTZ 自我追蹤演算法的架構；第五次實驗在農機館門口，

再次對系統做了驗證並且改進了系統的資料架構以及系統架構的多重並序。我們

開發的合作式影像系統能夠確保在事件發生時可以取得最大的資訊量以便我們進

行精準的觀察與分析。 

關鍵字：合作式影像系統、模式分析、物件追蹤、自定義規則系統、農業環境  
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Abstract 

The surveillance systems solve the difficulties of long-term observation. We are 

designing a cooperative surveillance system to make managers and owners get to know 

their places of the agricultural environments better by providing the working patterns and 

the other additional long-time observed information.  

This research continues the predecessor’s system structure and improves it. The old 

system use a combination of a panorama camera set and a Pan-Tilt-Zoom (PTZ) camera. 

The system has the advantage of monitoring the object’s surroundings and the object itself 

in high resolution at the same time. Due to the limitation of the hardware performance 

and the low image quality from the camera set, the new system uses an ultra-wide field 

of view (FOV) camera and a Pan-Tilt-Zoom (PTZ) camera. Ultra-wide FOV images from 

the static camera up to 135 degree provide most of any possible happenings, and the 

images from PTZ camera fill the information of the low-resolution images of the ultra-

wide FOV camera. 

In the software, we changed the system from Master-slave system to Cooperative 

Surveillance system. The relationship between the cameras has changed from inequality 

to equal. The Network Control Center in the system is able to let the cameras to 

communicate with each other instead of doing their works on their own. In order to detect 

the objects from the cameras, we use Multi-resolution Gaussian Mixture Model, Static 
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Object Detection and Dynamic Euclidean Distance to adapt the video sequence in 

different environment. Some changes are made to make the system more “cooperative”. 

First, the system structure is changed to parallel thread processing. We also use frame 

differential and centroid estimation to process the PTZ images to make the PTZ able to 

do self-tracking tasks to increase the accuracy of capturing any tracked object. All the 

information from the cameras will be sent to the Network Control Center to analyze the 

working patterns of a place. We use mixture feature extracting method consist of Gabor 

filter and Bag of Words to process the images of the detected objects. The processed 

featured will be trained and predicted using SVM. To make the system able to fit different 

environment use, a Custom Define Rules system is provided to let users to create their 

own working patterns by existing features and the trajectory information. An Object View 

Manager is also provided for users to look up the individual detail of any detected object. 

We designed five experiments to validate our system. The first experiment is done 

in the NTU farm; we verified our object tracking methods with the new camera. The 

second experiment is done in the Zhi Chen farm. We enhanced and redesigned the Custom 

Define Rules System. The third experiment in the 3rd vegetable packaging factory verified 

the previous changes is adaptable in different environment. With the fourth experiment 

outside of the Tomatake Hall, we improved the PTZ self-tracking algorithm. At last, the 

fifth experiment in the plaza in front of the Dept. of the BIME, we again verified the 
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above changes and made a final improvement of our system and data structure. The 

cooperative system ensures the maximum information during any event that provides us 

to judge more precisely. 

Keywords: Cooperative Surveillance System, Pattern Analyses, Object Tracking, Custom 

Define Rules System, Agricultural Environment  
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Chapter 1 Introduction 

1.1 General Background Information 

The widespread of surveillance systems helps investigating the crime scenes and car 

accidents. Monitoring systems solve the difficulties of long-term observation. The data 

provide the changes, the people, and other valuable information. However, finding useful 

data is not easy. Checking these videos manually takes up too much time. To simplify the 

data, many people put effort in image processing related work. These image-processing 

techniques can automatically analyze and send the desired data to the users only. For 

example, an application of unattended or stolen objects detection could be useful in public 

areas (San Miguel and Martinez, 2008). For traffic control, road monitoring identifies 

anomalous behavior (Feizi et al., 2013). Another application of health care uses IR 

cameras and IR pattern projectors for posture detection (Utsumi et al., 2006). 

There are two major obstacles of a RGB camera. The most important issue is the 

size of the viewable area. Common cameras have a view angle of 110 degrees. Instead of 

deploying multiple cameras in several locations, we use a network camera with 

exchangeable lens. The view angle of lens is 135 degrees, and it has physical tuned 

curvature that makes the view without distortion. The second problem of a single RGB 

camera is the insufficient information of small objects on the screen. A group of pixels 

describes every objects on the screen. If the size of the object is too small or the resolution 
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of the camera is too low, we will not have enough pixels to describe an object very detail. 

We add a Pan-Tilt-Zoom camera (PTZ) to track and magnify our target in a closer look. 

The combination of ultra-wide lens camera and PTZ makes the system able to collect a 

wide-view image without losing any target details. The combination system is called 

mater-slave surveillance system. 

Although a master-slave system has the advantage of costs and information-

gathering capabilities, it also has drawbacks. Master-slave systems are more complex than 

a single camera system, which needs a better PC to run the system. Its image might be 

distorted because the lens edge and the CCD effect according to different cameras and 

lens. We have to put more effort in building the relation between the static camera and 

the PTZ camera. By using the method proposed by 余  (2012), where homography 

calibration method (Chen et al., 2008) was used in a webcam based panorama system (余, 

2012), we describe the related position of the camera models using polynomial. We 

correct the system using the real world information the make the system more accurate. 

Another drawback of the master-slave system is that the master camera (static camera) 

always controls the slave camera (PTZ camera) instead of communicating to each other. 

A cooperative smart-camera (Micheloni et al., 2010) was introduced. This system also 

has a static camera and one or more PTZ cameras. The only difference between them is 

that instead of letting the static camera controls the PTZ camera, the cooperative camera 
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system builds a network control system. This system controls all the cameras, and the 

cameras control the system. The algorithms inside the network system auto select the best 

result according to every input of the cameras. The cooperative system is more robust and 

more intelligent. By letting the cameras “talk” to each other surely makes the tracking 

easier. Any camera that detects the object can notice the network system to send the 

location to tell the others. 

When finding any object in the panorama, we use geometric transformations to setup 

the accurate position on the PTZ camera by creating a control center in the system. 

However, the object we found might move around and leave the position when the time 

static camera system sends the coordinate to the PTZ camera. Thus, we will have to 

predict the objects movement and send the predicted position to the PTZ camera, and we 

will make the PTZ camera has the ability to track the objects on its own and send the 

results back to the control center. The PTZ itself also has the ability to track object on its 

own. The PTZ and the static camera will record the behavior of the object, and save the 

results to the database. At last, using machine learning and geometry methods to analysis 

and summarize the working pattern of the place. The information helps managers and 

owners get to know their facilities better. 

We design a cooperative surveillance system to monitor the behaviors in each task 

and analyze the working patterns in agricultural environment. By using the image 
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processing techniques, we are able to obtain more data for analysis. The data include 

trajectory, time, and visual sight of any object. Best of all, cooperative system is capable 

of long-term observation. This system helps us to summarize the patterns and customize 

the monitoring mode of a place. 

1.2 Research Objectives 

We are trying to design a cooperative surveillance system that can replace the long-

term observation with human eyes. The system is able to automatically analysis the 

working patterns in intelligent ways of a place comparing to other surveillance systems. 

It is an all-in-one system from observations to the analysis results. The system is able to 

collect data in a more efficiently, and more robust way with the minimum side effects. 

The combination of the ultra-wide FOV camera system and PTZ camera has the 

advantage of monitoring the object’s surroundings and the object itself in high resolution 

at the same time. Ultra-wide FOV images from the static camera up to 135 degree provide 

most of any possible happenings, and the images from PTZ camera fill the information 

of the low-resolution image of the ultra-wide FOV images. The control center in the 

system is able to let the cameras to communicate with each other instead of doing their 

work on their own. The cooperative system ensures the maximum information during any 

event that provides us to judge more precisely. 
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This research continues the predecessors that improves the hardware design, the 

tracking methods, the software design, and the improvement of the success rate. We are 

targeting to develop a system to analyze the working patterns in agricultural environments 

and provide feedback to the database for future detection and analysis in public areas. 

The major purposes include: 

1. Develop a system that is able to summarize and give reports periodically of working 

patterns of a place. 

2. Provide adjustable feature classification and geometry definitions to fit the needs for 

any user. 

3. Build a control center in the system to facilitate the communication between cameras 

in bi-directions. 

4. Redesign the software and the hardware to make the system faster and smaller. 
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Chapter 2 Literature Review 

2.1 Surveillance System 

Surveillance systems help people ensure the safety of public areas. Some of them 

are widely used in highways to track and analysis the traffic, and others are used in anti-

thief monitoring. With the development of the image processing, people start merging 

intelligent into the system to auto detect and analysis for us. For example, the application 

of finding unexpected human behavior in image sequences uses compound features such 

as accumulated map, crowd pace, and crowd density (Zweng and Kampel, 2010). The 

system not only detects the abnormal but also provides the habitation of a place. 

2.2 Multi-camera Setup 

A single camera is not easy to gather all the information we need. Hardware fusion 

helps us to get more data. For example, Utsumi et al. (2006) use IR cameras to build 3-D 

appearances of a human and use CCD camera to observe the human behavior. There are 

also many related works using multi-camera, but most of them are all static cameras or 

dynamic cameras. Static cameras are fixed and the field of view is limited to the hardware 

and the placed location. Dynamic cameras (Stillman et al., 1998) have too many variable 

factor that make them hard to monitor a large area. The combination of the static and 

dynamic camera system makes us not only able to monitor a large area but also zoom in 

for a high-resolution image of a detected object. 
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The Distant Human Identification (DHID) system is a master-slave, real-time 

surveillance system designed by Zhou et al. (2003). When the master camera detects a 

moving person, the slave camera is commanded to turn to that direction in zoom-in 

images. The master is a static camera and the slave is a pan-tilt-zoom camera (PTZ 

camera). The images of the two cameras is corresponded according the coordinate 

geometry of the static and PTZ cameras. 

 

Figure 2-1 Master-slave system (Zhou et al., 2003). 

Nevertheless, this algorithm requires a priori knowledge of the omnidirectional 

camera’s projection model to solve the nonlinear correspondences between cameras. 

Chen et al. (2008) propose two methods to overcome the limitation: geometry and 

homography calibration. A set of polynomials is used to directly relate the master camera 

coordinate (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) and the PTZ camera coordinate (𝜃𝜃𝑖𝑖,𝑃𝑃 ,𝜃𝜃𝑖𝑖,𝑇𝑇 ,𝑓𝑓𝑖𝑖). The correlation of the 

two coordinates is estimated by the Pearson product-moment coefficient. The methods 
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increase the accuracy of the geometry transformation, and decrease the complexity of the 

initial setup. 

It is always better to have the maximum field of view (FOV) in the master camera. 

Zhou et al. (2003) use a wide-angle lens, while Chen et al. (2008) use a fisheye for a 

larger FOV. However, fisheye lens distort image, and make the object harder to detect and 

track. 余 (2012) uses a 360 degree panorama system built with 8 webcams in circle 

instead. The images of the webcams are stitched using Speeded Up Robust Features 

(SURF)(Bay et al., 2008) and RANdom Sample Consensus (RANSAC)(Fischler and 

Bolles, 1981) algorithms. SURF matches the corresponding points between images and 

RANSAC removes the wrong matching points. 

2.3 Cooperative Surveillance System 

    With the advantage of the PTZ camera, we successfully solved the problems such as 

increasing the solution of the observed objects. There are three different architectures for 

network exploiting PTZ cameras: master-slave, autonomous PTZ, and cooperative smart 

cameras (Micheloni et al., 2010). The static camera usually controls the PTZ in the 

master-slave system. The PTZ in the autonomous PTZ controls itself by analyzing what 

the PTZ sees. Cooperative smart cameras are different from the two above. All the PTZ 

cameras are controlled by a network system, and every cameras including the PTZ 

cameras are the inputs of the network system. The event is analyzed by processing the 
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streams coming from the inputs. Chong et al. (2012) proposed a distributed optimization 

strategy, the camera gain by reducing the error covariance of the tracked object or through 

high-res feature acquisition. The cameras negotiate by the track algorithm and are 

feedback with the user-defined criteria. This makes the system more intelligent, for 

example, Ghidoni et al. (2010) use a dual camera sensor to track the moving objects and 

face detection in a cooperative way. Another application of tracking a fast moving object 

(Su Jeong et al., 2014) is to use three cameras to detect, calculate the position, and capture 

the moment of the detection time of an object. The information then is sent to the server 

to determine the speed of the average velocity and its trajectory.  

Cooperative system not only contains only a static camera and a PTZ camera. Yan 

and Gu (2014) use a gun-dome system to automatically realize acquisition, refinement 

and fast retrieval of the target information. The gun camera and the dome camera 

determine the initial view of the dome camera itself. Jingqing and Xi (2015) use not only 

2D wireless camera sensor networks (WCSNs) information but also add 3D WCSNs. 

They developed a multi-hop cooperative multi-input-multi-output and orthogonal 

frequency-division multiplexing (MIMO-OFDM) algorithm to fulfill their needs on 

searching objects. 
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2.4 Agricultural Environment Related Works 

    Most of the information of agricultural environment come from sensors, especially 

wireless sensor networks installed in the greenhouse. In the past, the thing that people 

care is to monitor the condition of the environment to increase the output value of the 

plant such as CO2 measurement (Tamaki et al., 2015). Some use to trace down the local 

climate parameters (Ahonen et al., 2008), and some build a system to provide real time 

monitoring of the important factors in plant growth such as the carbon dioxide, 

temperature, humidity level in greenhouse (Saad et al., 2014). Despite most of the sensor-

related works focus on the plant in the agricultural facilities, there are works that try to 

build a sensor network to locate and observe the working pattern of farmers. Hashimoto 

et al. (2016) use radio waves technics to locate the farmer’s position by his own cellphone 

and the beacons installed in the greenhouse. 

    There are also some researches use camera to reach the goal. Most of the works use 

one single camera installed on a robot and is use for map building, plant cares and 

harvesting. Yang et al. (2007) use a stereo vision to recognize tomato for automatic 

harvesting. Li et al. (2009) use a binocular stereo vision technique for 3D positioning to 

spray the plants in the greenhouse. Xia et al. (2015) use Kinect to build 3D plant leaf 

maps. There are also interesting researches such as using linear offset interference to 

detect the temperature from cameras (Wenjing and Xueqiang, 2014). 
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2.5 Object Detection 

There are hundreds of ways to detect an object using image processing and machine 

learning technics. Machine learning methods train pre-processed features using classifiers 

as prior knowledge. Then the trained databases are used as templates to fit the unknown 

object into the best category, and the answers are returned. Image processing methods 

find a common answer using algorithms and detect the object with the algorithm. The 

most common object detection for an image sequence are frame-related algorithms, such 

as frame subtraction, temporal differencing, and background subtraction model. Frame 

subtraction uses the pixel difference between frames as an error image. The image is 

thresholded after the average error is calculated. The algorithm is simple but is extremely 

sensitive to lights, and apertures. Temporal Differencing is similar to frame subtraction 

but uses the pixel difference of the image sequence instead of the single images. The 

object will be treated as a moving object if the subtracted value is greater than the 

threshold. This algorithm is very sensitive to environment changes, and may produces 

large amount of fragments that will affect the detection results. Background subtraction 

model builds the background information of the image sequence and the objects not 

belong to the background will be treated as moving objects. Because background 

subtraction model algorithms are good at resisting noise, and less sensitive to light 

compare to the previous two methods, these kind of algorithms are widely used in 
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detecting moving objects. Background subtraction model can be further categorized into 

static and non-static camera models; the following algorithms are static models. 

2.5.1 Gaussian Mixture Model Background Subtraction 

This algorithm builds N Gaussian mixture models. The distribution of the variable 

is described by the average and standard deviation, and the distribution shape is described 

by the covariance matrix. The Gaussian mixture model is shown in equation 2. 

 P(𝑋𝑋𝑡𝑡) =  ∑ 𝑊𝑊𝑖𝑖,𝑡𝑡𝜂𝜂�𝑋𝑋𝑡𝑡�𝜇𝜇𝑖𝑖,𝑡𝑡 ,𝜎𝜎𝑖𝑖,𝑡𝑡�𝐾𝐾
𝑖𝑖=1 , (2.1) 

where 𝑊𝑊𝑖𝑖,𝑡𝑡  is the 𝑖𝑖𝑡𝑡ℎ  Gaussian distribution weight, and 𝜂𝜂(𝑋𝑋𝑡𝑡|𝜇𝜇𝑖𝑖,𝑡𝑡 ,𝜎𝜎𝑖𝑖,𝑡𝑡)  is the 𝑖𝑖𝑡𝑡ℎ 

Gaussian distribution. 𝜇𝜇𝑖𝑖,𝑡𝑡 and 𝜎𝜎𝑖𝑖,𝑡𝑡 are average and the standard deviation respectively. 

If the pixel difference between the current frame and the background is larger than three 

standard deviations, it will be treated as foreground. 

Another improved Gaussian mixture model (Zivkovic, 2004) introduces the learning 

rate. The learning rate is set to 𝛼𝛼 = 1
𝑇𝑇
, a time 𝑇𝑇 > 1 during a period of image sequence. 

This makes the background model able to update in a real time environment. The 

background forgets the model that has the least weight, it also removes the model if it is 

outdated. Improved Gaussian model uses the pixel difference as well. The pixel difference 

will enhance the weight of the possibility of background if it is smaller than three standard 

deviations. The model in the possibility sequence with the least weight will be removed 

and replaced with the new one if full. Zivkovic uses clusters to find the background 
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candidates, and uses maximum likelihood to find the weight of the models. At last, the 

Dirichlet prior is applied to fulfill the maximum likelihood. Zivkovic also adds a threshold 

to discard the model if its weight is smaller than the threshold. 

2.5.2 Fast Self-Tuning Background Subtraction Algorithm 

    Fast self-tuning background subtraction algorithm (Bin and Dudek, 2014) uses K 

templates in the order of the appearance frequency. The 0𝑡𝑡ℎ template is assumed as the 

most possible background, descending. In the initialization phase, the algorithm will treat 

all the objects as foreground. Starts from the 0𝑡𝑡ℎ template, every pixel will be compared 

until to the 𝐾𝐾𝑡𝑡ℎ  template by a background value B and an efficacy counter C. The 

process orders the templates so that the efficacy decrease from 0 to K. The background 

value B is defined as the value that has been present at the corresponding pixel for 

different time scales. Template 𝑇𝑇0 always contains the value with the longest time. To 

adapt to background changes, the new incoming pixel will be classified as a background 

if the distance between the values B in the corresponding template is smaller than the 

decision threshold 𝜀𝜀. The value B will be updated using a running average. The efficacy 

of the template that classified the pixel as background will be increase by one, while the 

efficacies of other templates will be decrease by one. If the efficacy of the template 

becomes 0, it will become inactive and will be replaced by a new template. The efficacy 

of the new template will be set to 1. 
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To ensure the background values with the longest appearance always stay in template 

0, a threshold 𝜃𝜃𝐿𝐿  is used. Only if the efficacy of the first template is larger than the 

threshold, and the efficacy of the 0𝑡𝑡ℎ template happens to be smaller than the threshold, 

the two templates will be swapped. After swapped, the efficacy of the newly updated 

long-term template will be multiplied to a parameter 𝛾𝛾  to restrain the generation of 

ghosts. To prevent a temporarily stay object being insert into the templates, the object 

must have the efficacy counter 𝐶𝐶𝐴𝐴  greater than the preset threshold 𝜃𝜃𝐴𝐴 , and has the 

background value B contained in at least one of its neighbors’ background model, judging 

by the decision threshold 𝜀𝜀. 

Incoming frames always contain noise. To remove the noise, Wang uses a low 

resolution and a full resolution image of the same frame. Most noise will be remove in a 

low-resolution image. If the noise pixel disappears and appears between successive 

frames, the activity level A of the noise pixel will be increase by one. Once the activity is 

larger than a threshold 𝛽𝛽𝑇𝑇𝑇𝑇, it will be eliminated and treated as background. 

Because the decision threshold 𝜀𝜀  is the most important parameter that directly 

affects the detection results, Wang uses the activity level A to make the threshold self-

adapted. If A is bigger than a threshold 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼, 𝜀𝜀 increase by 𝛿𝛿𝐼𝐼𝐼𝐼𝐼𝐼. If A is smaller than a 

threshold 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷, 𝜀𝜀 increase by 𝛿𝛿𝐷𝐷𝐷𝐷𝐷𝐷. Using different 𝛿𝛿 values prevents 𝜀𝜀 oscillating 

between two values, and 𝜀𝜀 is limited between 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚. 
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2.5.3 Building PTZ Background Subtraction Model 

    Using Gaussian Mixture Model to build background is surely a good way to build 

perfect models. However, the view of the PTZ is not always static. Kang et al. (2003) use 

an alternative, simple background generation method that requires shorter training time. 

Figure 2-2 shows the pseudo code of the fixed-view background model. 

If background.empty() 
{ 
    Background = incoming_frame; 
    Flag_bk(x,y)=0; 
} 
For all pixels 
If |I(x,y) - B(x,y)| < Threshold 
    if Flag_bk(x,y) > 0, then Flag_bk(x,y)-- 
Else 
    Flag_bk(x,y)++ 
    if |I(x,y) - I_lastframe(x,y)| < Threshold and |I(x,y) - I_last2frame(x,y)| <Threshold 
        if(Flag_bk(x,y) > N), then Background(x,y) = I(x,y), Flag_bk(x,y) = 0 

        else if (Flag_bk > 0), then Flag_bk(x,y)-- 

Figure 2-2 Pseudo code of building a PTZ fixed-view background subtraction model by 

Kang et al. (2003) 

Where I is the incoming frame from the PTZ, Flag_bk is the matrix of consecutive 

frames. The variable N depends on the frame rate of the video. 
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(a) 

 

(b) 

Figure 2-3 Representation of PTZ background remapping. (a)Representing any pixel 

using pan and tilt for a single image (b)Geometry transformation between different pan-

tilt view of PTZ 

    Next Kang et al. (2003) use a simple geometry transform to transform background 

to fit different pan-tilt view images. Thus the background can be used even the pan and 

tilt angle changed. Figure 2-3 shows how this mechanism works and can be written into 

the following equation, 
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(2.2) 

where the X, Y coordinate represent the related coordinate to the center of the PTZ 

image, 𝜃𝜃𝑝𝑝, 𝛿𝛿𝑝𝑝  are the pan tilt representation for any X, Y pixel of PTZ image,𝜃𝜃1, 𝛿𝛿1 
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represent the previous pan and tilt angle, 𝜃𝜃2, 𝛿𝛿2 represent the new pan and tilt angle, 

𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛, 𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛 are the mapped pan and tilt angle for the new image plane. 

2.5.4 Histogram of Oriented Gradients for Human Detection 

    This algorithm is used to calculate the oriented gradients of a small spatial region 

and is first published by Dalal and Triggs (2005). Every appearance and shape of a small 

spatial region can be perfectly described with the HOG descriptor. The dense grid of 

uniformly spaced small spatial regions are called cells. To improve the performance, 

overlapping local contrast normalization is used to normalize the cells. By deciding the 

density of the blocks in an image, we can normalize the contrast of the cells located in the 

blocks. This process makes the feature able to work with less effects from lights and 

shadows. 

    When an image is input, the algorithm first normalizes the gamma and the color. 

After that, the gradients of the image are computed. The orientation of the histogram is 

voted by the cells. According to the experiment, dividing the orientation into 9 groups out 

of 360 degrees has the best performance. Next, the cells are gathered into blocks to 

normalize the contrast. The geometry of the blocks includes rectangle (R-HOG) and circle 

(C-HOG). Applying the Gaussian Window between them is also needed because 

somehow it decreases the weight of the edge of an image. The R-HOG blocks works 

similar to SIFT but computed in dense grids at a single scale without dominant orientation 
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alignment, The C-HOG blocks work similar to shape context descriptors but each spatial 

cell contains a stack of gradient-weighted orientation cells. Four block normalization 

schemes are evaluated for each of the HOG geometry. Let 𝜈𝜈  be the unnormalized 

descriptor vector, �|𝜈𝜈|�
𝑘𝑘
 be its 𝑘𝑘-norm for 𝑘𝑘 = 1,2, and 𝜖𝜖 be a small constant. 

L2 − norm, v →
v

��|𝜈𝜈|�
2
2 + 𝜖𝜖2

 

𝐿𝐿2 − ℎ𝑦𝑦𝑦𝑦, 𝐿𝐿2 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝐿𝐿1 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑣𝑣 →
𝑣𝑣

��|𝑣𝑣|�
1

+ 𝜖𝜖�
 

𝐿𝐿1 − 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟, 𝐿𝐿1 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣 → �
𝑣𝑣

��|𝑣𝑣|�1+𝜖𝜖�
  

(2.2) 

    At last, the features are sent into the SVM classifier to detect if the target is human 

or not. Using a soft (C=0.01) linear SVM trained with SVMLight. A Gaussian kernel 

SVM is also applied to increase performance by about 3 %. 

2.6 Object Tracking 

When an object is detected, a tracking method is applied to predict the position of 

the object in the future. A good tracking algorithm is able to detect and predict the object 

in the interference of noise. The way an algorithm represents an object can be classified 

into five groups: points, primitive geometric shapes, object silhouette and counter, 

articulated shape models, and skeletal models. The appearance features of objects can be 

categorized into 4 groups: probability densities of object appearance, templates, active 
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appearance models, and Multiview appearance models (Yilmaz et al., 2006). The 

common algorithms are as follows. 

2.6.1 Bayesian Filtering 

Bayesian filtering is relevant to density functions, which are approximated by 

kernel-based representations and propagated over time (Bohyung et al., 2005). The 

process and measurement model are given by 

 𝑥𝑥𝑡𝑡 = 𝑔𝑔(𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡) (2.3) 

 𝑧𝑧𝑡𝑡 = ℎ(𝑥𝑥𝑡𝑡 , 𝑣𝑣𝑡𝑡) (2.4) 

where 𝑢𝑢𝑡𝑡  and 𝑣𝑣𝑡𝑡  are process and the measurement noise. The state variable 𝑥𝑥𝑡𝑡 

characterized by its probability density function (PDF) is estimated using the value at 𝑡𝑡 −

1, and is corrected afterwards by the measurement 𝑧𝑧𝑡𝑡. The filtering contains two stages: 

status predict, and status update. The stages can be represented by the following equations. 

 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡−1) = �𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1)𝑝𝑝(𝑥𝑥𝑡𝑡−1|𝑧𝑧1:𝑡𝑡−1)𝑑𝑑𝑥𝑥𝑡𝑡−1 (2.5) 

 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡) =
1
𝑘𝑘
𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡)𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡−1) (2.6) 

The most common PDF used in state variable is the Gaussian model, as equation 2.. 

𝑃𝑃𝑡𝑡𝑖𝑖  is the corresponding covariance matrices at time step 𝑡𝑡  ,and 𝜅𝜅𝑡𝑡𝑖𝑖  is the Gaussian 

weight with the total sum equals to 1. 

 𝑝𝑝(𝑥𝑥𝑡𝑡−1|𝑧𝑧1:𝑡𝑡−1) =
1

(2𝜋𝜋)𝑑𝑑/2 �
𝜅𝜅𝑡𝑡−1𝑖𝑖

|𝑃𝑃𝑡𝑡−1𝑖𝑖 |1/2

𝑛𝑛𝑡𝑡−1

𝑖𝑖=1

exp �−
1
2
𝐷𝐷2(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡−1𝑖𝑖 ,𝑃𝑃𝑡𝑡−1𝑖𝑖 )� (2.7) 



doi:10.6342/NTU201602109

 

20 

 

2.6.2 Mean-Shift Object Tracking 

    The mean-shift tracking framework consists of target representation and target 

localization (Comaniciu et al., 2003). In target representation, a reference target model is 

chosen; we will have to characterize the target by a feature space. The reference target 

model is represented by its probability density function (PDF) 𝑞𝑞 in the feature space. In 

the subsequent frame, a target candidate is defined at location y, and is also characterized 

by the PDF. To make the computation cost reach the real-time processing, m-bin 

histogram is used instead. The target model and candidate is as following equations. 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: 𝑞𝑞� = {𝑞𝑞�𝑢𝑢}𝑢𝑢=1…𝑚𝑚  �𝑞𝑞�𝑢𝑢

𝑚𝑚

𝑢𝑢=1

= 1 (2.8) 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: 𝑝̂𝑝(𝑦𝑦) = {𝑝̂𝑝𝑢𝑢(𝑦𝑦)}𝑢𝑢=1…𝑚𝑚  �𝑝̂𝑝𝑢𝑢

𝑚𝑚

𝑢𝑢=1

= 1 (2.9) 

The target model is represented by an ellipsoidal region in the image. All targets are first 

normalized to a unit circle to eliminate the influence in different dimensions. The target 

model is then computed using the multivariate kernel density estimation method as 

equation 

 𝑞𝑞�𝑢𝑢 = 1
∑ 𝑘𝑘(||𝑥𝑥𝑖𝑖

·||2)𝑛𝑛
𝑖𝑖=1

∑ 𝑘𝑘(||𝑥𝑥𝑖𝑖·||2)𝑛𝑛
𝑖𝑖=1 𝛿𝛿[𝑏𝑏(𝑥𝑥𝑖𝑖·) − 𝑢𝑢], (2.10) 

where 𝛿𝛿  is the Kronecker delta function, 𝑘𝑘(𝑥𝑥)  is the kernel profile, and ℎ  is the 

bandwidth. The target candidate is also computed using the same kernel profile, but with 

different bandwidth, as equation 2.11. 
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 𝑝̂𝑝𝑢𝑢 =
1

∑ 𝑘𝑘(�𝑦𝑦 − 𝑥𝑥𝑖𝑖
ℎ �

2
)𝑛𝑛ℎ

𝑖𝑖=1

�𝑘𝑘(�
𝑦𝑦 − 𝑥𝑥𝑖𝑖
ℎ

�
2

)
𝑛𝑛ℎ

𝑖𝑖=1

𝛿𝛿[𝑏𝑏(𝑥𝑥𝑖𝑖) − 𝑢𝑢], (2.11) 

However, representing by color info isn’t robust enough. Comaniciu et al. (2003) mask 

the target with an isotropic kernel in the spatial domain 𝜌𝜌�(𝑦𝑦), with pixels weighted 

similar to the desired color. The presence of the objects in the second frame can be 

represented by equation 2.12. 

 𝜌𝜌�(𝑦𝑦) ≡ 𝜌𝜌[𝑝̂𝑝(𝑦𝑦), 𝑞𝑞�] (2.12) 

    In target localization phase, the model chosen in the current frame will be used the 

search in the model’s neighborhood in the next frame. The best candidate is found by 

maximizing the similarity function 𝜌𝜌�(𝑦𝑦), or minimized the Bhattacharya distance of the 

two discrete distribution. The similarity function can be further computed using the Taylor 

expansion, as equation 2.13. 

 𝜌𝜌[𝑝̂𝑝(𝑦𝑦), 𝑞𝑞�] ≈
1
2
��𝑝̂𝑝𝑢𝑢(𝑦𝑦�0)𝑞𝑞�𝑢𝑢

𝑚𝑚

𝑢𝑢=1

+
1
2
�𝑝̂𝑝𝑢𝑢(𝑦𝑦)�

𝑞𝑞�𝑢𝑢
𝑝̂𝑝𝑢𝑢(𝑦𝑦�0)

𝑚𝑚

𝑢𝑢=1

 (2.13) 

Recalling equation 2.11 we can get 

 𝜌𝜌[𝑝̂𝑝(𝑦𝑦), 𝑞𝑞�] ≈ 1
2
∑ �𝑝̂𝑝𝑢𝑢(𝑦𝑦�0)𝑞𝑞�𝑢𝑢𝑚𝑚
𝑢𝑢=1 + 𝐶𝐶ℎ

2
∑ 𝑤𝑤𝑖𝑖𝑘𝑘(�𝑦𝑦−𝑥𝑥𝑖𝑖

ℎ
�
2

)𝑛𝑛ℎ
𝑖𝑖=1 , (2.14) 

where 

 𝐶𝐶ℎ =
1

∑ 𝑘𝑘(�𝑦𝑦 − 𝑥𝑥𝑖𝑖
ℎ �

2
)𝑛𝑛ℎ

𝑖𝑖=1

 (2.15) 

 𝑤𝑤𝑖𝑖 = ��
𝑞𝑞�𝑢𝑢

𝑝̂𝑝𝑢𝑢(𝑦𝑦�0)

𝑚𝑚

𝑢𝑢=1

𝛿𝛿[𝑏𝑏(𝑥𝑥𝑖𝑖) − 𝑢𝑢] (2.16) 



doi:10.6342/NTU201602109

 

22 

 

To minimize the Bhattacharyya distance, the second term in 2.14 has to be maximized 

using the mean-shift algorithm. The kernel is recursively moved from the current location 

to the new location according to the following equation 

 𝑦𝑦�𝑖𝑖 =
∑ 𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖𝑔𝑔(�

𝑦𝑦�0−𝑥𝑥𝑖𝑖
ℎ �

2
)𝑛𝑛ℎ

𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖𝑔𝑔(�
𝑦𝑦�0−𝑥𝑥𝑖𝑖
ℎ �

2
)𝑛𝑛ℎ

𝑖𝑖=1

, (2.17) 

where 𝑔𝑔(𝑥𝑥) = −𝑘𝑘′(𝑥𝑥). A threshold 𝜀𝜀 is used as the error of the Bhattacharyya distance. 

The searching will stop if ||𝑦𝑦�1 − 𝑦𝑦�0|| < 𝜀𝜀. 

2.6.3 Kalman Filtering 

    Kalman filter (Kalman, 1960) is an optical estimator, and its known as the best linear 

estimator. Its model is a Beyesian model similar to a hidden Markov model 

(HMM)(Rabiner, 1989). The noise is assumed Gaussian (Diebold, 2007). The Kalman 

filter estimates the current state variables with the previous positions, speed, and other 

uncertainties. The measurement state is then feedback to the controlled system. The 

following equations shows how Kalman filter works 

 𝑥𝑥(𝑘𝑘) = T(𝑘𝑘)𝑥𝑥(𝑘𝑘 − 1) + 𝑀𝑀(𝑘𝑘)𝑢𝑢(𝑘𝑘) + 𝑣𝑣(𝑘𝑘) (2.18) 

 𝑧𝑧(𝑘𝑘) = 𝐻𝐻(𝑘𝑘)𝑥𝑥(𝑘𝑘) + 𝑤𝑤(𝑘𝑘), (2.19) 

where T(𝑘𝑘) is the transition matrix of the state vector 𝑥𝑥(𝑘𝑘), 𝑀𝑀(𝑘𝑘) is the effect of input 

control working on the control variables 𝑢𝑢(𝑘𝑘), 𝐻𝐻(𝑘𝑘) is the observation model of the 

measurement state 𝑧𝑧(𝑘𝑘), 𝑣𝑣(𝑘𝑘), 𝑤𝑤(𝑘𝑘) are the process noise and the measurement noise 
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respectively. The matrix of quadratic from defining error criterion 𝑄𝑄(𝑘𝑘) and 𝑅𝑅(𝑘𝑘) are 

assumed the average of zero. 

2.6.4 Particle Filtering 

    Particle filter (Arulampalam et al., 2002) or sequential Monte Carlo method 

(SMC)(Doucet et al., 2001) are one of the method to solve non-linear and non-Gaussian 

problems. It is based on point mass representations of probability densities and can be 

applied to any state-space model. Because most problems are time dependent and 

contains noise, we will have to build an estimate model in a discrete-time and state-

space form. To define the problem of tracking, we can use the following equations to 

represent the state sequence and the measurement of a target 

 𝑥𝑥𝑘𝑘 = 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘−1, 𝑣𝑣𝑘𝑘−1) (2.20) 

 𝑧𝑧𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘,𝑤𝑤𝑘𝑘), (2.21) 

where f estimates the current state according to the previous state, h is a possibly non-

linear function. 𝑣𝑣, 𝑘𝑘 are the process noise and the measurement noise respectively. 

    The sequential important sampling (SIS) algorithm based on SMC method is a 

generic framework of the particle filter. The SMC method represents the posterior density 

function by a set of random samples with associated weights. The result of the SMC 

method is more likely to be an experimental result rather than a calculation result. If the 

number of samples becomes very large, the result will become an equivalent 
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representation to the usual functional description of the pdf and approaches the optimal 

Bayesian estimate. We then describe the desired non-linear tracking system in the form 

of posterior pdf 𝑝𝑝 

 𝑝𝑝(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘) ≈ ∑ 𝜔𝜔𝑘𝑘
𝑖𝑖𝑁𝑁𝑠𝑠

𝑖𝑖=1 𝛿𝛿�𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘𝑖𝑖 �, (2.22) 

where 𝑧𝑧 is the measurement state. The system is described at the set of all states up to 

time 𝑘𝑘 using 𝑁𝑁𝑠𝑠 of particle 𝑥𝑥𝑘𝑘𝑖𝑖  to represents the probability distribution in the state of 

𝑥𝑥𝑘𝑘. Every state 𝑥𝑥𝑘𝑘𝑖𝑖  is associated with a weight 𝑤𝑤𝑘𝑘𝑖𝑖  

 𝑤𝑤𝑘𝑘𝑖𝑖 ∝ 𝑤𝑤𝑘𝑘−1𝑖𝑖 𝑝𝑝�𝑧𝑧𝑘𝑘�𝑥𝑥𝑘𝑘𝑖𝑖 �𝑝𝑝�𝑥𝑥𝑘𝑘𝑖𝑖 �𝑥𝑥𝑘𝑘−1𝑖𝑖 �

𝑞𝑞�𝑥𝑥𝑘𝑘𝑖𝑖 �𝑥𝑥𝑘𝑘−1𝑖𝑖 , 𝑧𝑧𝑘𝑘�
, (2.23) 

where 𝑞𝑞 is the important density function of the distribution function of the sampled 

particles. If we choose the importance density function to be the prior, 

 𝑞𝑞�𝑥𝑥𝑘𝑘𝑖𝑖 �𝑥𝑥𝑘𝑘−1𝑖𝑖 , 𝑧𝑧𝑘𝑘� = 𝑝𝑝�𝑥𝑥𝑘𝑘𝑖𝑖 �𝑥𝑥𝑘𝑘−1𝑖𝑖 �, (2.24) 

and equation 2.23 can be simplified into 

 𝑤𝑤𝑘𝑘𝑖𝑖 ∝ 𝑤𝑤𝑘𝑘−1𝑖𝑖 𝑝𝑝�𝑧𝑧𝑘𝑘�𝑥𝑥𝑘𝑘𝑖𝑖 �. (2.25) 

Any state 𝑥𝑥𝑘𝑘𝑖𝑖  and its probability in any time can be calculated by the SIS algorithm. 

2.7 Behavior Recognition 

    Rule-based behavior recognition methods are limited to predefined anomalies. Thus, 

the researches have been a paradigm shift from rule-based to statistical-based methods 

(Popoola and Kejun, 2012). The statistical methods can be fulfill using learning 

algorithms, such as Hidden Markov Model (HMM)(Zhang et al., 2005), Bayesian model 
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(Boiman and Irani, 2007), clustering (Zhou et al., 2007), Support Vector Machine 

(SVM)(Wu et al., 2005), neural network (Foroughi et al., 2008), and etc. But putting the 

raw data from the image sequence into the models directly may lower the accuracy of the 

recognition results, some pre-processing must be done to reduce the noise of the raw data. 

We called these pre-processing data features, and these features will be later used for 

training and recognizing. There are lots of feature extraction methods, for example, object 

trajectory (Wiliem et al., 2008), histogram related features (Tao and Shaogang, 2008), 

optical flow (Feizi et al., 2013), shape related algorithms, and etc. 

Some pre-processing technics even use one or more methods. Chang et al. (2013) 

use bag-of features and skeleton graph to recognize the behavior. To recognize the human 

behavior, two model is used. First, a shape representation method is applied by using bag-

of-features to approach. Then these models are insert into the second model. The motion 

then is extracted by skeleton graph, and is then saved into codebook. A SVM is used to 

train these codebook-features. 

2.7.1 Gabor Filtering 

    Frequency and orientation of Gabor filters (Feichtinger and Strohmer, 1998) are 

similar to human visual system. They are also useful to extract features from an image. 

The following equations are the two-dimensional Gabor filters in discrete domain. 

 𝐺𝐺1(𝑖𝑖, 𝑗𝑗) = 𝐶𝐶1𝑒𝑒
−𝑖𝑖

2+𝑗𝑗2
2𝜎𝜎2 cos�2𝜋𝜋𝜋𝜋(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)� (2.26) 
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𝐺𝐺2(𝑖𝑖, 𝑗𝑗) = 𝐶𝐶2𝑒𝑒
−𝑖𝑖

2+𝑗𝑗2
2𝜎𝜎2 sin (2𝜋𝜋𝜋𝜋(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)) 

where 𝐶𝐶1,𝐶𝐶2  are the normalizing factors, 𝑓𝑓  is the frequency to look for, 𝜃𝜃  is the 

texture orientation angle, 𝜎𝜎 is the size of the image region being analysis. Any image 

applied with the Gabor filter with different frequencies and orientations is able to produce 

larger variance features and makes the classifiers easier to find a solution. 

2.7.2 Least Squares Support Vector Machine 

    Support Vector Machine (SVM)(Vapnik, 1995) is usually used in machine learning, 

and it’s one of a supervised learning method. The main purpose of the SVM is 

classification and regression. The main purpose of the support vector is to find the 

maximum margin in a training data set that gives the most information points in 

classification. Assumed a given training set of N data points {𝑦𝑦𝑘𝑘, 𝑥𝑥𝑘𝑘}𝑘𝑘=1𝑁𝑁  as follows: 

 𝑦𝑦(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ��𝑎𝑎𝑘𝑘𝑦𝑦𝑘𝑘𝜓𝜓(x, 𝑥𝑥𝑘𝑘) + b
𝑁𝑁

𝑘𝑘=1

� (2.27) 

where 𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘 ∈ ℝ are the kth input and output pattern respectively. For 𝜓𝜓(x, 𝑥𝑥𝑘𝑘) one 

has the following choices according to the different types of SVM used. The SVM can 

classify using linear and non-linear at the same time. The raw data is transformed to a 

higher (Vapnik-Chervonenkis, VC) dimension, and this helps the algorithm to find a 

hyperline that has the maximum margin. A risk minimization principle is used to 

minimize the risk bound as equation 2.28. 
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 min
𝜔𝜔,𝜉𝜉𝑘𝑘

ℑ(ω, ξk) =
1
2
𝜔𝜔𝑇𝑇𝜔𝜔 + 𝑐𝑐�𝜉𝜉𝑘𝑘

𝑁𝑁

𝑘𝑘=1

 (2.28) 

where ξk  is a margin related variable. The solution is given by the saddle point of 

Lagrangian, and applying the computed results to equation 2.28 leads us to the following 

quadratic programming problem. 

 max
𝑎𝑎𝑘𝑘

𝑄𝑄(𝑎𝑎𝑘𝑘;𝜑𝜑(𝑥𝑥𝑘𝑘)) = −
1
2
� 𝑦𝑦𝑘𝑘𝑦𝑦𝑙𝑙𝜑𝜑(𝑥𝑥𝑘𝑘)𝑇𝑇𝜑𝜑(𝑥𝑥𝑙𝑙)𝑎𝑎𝑘𝑘𝑎𝑎𝑙𝑙

𝑁𝑁

𝑘𝑘,𝑙𝑙=1

+ �𝑎𝑎𝑘𝑘

𝑁𝑁

𝑘𝑘=1

 (2.29) 

Such that 

 �𝑎𝑎𝑘𝑘

𝑁𝑁

𝑘𝑘=1

𝑦𝑦𝑘𝑘 = 0, 0 ≤ 𝑎𝑎𝑘𝑘 ≤ 𝑐𝑐, 𝑘𝑘 = 1, … ,𝑁𝑁 (2.30) 

where 𝜑𝜑 is a nonlinear function which maps the input space into higher dimension. The 

function 𝜑𝜑(𝑥𝑥𝑘𝑘) in equation 2.29 is related to 𝜓𝜓(x, 𝑥𝑥𝑘𝑘) by imposing 

 𝜑𝜑(𝑥𝑥)𝑇𝑇𝜑𝜑(𝑥𝑥𝑘𝑘) = 𝜓𝜓(x, 𝑥𝑥𝑘𝑘). (2.31) 

The classifier then become 

 max
𝑎𝑎𝑘𝑘

𝑄𝑄(𝑎𝑎𝑘𝑘;𝜓𝜓(x, 𝑥𝑥𝑘𝑘)) = −
1
2
� 𝑦𝑦𝑘𝑘𝑦𝑦𝑙𝑙𝜓𝜓(x, 𝑥𝑥𝑘𝑘)𝑎𝑎𝑘𝑘𝑎𝑎𝑙𝑙

𝑁𝑁

𝑘𝑘,𝑙𝑙=1

+ �𝑎𝑎𝑘𝑘

𝑁𝑁

𝑘𝑘=1

 (2.32) 

Because the matrix associated with equation 2.32 is not indefinite, the solution of 2.32 

will be global. The selected SVM with minimal VC dimension can be found by solving 

equation 2.32 and computing the ball containing the points 𝜑𝜑(𝑥𝑥1), … ,𝜑𝜑(𝑥𝑥𝑁𝑁) using the 

Lagrangian. 

    Least Square SVM is (LS-SVM) is least square versions of SVM (Suykens and 
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Vandewalle, 1999). Instead of the quadratic programming, LS-SVM founds the classifier 

by solving the linear set of equations 2.33-2.34 (Fletcher, 1987). 

 �0 −𝑌𝑌𝑇𝑇
𝑌𝑌 𝑍𝑍𝑍𝑍𝑇𝑇 + 𝛾𝛾−1𝐼𝐼� �

𝑏𝑏
𝑎𝑎
� = �

0
1�⃑
� (2.33) 

where Z= [𝜑𝜑(𝑥𝑥1)𝑇𝑇𝑦𝑦1; … ;𝜑𝜑(𝑥𝑥𝑛𝑛)𝑇𝑇𝑦𝑦𝑁𝑁],𝑌𝑌 = [𝑦𝑦1; … ;𝑦𝑦𝑁𝑁], 1�⃑ = [1; … ; 1], 𝑒𝑒 = [𝑒𝑒1; … ; 𝑒𝑒𝑁𝑁], 

𝛼𝛼 = [𝛼𝛼1; . . ;𝛼𝛼𝑁𝑁]. Mercer’s condition can be applied to the matrix Ω = 𝑍𝑍𝑍𝑍𝑇𝑇 

 Ω𝑘𝑘𝑘𝑘 = 𝑦𝑦𝑘𝑘𝑦𝑦𝑙𝑙𝜑𝜑(𝑥𝑥𝑘𝑘)𝑇𝑇𝜑𝜑(𝑥𝑥𝑙𝑙)
= 𝑦𝑦𝑘𝑘𝑦𝑦𝑙𝑙𝜓𝜓(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑙𝑙)

  (2.34) 

The least square SVM has a better generalization performance and lower computational 

cost compare to the original SVM. 

2.7.3 Neural Network 

    Neutral Network (NN)(Aleksander and Morton, 1995) is consist of neutral nodes. 

Each node accepts several input function values with different weight. These values will 

be sum up and send into a function to produce calculation result. Every node can accept 

multiple inputs from same layer and send the calculation result to other nodes in same 

layer. 
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Figure 2-4 One node in a Neutral Network 

    Each Neutral Network has one or more layers to connect between the nodes. One 

layer NN uses the layer as input also as the output. Two layers NN has a layer of input 

and a layer of output. Three or more layers NN has a layer of input at where data input 

and a layer of output at output, and the rest of the layers are the hidden layers. Because 

the output of one NN layer is a vector, the size of the vector is the same as the number of 

the nodes for any single layer. 

 

Figure 2-5 Different layers of Neural Network 
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    Another popular type of Neural Network is the backpropagation NN (Hecht-Nielsen, 

1989). Instead of finding and tuning the values from the input to the output, 

backpropagation starts from the output back to the input. It finds and minimize the error 

produced during each layer. 

2.7.4 K-Nearest Neighbor 

    K-nearest Neighbor (Cover and Hart, 1967) is a non-parametric method used in 

classification. The classification of a point is decided by voting method of its neighbor. 

The value 𝑘𝑘, positive number, usually small, decides how many neighbors involved the 

voting process. If 𝑘𝑘 = 1 then the classification result will be decided by the nearest point 

of the new point. It is regarded as the simplest method of machine learning. During a 

voting process, the decision weight is opposite to the distance, usually the Euclidean 

distance, that is, the bigger the distance, the smaller the weight. This method also has 

drawbacks. If one sample appears too often, it will directly affect the result of the 

classification. Determine a good value 𝑘𝑘 will lower the effect of noise and clarify the 

edges between groups. 

2.7.5 Naive Bayes 

    Naïve Bayes (Russell and Norvig, 2009) is based on applying Bayes’ theorem. We 

assume between all the random variables are independent (Eq. 2.35). The denominator of 

equation 2.36 is independent of 𝐶𝐶 and for each of the value 𝑥𝑥𝑖𝑖 is given, we then can 
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modify the Bayes theorem into equation 2.37 by chain rule. 2.392.38 

 𝑃𝑃(𝐶𝐶|𝑥𝑥) = 𝑃𝑃(𝑥𝑥1|𝐶𝐶)𝑃𝑃(𝑥𝑥2|𝐶𝐶) …𝑃𝑃(𝑥𝑥𝑛𝑛|𝐶𝐶) (2.35) 

 𝑃𝑃(𝐶𝐶|𝑥𝑥1 … 𝑥𝑥2) =
𝑃𝑃(𝑥𝑥1 … 𝑥𝑥2|𝐶𝐶)𝑃𝑃(𝐶𝐶)

𝑃𝑃(𝑥𝑥1 … 𝑥𝑥2)
 (2.36) 

 𝑃𝑃(𝐶𝐶|𝑥𝑥1 … 𝑥𝑥2) ∝ 𝑃𝑃(𝐶𝐶)𝑃𝑃(𝑥𝑥1|𝐶𝐶)𝑃𝑃(𝑥𝑥2|𝐶𝐶, 𝑥𝑥1) …𝑃𝑃(𝑥𝑥𝑑𝑑|𝐶𝐶, 𝑥𝑥1 … 𝑥𝑥𝑛𝑛) (2.37) 

    We assume for every 𝑥𝑥𝑖𝑖 compare to other features 𝑥𝑥𝑗𝑗 (𝑗𝑗 ≠ 𝑖𝑖) is independent, we 

can modify 2.37 by using equation 2.38, and can be represents by equation 2.39. 

 𝑃𝑃�𝑥𝑥𝑖𝑖�𝐶𝐶, 𝑥𝑥𝑗𝑗� = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝐶𝐶) (2.38) 

 
𝑃𝑃(𝐶𝐶|𝑥𝑥1 … 𝑥𝑥2) ∝�𝑃𝑃(𝑥𝑥𝑖𝑖|𝐶𝐶)

𝑛𝑛

𝑖𝑖=1

 
(2.39) 

    By using this classifier, we can calculate the probability of the next input data. The 

result will be predicted by comparing the probabilities of each group. With the 

combination of Expectation-maximization algorithm, we can iterate continually to find 

out the unknown variables until converged. The classifier for Naïve Bayes can be 

represented as the following equation. 

 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = argmax

𝑘𝑘∈(1…𝐾𝐾)
𝑃𝑃(𝐶𝐶𝑘𝑘)�𝑃𝑃(𝑥𝑥𝑖𝑖|𝐶𝐶𝑘𝑘)

𝑛𝑛

𝑖𝑖=1

 
(2.40) 
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Chapter 3 Materials and Methods 

3.1 System Architecture 

3.1.1 Hardware Design 

    The cooperative system is separated into two parts: the static camera system and the 

pan-tilt-zoom (PTZ) camera. We use a Sony Network Camera (SNC) EB-630 (Figure 3-1 

a) plus a Theia SY125M Ultra Wide Lens (Figure 3-1 b) as our static camera. We use 

ACTi® CAM-6630 High Speed Dome Camera (Figure 3-1 c) as the PTZ camera. Both 

cameras provide their own Software Development Kit (SDK). We use HyperText Transfer 

Protocol (HTTP) and Common Gateway Interface (CGI) to control the Sony camera, 

including setting the exposure time, the frame rate, the shutter speed, the wide-dynamic 

range function, and etc. We use HTTP and RS232 to control the PTZ camera. We can 

enter the absolute position to make the PTZ itself to turn around in two angle: horizontal 

and vertical. We are also able to control the focal length, and the zooming rate to look at 

the object closer. The specification of each hardware is shown in Table 3-1 to Table 3-3. 

   

(a) (b) (c) 

Figure 3-1 Picture of the Chosen Hardware (a) SNC EB-630 (Sony, 2015) (b) Theia 

SY125M (Theia, 2015) (c) ACTi® CAM-6630 High Speed Dome Camera (ACTi, 2015) 
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Table 3-1 Specification of SNC EB-630 (Sony, 2015) 

Function Specification 

Resolution 1920x1080 pixels 

Focal Length 2.8 to 8.0 mm 

Frame Per Second (FPS) 30 fps in full HD resolution 

Zoom Ratio Optical zoom 2.9x / Digital zoom 4x 

Total zoom 11.6x 

Shutter Speed 1 / 1 to 1 / 10,000 s 

S / N Ratio (Gain 0 dB) More than 50 dB 

Gain Auto 

Dynamic Range Equivalent to 90 dB with View-DR 

technology 

Day / Night True D / N (Infrared light) 

Lens CS-mount varifocal lens 

White Balance ATW, ATW-PRO, Fluorescent lamp, 

Mercury lamp, Sodium vapour lamp, 

Metal halide lamp, White LED, One push 

WB, Manual 
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Table 3-2 Specification of Theia SY125M (Theia, 2015) 

Function Specification 

Iris Type Manual Iris 

Focal Length 1.3mm using Linear Optical Technology® 

F / # F / 1.8 to closed 

Resolution Up to 5 megapixels 

IR Correction No (IR transmitting but not D /N 

corrected) 

Mount Type CS-mount 
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Table 3-3 Specification of ACTi® CAM-6630 High Speed Dome Camera (ACTi, 2015) 

Function Specification 

Resolution 720x480 pixels 

Focal Length / CCD size 3.4~119 mm / 3.2 x 2.4 mm 

Frame Per Second (FPS) 30 fps at full D1 resolution 

Zooming Rate 27x optical 

Zooming Speed 4.6 sec (1x to 35x) 

Horizontal Spinning Angle 0~360 degrees 

Vertical Spinning Angle -10~100 degrees 

Horizontal Moving Speed 1~90 degrees / s 

Vertical Moving Speed 1~90 degrees / s 

Absolute Position Yes 

 

3.1.2 Software Design 

    The software is written in C++ language by Qt (Digia, 2015). The software is a user-

friendly design. The user interface is can be preview in Figure 3-2 and Figure 3-32. The 

main cooperative surveillance system (Figure 3-2) has the ability to control the PTZ 

manually by mouse. The size of the main screen and the child screen can also be zoomed 

or dragged around with the mouse and provide a Video Live View of both cameras. The 
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Object View Manager (Figure 3-32) provides a friendly GUI for users to look up every 

tracked object detail including the images of the both cameras after the final analysis. 

Figure 3-2 Software GUI design of the Cooperative Surveillance System 

3.1.3 Data Structure 

PC

Windows File Manager

Cooperative Surveillance System Object View Manager

External Camera

Static Camera Image
(.jpg)

PTZ Image
(.png)

Trajectory Info
(Static Camera + PTZ)

(.csv)

Working Pattern 
Analysis Result

(csv)

Tracked Object 
InformationStatic Camera Object PTZ Object

Static Camera

PTZ

Figure 3-3 Data Structure Diagram of Our Cooperative Surveillance System 

    We design our data structure to record every possible information we need. Figure 

3-3 shows the diagram of our system. We use the Windows native file manager to store

our files, including images, trajectory text files instead of building our own database. The 
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internal category functions from Windows is enough for our use. The system will build a 

category in the format of csv file for the images and text files once a day. The raw data 

structure in the Cooperative Surveillance system are in the unit of “Object” with the sub-

information such as time, duration, trajectory, sub-image, etc. Table 3-4 shows the data 

structure of our system. As for the data structure in the Object View Manager, it has a unit 

of “Trajectory Object Information”, which includes all the information from the Windows 

File Manager. The more rules and modules are used in the working pattern analysis, the 

more complicated the structure is. 

Table 3-4 Data Structure of the Cooperative Surveillance System 

Static Camera PTZ 

Object  Time Object  Time 

 Duration  Close-up images 

 Trajectory  

 Foreground images of the 

object for each recorded 

coordinate 

 Behavior 
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3.2 Cooperative system 

Receive image from static camera

Background Subtraction using 
multi-resolution GMM method

Data association using Euclidean 
Distance

Predict the objects velocity and 
direction by Kalman filter

Is the object being covered?

Receive predicted position and zoom-
in rate by static camera

Zoom-in for a higher resolution detail 
of the object

Face detection using HOG
Yes

Written the path information to the database

Combine the information of the static camera and the PTZ camera

Human detection using HOG

No
Yes

No

Background Subtraction using 
Modified Frame Difference

PTZ self-tracking using Centroid 
Estimation

 

Figure 3-4 Diagram of Network Control Center 

    The main goal of the cooperative surveillance system is to track and record the 

trajectories of the human activities. We construct a Network Control Center (NCC) to let 

cameras cooperate and trade information to track the objects. Different cameras have 

different advantages of acquiring unique information. The static camera collects the wide-

angle view scenes, while the PTZ camera collects the close-up and high-resolution image 

of any tracked object. The main searching and tracking algorithm is processed by the 

image from the static camera. Foreground information is used to associate the same object 
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between frames. The algorithms and the strategies used in the system will be introduced 

in the next section. 

3.3 Object Detection and Tracking 

3.3.1 Gaussian Filter and Interactive Multiple Model (IMM) Filter 

We use simple image processing method to extract the foreground objects from the 

background by multi-resolution Gaussian Mixture Model (GMM) background 

subtraction method (Zivkovic, 2004). Noise is a non-constant information based on time, 

resampling images in different resolutions eliminates the noise in a video. Once the noise 

is removed, the contour of the foreground object can be calculated. The contour 

information calculated in the new frame is used to identify the tracked object between 

frames. If the Euclidean distance between the new object and the tracked object is less 

than a calculated threshold (equation 3.2), they are considered as the same object. If there 

are multiple choices, the system chooses the most possible location by estimating the 

tracked objects future position with its velocity and direction. The threshold differentiates 

along the y-axis. Due to our settings of our system, the object is much near to the camera 

lens compare to the old system. If the object is close to the lens, the proportion of the 

object on the image will be bigger. Bigger Euclidean threshold is required to prevent the 

loss of the closer object. The threshold is determined according to the distance from the 

object to the camera. We assume one-step of a human is roughly 0.8 m. By the pitch of 
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the camera, we can calculate the corresponding pixel length of a step at 𝑦𝑦 = ℎ/2 with 

the following formula:  

 
𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝑥𝑥
2

=
0.8

𝐿𝐿
cos (𝜃𝜃) · tan (𝜑𝜑2)

 (3.1) 

where L = the distance from the camera lens to the ground point where the camera looks 

at, 𝜃𝜃 = the pitch of the camera, 𝜑𝜑 = the FOV of the camera, and x = the x resolution of 

the image. 

 

Figure 3-5 Illustration of Dynamic Euclidean Threshold (equation 3.1, 3.2) 

After finding the vanish point of the y axis, the threshold (𝑇𝑇𝐸𝐸.𝐷𝐷.) for any new object then 

can be calculated by the following equation, 

 𝑇𝑇𝐸𝐸.𝐷𝐷. = 𝑐𝑐 · (𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) · 𝑦𝑦𝑜𝑜−𝑌𝑌𝑣𝑣.𝑝𝑝.
ℎ
2−𝑌𝑌𝑣𝑣.𝑝𝑝.

+ 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (3.2) 

where 𝑐𝑐 = fine tuning constant, 𝑦𝑦𝑜𝑜 = the 𝑦𝑦 position of a detect object, and 𝑌𝑌𝑣𝑣.𝑝𝑝. = y 

axis of the vanishing point. The 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the initial threshold at the vanishing point of the 
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image, and can be calculated using similar equation as equation 3.1. Just change the pitch 

of the camera to the angle of the vanishing point to the horizontal line. 

//Data association 
for(int i = 0; i <= obj.size(); i++) 
{ 

If EuclideanDistance(obj[i], obj_last_frame[i]) < dynamicThreshold 
    connect(obj[i], obj_last_frame[i]) 
Else if obj[i].gabor() is similar to obj_last_frame[i].gabor() 
    connect(obj[i], obj_last_frame[i]) 

} 
//Check association result 
for(int i = 0; i < connected_obj.size(); i++) 
{ 
    EstimatePosition = IMM & Kalman(obj_last_frame[i]) 
    If EstimatePosition is not similar to obj[i] 

    disconnect(obj[i], obj_last_frame[i]) 
} 

Figure 3-6 Pseudocode of Data Association and Correction 

    After the correcting with the previous location(s) and the present location, we are 

able to predict the object velocity and the direction of the targeted object by Kalman filter 

(Kalman, 1960) and Interactive Multiple Model (IMM) filter (Challa et al., 2011). This 

not only tells the PTZ to capture the object easier, but also tells the system to know which 

direction the object is moving when the object is covered. We can also check if the linking 

is correct if the connected location is unexpectedly. In IMM filter, we choose a constant 

velocity (CV) model and a constant acceleration (CA) model. We assume the motion 

model of an object has different probabilities to keep in the same model for the next step. 
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The probabilities are determined by observing them in the testing environment. We then 

estimate the object states by these two motion models (CV and CA) respectively, and get 

the final state by the weighted sum calculated by the likelihood function. The predicted 

object state can be estimated precisely and is ready to be sent to the PTZ camera to capture 

the object for more details. 

 

Figure 3-7 IMM model for Network Control Center (NCC) 

3.3.2 Geometry Transform between Cameras 

The geometry location estimated by the Kalman filter and IMM filter belongs to the 

coordinate of the static camera. In order to change these to the PTZ coordinates, we use 

a simple geometry transform according to the formula below. We first change the static 

camera to the world coordinate, then we change the world coordinate to the PTZ 

coordinate (Fig. 2). 
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𝜃𝜃𝑠𝑠 = 1
𝑠𝑠
𝑥𝑥′ + 𝑏𝑏1, 𝑥𝑥′ = 𝑥𝑥𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) − 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) 

𝜙𝜙𝑠𝑠 = 1
𝑠𝑠
𝑦𝑦′ + 𝑏𝑏2, 𝑦𝑦′ = 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) + 𝑦𝑦𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) 

𝑋𝑋𝑇𝑇 = 𝑍𝑍𝑆𝑆 cot(𝜙𝜙𝑠𝑠) cos (𝜃𝜃𝑠𝑠) + 𝑋𝑋𝑆𝑆 

𝑌𝑌𝑇𝑇 = 𝑍𝑍𝑆𝑆 cot(𝜙𝜙𝑠𝑠) sin (𝜃𝜃𝑠𝑠) + 𝑌𝑌𝑆𝑆 

𝜃𝜃𝑃𝑃 = tan−1 �
𝑌𝑌𝑇𝑇
𝑋𝑋𝑇𝑇
� 

𝜙𝜙𝑃𝑃 = tan−1 �
𝑍𝑍𝑃𝑃

�𝑋𝑋𝑇𝑇2 + 𝑌𝑌𝑇𝑇2
� + 𝜉𝜉𝑝𝑝 

(3.3) 

where 𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠  = the position of the object in the static camera coordinate, 𝜃𝜃𝑠𝑠,𝜙𝜙𝑠𝑠  = 

calculated pitch and raw of the object in the static camera coordinate, 1/𝑠𝑠, 𝑏𝑏1, 𝑏𝑏2  = 

constant parameters, 𝑋𝑋𝑇𝑇,𝑌𝑌𝑇𝑇 = the position of the object in the world coordinate, 𝜃𝜃𝑃𝑃,𝜙𝜙𝑃𝑃 

= the pan and tilt of the object in the PTZ coordinate. 

 

Figure 3-8 Illustration of Geometry Transform 
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3.3.3 PTZ Image Mapping to PTZ Sphere coordinate 

    Mapping the PTZ image back to its own sphere coordinate is able to let us to locate 

the detailed object more precisely. We use simple transformation equations (Kang et al., 

2003; 余, 2012) to find the estimated pan, tilt angles from a known x, y coordinate from 

the image as shown in equation 3.4, 

 

𝑍𝑍 =
(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 · 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) · 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐶𝐶𝐶𝐶𝐷𝐷 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
 

𝑎𝑎 =
𝑍𝑍

tan (180° − 𝜙𝜙)
, 𝑏𝑏 =

𝑎𝑎
sin (180° − 𝜙𝜙)

 

t = tan−1
𝑎𝑎 · �𝑥𝑥 − 𝑤𝑤

2�

𝑏𝑏 · �𝑦𝑦 − ℎ
2 + 𝑎𝑎�

 ,𝐴𝐴 =
�𝑦𝑦 − ℎ

2� + 𝑎𝑎
cos(𝑡𝑡) + 0.000001

 

𝑑𝑑𝑑𝑑 = tan−1(
(𝑥𝑥 − 𝑤𝑤

2 )
𝑍𝑍 · cos (𝜙𝜙)

) 

𝑑𝑑𝑑𝑑 = tan−1(
𝐴𝐴 − 𝑎𝑎
𝑍𝑍

) 

𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜃𝜃 + 𝑑𝑑𝑑𝑑 

𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜙𝜙 + 𝑑𝑑𝑑𝑑 

(3.4) 

where 𝜃𝜃,𝜙𝜙 is the pan and tilt angle of the PTZ, 𝑥𝑥, 𝑦𝑦 is the 𝑥𝑥,𝑦𝑦 coordinate of the PTZ image, 

𝑤𝑤,ℎ is the pixel width and the pixel height of the PTZ image. The new estimated pan, 

tilt angles are calculated by finding the relationship from the old pan, tilt angles. 

    By using the raw CCD width and the focal of the PTZ camera, we are able to 

calculate the Z value in any zooming rate. The view of the PTZ is a south hemisphere, so 

we minus 180 degree by tilt to make the warping direction upside down. 
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3.3.4 PTZ Self-Tracking Algorithm 

Background Subtraction using Frame Difference 

    The estimated coordinate from the geometry transformation may be incorrect due to 

the errors or time lagged. After the PTZ received the coordinate, we design a mechanism 

for the PTZ to relocate the position of the tracked object. The background subtraction 

model is built with the pseudo code shown in Figure 2-2. 

    We modified the value 𝑁𝑁 = 2 to make the model update very fast. The goal of the 

self-tracking is to relocate the found object to the center. Changing the N to a very small 

value actually makes the system more like frame difference than building a background 

model, but with less noise and more tolerance. The geometry transform (equation 2.2) 

between different pan-tilt angle views is also used to prevent rebuilding the background 

model repeatedly. The foreground image is processed with simple dilate and erode to 

eliminate noise. 

Tracked object Centroid Estimation 

After the foreground is extract from the PTZ image, we will try to find the object 

that needs to relocate. The predicted coordinate from the static camera tells the PTZ to 

move to an estimated location. The tracked object must be near the center to the PTZ 

image in theory. We add a weighting to find the centroid of all the foreground pixels using 

Gaussian function. The pseudo code is shown in Figure 3-9. 



doi:10.6342/NTU201602109

 

46 

 

For every foreground pixel 
    Centroid_x(x, y) += x * PixelIntensity(x, y) * Gaussian (|w/2-x|) 
    Total_x += PixelIntensity(x, y) * Gaussian (|w/2-x|) 
    Centroid_y(x, y) += y * PixelIntensity(x, y) * Gaussian(|h/2-y|) 

Total_y += PixelIntensity(x, y) * Gaussian(|h/2-y|) 
 

Centroid_x /= Total_x 
Centroid_y /= Total_y 

Figure 3-9 Pseudo code of finding the centroid of the tracked object 

    Figure 3-10 is the visualize example how self-tracking works. In Figure 3-10 (a) the 

two man on the left side screen is moving, so they are captured by the PTZ. The PTZ then 

try to move to the left a little bit. However, in Figure 3-10 (b) the man with black shirt 

leaves causing the two moving objects separated, the PTZ then changed the center to 

capture both moving objects. At last, the only moving person is the one with gray shirt 

(Figure 3-10 (c)). The PTZ then move the center back to the man with gray shirt. 
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(a) 

 

(b) 

 

(c) 

Figure 3-10 Centroid estimation process of PTZ self-tracking. (a) is the initial position 

received from static camera. (b) is the computed centroid view. (c) is a recomputed 

centroid view after the foreground object changed. Note that only moving objects will 

be captured on the screen. 

Zooming Rate Estimation 

Finally, the size from the foreground pixels will determine the zooming rate of the 

PTZ. The zooming rate is calculated by the following equation. 

 

𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑥𝑥_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

𝑓𝑓(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) =

⎩
⎨

⎧
𝑤𝑤
𝑑𝑑𝑑𝑑

 ,
𝑤𝑤
𝑑𝑑𝑑𝑑

<
ℎ
𝑑𝑑𝑑𝑑

ℎ
𝑑𝑑𝑑𝑑

,
𝑤𝑤
𝑑𝑑𝑑𝑑

>
ℎ
𝑑𝑑𝑑𝑑

 

(3.5) 
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PTZ Tracking Strategy 

Track the least tracked object

Does every object have the 
same tracking times?

Yes

Track the nearest object

Yes No

End

No

Start

Object Detected?

 

Figure 3-11 The PTZ tracking strategy of the previous system 

Figure 3-11 shows the PTZ control strategy of the previous system (余, 2012). This 

efficient tracking strategy is able to collect information with minimum moving distance 

and minimum reduced time. However, due to the previous reason told in the beginning of 

this section, we modified the strategy a bit to gather the information more completely. 

The PTZ not only received the estimated position from the static camera but also able to 

track object on its own. 
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Track the least tracked object

Does every object have the 
same tracking times?

Yes

Track the nearest object

Yes No

End

No

Start

Object Detected?

Relocate the object to the 
center

Is tracked object 
centered?

Zoom-in for higher resolution 
details

Yes

Is tracked object 
centered?

Yes

Is time expired?
or

Is object disappeared?

No

No

Yes

  

Figure 3-12 New PTZ tracking strategy of the system 

    Figure 3-12 is the new PTZ tracking strategy of our system. We make sure the 

tracked object is in the center of the image. To prevent an infinite loop occurs in the self-

tracking algorithm, we break the algorithm loop when there is nothing to track on the 

screen or when the defined time of the timer expired. Although we lost the chance to get 

the other objects information, this new method helps us to get more usable one instead. 

3.3.5 Human Detection and Human Face Detection 

Since we aim to observe human activities, we check whether objects we detected are 

human or not before sending the locations to the PTZ camera. Every contour of the object 

is passed to the HOG classifier for human detection (Dalal and Triggs, 2005). We use a 
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simple voting method to decide if the object is a human for a single trajectory. Within a 

specific timeframe, a person will be detected as a human if more than half of the HOG 

features is recognized as a human being. Once the trajectory of the object is recognized 

as a human being, the predicted location will be sent to the PTZ camera. 

Once the predicted location is sent to the PTZ camera, a HOG classifier is used to 

detect human face from the captured image of the PTZ after the relocating process from 

PTZ itself. If a face is successfully detected, the information will be added to the trajectory 

to associate same objects more precisely. 

3.3.6 Simple Static Object Detection (SOD) 

    We use a simple method to track all the static objects and the environment changes, 

exclusive of the moving ones. To trace the environment changes, the fast self-tuning 

background subtraction algorithm is used. This algorithm is a background based object 

detection method. However, it returns every object that is not belong to the background. 

We then applied the Gaussian Mixture Model background subtraction (GMM) to solve 

the problem. GMM also returns the objects that is not belong to the background, but with 

a faster learning rate. In other words, the static objects will soon become the background 

of the GMM after a short period. We can define the period. Using the time difference of 

the two algorithms, we are able to separate the moving objects and the static objects while 

recording the environment changes. 
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    Before subtracting the results of the two algorithm, some mechanics are applied to 

eliminate the noise and false alarms. 

Image input

Get the thresholded image of moving  objects 
from the GMM background subtraction 

algorithm

Get the thresholded image of the foreground 
from fast self-tuning background algorithm

Fill holes and remove noise with 
morphology. Get image B.

Remove noise and fill holes with 
morphology. Get image A.

Subtract B from A to get the thresholded image of the static objects

Remove noise with morphology

Avoid false positive with accumulation

Output detection result
 

Figure 3-13 Diagram of Static Object Detection 

Holes Filling and Noise Eliminations 

First, we thresholded the background subtraction results. A simple erosion-and-

dilation morphology method is applied to remove the noise (Figure 3-14). The holes from 

the fast self-tuning background subtraction algorithm are filled after removing the noise. 

Because the detection result from GMM contains more fragments, we dilate the GMM 

result with a kernel of size 𝑘𝑘 to fill the holes before removing the noise. The size is 

determined according to the width and the height of the input frame. 
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 𝑘𝑘 =
min(ℎ,𝑤𝑤)

50
 (3.6) 

The main purpose of the algorithm is to find the location of the static objects, and the 

correct position of an object is much more important than the contour of an object. After 

removing noise and filling holes of the results, we dilate the result of GMM a little bit to 

ensure the moving objects and the noise is completely remove from the final result. 

  

(a) (b) 

Figure 3-14 Noise Comparison between normal and morphology-fix. (a) Raw 

thresholded image from the GMM algorithm result. (b) Morphology-fixed image of (a). 

Binary Image of the Static Objects 

We subtract the GMM result (Figure 3-15 (a)) from fast self-tuning result (Figure 

3-15 (b)) after the morphology step. If the pixel is smaller than the value zero, it will be 

set to zero. GMM results often produce more noise than the fast self-tuning background 

subtraction results and are dilated a little bit in the morphology step, so most of the noise 

will be removed after the subtraction of the two results. An erosion-dilation step will be 
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applied after the subtraction to reduce the noise again. 

  

(a) (b) 

  

(c) (d) 

Figure 3-15 The process of the SOD algorithm. (a) GMM result. (b) fast self-tuning 

background subtraction algorithm result. (c) subtracting (b) from (a). (d) is the RGB 

version of static object detection result of (c). 

Removing False Alarms with Accumulation 

    False alarms include a temporary static object and random severe noise. We use a 

simple accumulation map to make sure the static object stays long enough on the screen. 

Every pixel in the map is subtracted by 1 in every incoming frame, and is added by 2 if 

the incoming pixel is the center of the object. Because we use the contour finding to 
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calculate the center of a static object, considering the error produced, we also added the 

eight surrounded pixels by 2. The pixels of the accumulation map have a minimum value 

0 and with no maximum limitation. The threshold 𝜀𝜀 is set to judge if the static object 

stays long enough according to the following equation. 

 𝜀𝜀 = (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) · (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) (3.7) 

Initialization Time 

    The two algorithm used in this method have different initialization time. The GMM 

algorithm completes its initialization in nearly five frames. However, the fast self-tuning 

background subtraction algorithm requires more time to initialize. If there is no 

interference source while initializing, it will take about 60 frames to initialize. If the 

interference sources keep moving around in the foreground, the algorithm will take more 

time to build the background. Luckily, the algorithm can initialize in section. Any 

background of a section in the FOV will be built if it remains no interference for more 

than 60 seconds. 

Initialization with Interference Sources 

    We have noticed that the fast self-tuning algorithm can initialize by section in order 

to deal with the interference in the real world. It is nearly impossible to find a place that 

has no interference at all. In the case with interference sources, as you can see in Figure 

3-16 (a), there are two people walking on the road. The early-stage image (about 20 
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frames) in Figure 3-16 (b) shows that fast self-tuning background subtraction algorithm 

stills unable to initialize while the GMM algorithm has already completed initializing 

(Figure 3-16 (c)). A simple rule mentioned in chapter 2.5.2 shows that a pixel must have 

a background pixel in its neighborhood in order to become a background pixel itself. So 

the pixels remain stable from the edge to the center of the image will be built first, while 

the trajectory of the interference sources will remain unknown (Figure 3-16 (d)). Once 

the unknown section remains stable long enough, the pixel will be built as background. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-16 The image during the initialization stage of each algorithm. (a) Raw image. 

(b) Early-stage image of the fast self-tuning background subtraction algorithm. (c) 

Image of the GMM algorithm. (d) Initializing image (about 60 frames) of the fast self-

tuning background subtraction algorithm. 
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    If there is a static interference source in the initializing stage, the system may send a 

false alarm if the static interference source is gone after the initializing. The system will 

be able to self-correct the true background, but the false alarm will remain until the new 

background stays on the screen for more than a half compare to time that the interference 

source stays on the screen. 

 

(a) 

 

(b) 

Figure 3-17 False alarm effect on fast self-tuning algorithm. (a) False alarm cause by a 

static interference source while using fast self-tuning background subtraction algorithm. 

(b) A RGB version of (a). 

3.3.7 Mixture of Static Object Detection and Object Tracking 

    Since the Static Object Detection has the ability to detect still objects, we can solve 

the problem of losing tracking of object tracking method when a person stands still on the 

screen. The red circle at Figure 3-18 (b) shows that the GMM background subtraction fail 

to detect the foreground person wearing taupe jacket. The fragment detect result makes 
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the system to treat it as noise. The system loses tracking of the man after the two people 

separated (Figure 3-18 (c)). 

 

(a) 

 

(b) 

 

(c) 

Figure 3-18 Object tracking process without SOD (a) the taupe and red jacket people at 

the top-left are detected by the system (b) the system fails to build the foreground 

because the taupe jacket man stops moving for a while (c) the system loses track of the 

taupe jacket man 
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    By checking whether the detected object is human or not of the Static Object 

Detection result, we can enhance the foreground area of the taupe jacket man as the red 

circle mentioned at Figure 3-19 (b). After the two people separated, the system is able to 

detect the taupe jacket man correctly as a tracked object at Figure 3-19 (c). 

 

(a) 

 

(b) 

 

(c) 

Figure 3-19 Object tracking process with SOD (a) the taupe and red jacket people at the 

top-left are detected by the system (b) the system successfully enhances the foreground 

of the taupe jacket man (c) the system is able to track both of the people after separate 
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3.3.8 Assignments of the Static Camera and PTZ 

    We are facing the issue of the architecture design of the system. The system is design 

to run in three threads in order to prevent different tasks blocking each other. However, 

the three threads are not synchronized that we are not able to share the data structures 

used different hardware. Currently the assignments of the static camera and the PTZ are 

as follows: 

Static Camera: 

1. Main object tracking 

2. Trajectory details 

3. Behavior recognition 

PTZ: 

1. Self-tracking to relocate the object to the center 

2. Provide close-up identity information for each tracked object 

3.3.9 Software Acceleration 

    In image processing, computing the images using GPUs is far faster than using CPUs. 

We choose to use the cross platform framework OpenCL to speed up our performance in 

heavy calculation steps. These steps include background based object detection and pre-

processing of the incoming frames. Some steps like machine learning based algorithms 

will not be moved to the GPU because the time data transform from CPU to GPU might 
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longer than the total compute time. Although CUDA also uses GPUs as well, we dropped 

it because it only supports NVIDIA GPUs. 

    We also abandon to build panorama image and use ultra-wide FOV images instead. 

Although panorama images have no blind spot, the process frame per second is very low 

that it is hard to observe the motion patterns of a place. We simply have our system 

installed at the corner of the room instead in the center to adapt the change of the static 

camera.  
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3.4 Data analysis 

3.4.1 Choosing Working Patterns 

Case 1 Zhi Chen farm in Taoyuan County 

    Our goal is to let the owners or the managers get to know their place better in order 

to improve and keep track of the working patterns. It is important to review the working 

patterns for the first day by hand. In Figure 3-20, we can summarize the patterns into four 

categories in the Zhi Chen farm, from the left to right includes: 

1. Plantlet operations Plantlets operations including placing and taking the plantlets 

from the platform. Plantlets placed in this warehouse is ready for sale. 

2. Walking Since the warehouse is built in the center of the Zhi Chen farm, one or more 

routes in the warehouse leads to other section of the farm. We can often see people 

passing here. 

3. Carrying plantlets Workers here move the plantlets by putting them in a box. 

Carrying boxes around means they are ready or are carrying plantlets to other section 

in the farm. 

4. Talking, or other behaviors Sometimes people stand in warehouse to look at the 

product for sale. Or they just stand there and do something else except plantlets 

operations. 
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Figure 3-20 The working patterns found in Zhi Chen farm. From the left to right are 

plantlets operations, walking, carrying plantlets, and others 

Case 2 3rd Vegetable packaging factory in Taoyuan County 

    The working pattern of third vegetable packaging factory in Taoyuan County can be 

seen in Figure 3-21, from the left to right includes: 

1. Cargo Operations Trucks and cargos staying in front of the factory entrance are 

ready to load the vegetables and take them away. 

2. Forklift Operations Forklifts load the basket with vegetables and carry them 

around in the factory. 

3. Walking People walking around in the factory during the open hours. 

4. Human Operations People in front of the doorway of the factory are loading and 

unloading the vegetables on and off the forklifts and cargos. 

5. Passing in / out The traffic flow of the vegetable packaging factory is very busy. It 

is important to record the trend of the place. 
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6. Going home The owner of the factory built his house inside of the factory field. 

Using this system, we can get the activities of the owner and his family. 

7. Parking The parking lot of the factory is located at the right in the cameras FOV. 

We’re able to see if there’s any car parking there in a day. 

 

Figure 3-21 The working patterns in the 3rd vegetable packaging factory in Taoyuan 

County 

Case 3 Outside of the Tomatake Hall 

    We try to test our system by monitoring the traffic outside of the Tomatake Hall in 

National Taiwan University. The working pattern can be seen in Figure 3-21, from the 

left to right includes: 

1. Field activities Besides monitoring the traffic, we try to see if there is any person 

wondering near the sand bunker. 

2. Staying under the overhangs of the building We also try to figure out if there is any 

one staying under the overhangs of the building. 
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3. Passing by- human This is the main purpose of our test. We try to monitor the people 

passed by the road. 

4. Passing by- car This is the main purpose of our test. We try to surveil the cars passed 

by the road. 

 

Figure 3-22 The working patterns in the outside of the Tomatake Hall 

Case 4 Plaza in front of the Dept. of Bio-industrial Mechatronics Engineering 

We try to test our system by monitoring the traffic of the Plaza in front of the 

department of Bio-industrial Mechatronics Engineering (BIME) in National Taiwan 

University. The working pattern can be seen in, from the left to right includes: 

1. Go into the Building We want to know if anyone goes into the Dept. of BIME 

2. Wandering We would like to find out if someone is taking a nice walk or wandering 

around in the plaza. 

3. Passing by- human This is the main purpose of our test. We try to monitor the people 

passed by the road. 
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4. Passing by- car This is the main purpose of our test. We try to surveil the cars passed 

by the road. 

 

Figure 3-23 The working patterns in the Plaza of the Dept. of BIME 

3.4.2 Finding Usable Features 

    Once the working patterns are decided, we have to find features to let the system 

able to classify the patterns. The raw information we can acquired from our system 

includes: 

1. Happening time, duration of a tracked object 

2. Trajectory points 

3. Sub-image of a tracked objects for every frame 

4. Captured faces acquired from PTZ 

    Time information and trajectory points information can be combined and produce 

trajectory features, and the sub-image information can produce behavior features. The 

face acquired by the PTZ is used to recognize the identity of a person. The trajectory 



doi:10.6342/NTU201602109

 

66 

 

features include walking state and staying state. The behavior features include with box 

and no box. These four features are able to represent the working patterns in different 

combination shown in Table 3-5, Table 3-6. 

Table 3-5 Working patterns represented by the combination of the features in Zhi Chen 

farm 

 Trajectory Features Behavior Features 

Plantlets Operations Staying With Box 

Carrying Plantlets Walking With Box 

Walking Walking No Box 

Others Staying No Box 
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Table 3-6 Working patterns represented by the combination of the features in 3rd 

packaging factory 

 Trajectory Features Behavior Features 

Cargo Operations Staying in front of the 

factory doorway 
Car 

Forklift Operations Staying Forklift 

Walking Walking Human 

Operations at factory 

doorway 

Staying in front of factory 

doorway 
Human 

Passing in / out Walking 
Transportations 

(car, motor) 

Going home 
Staying at home spot 

Walking to home spot 
Human 

Parking Staying at parking lot Car, motor 
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Table 3-7 Working patterns represented by the combination of the features outside of the 

Tomatake Hall 

 Trajectory Features Behavior Features 

Passing by- car Walking on the road Car 

Passing by- human Walking on the road Human 

Field activities Walking at field Human 

Staying under the 

overhangs of the building 

Staying under the 

overhangs 

Human 

 

Table 3-8 Working patterns represented by the combination of the features in the Plaza 

in front of the Dept. of BIME 

 Trajectory Features Behavior Features 

Passing by- car Walking Car 

Passing by- human Walking Human 

Go into the building Walking near stairs Human 

Wandering Staying somewhere in the 

plaza 

Human 

Parking Stay Cat 
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Trajectory Features 

Since we have no tags on our tracked objects for us to calibrate and locate them precisely, 

the trajectories acquired from the static camera are full of noise. The paths are too jittered 

to use them directly just like the path in Figure 3-24. 

 

Figure 3-24 A severely jittered path 

We solved this by giving pre-defined map points to simplify the raw trajectories. In 

Figure 3-25, you can see seven points pointed on the roads of the warehouse. With the 

time and the duration recorded with every trajectory points, we can calculate whether a 

person stays at a spot (one of the seven chosen points) for a long time. The threshold for 

staying action is determined by the following equation: 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

> 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  (3.8) 
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Figure 3-25 The pre-defined map points in Zhi Chen farm. These points help us remove 

the noise of the trajectories 

    The noise and the jittering of a path is removed by using these pre-defined points to 

represents the path Most of the too detailed trajectories points will be removed and only 

the trend of the path will be left. We now use a sequence of numbers to represent the path 

instead of using a list of x, y coordinate. The system also provide custom define motions 

which is used to make these points into groups. Some keywords are used for system to 

recognize the meanings of the points on the map (Figure 3-31 left), such as “entrance”, 

and “crossRoad”. Note that the map points here will be resize if the resolution is 

downgraded. In this case, we downgrade from 1080p to 720p in order to speed up the 

process of the static camera algorithm. 
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Figure 3-26 The setting panel of the pre-defined map points. “label name” and “define 

motion” are editable cells. 

Behavior Features 

    We use Gabor filter and Bag of Words to process every sub-image (Figure 3-27) of 

a tracked object for every trajectory point. Each of the processed image has their own 

name named with the name of its trajectory. We use the supervised machine learning 

methods to train and predict those images, including K-Nearest Neighbor, Naïve Bayes, 

SVM, and Neutral Network. In the case of the Zhi Chen farm, the label for every image 

is categorized into “WithBox” and “NoBox”. At last, we use voting methods with the 

predicted images to determine the results for each trajectory to increase accuracy. 

 

Figure 3-27 An example of a tracked sub-image, labled “WithBox” 
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3.4.3 Mixture Behavior Features (Gabor and Bag of Words) 

    Bag of Words has better accuracy in three or more classifications. Its endurance of 

the data variant is also larger then Gabor filter. Unfortunately, Bag of Words uses SIFT 

feature points as its descriptor. Images that are too small cannot acquired SIFT features 

(Figure 3-28). We tried different sizes of images to test the accuracy of the Bag of Words 

and are shown in Figure 3-29. 

  

Figure 3-28 Acquired sub-mages with different resolutions. Although we are able to 

recognize the object in the left image is a person, SIFT fails to produce features. The 

right image has a higher resolution and is able to produce SIFT features. 

 

Figure 3-29 Different image size effect on Bag of Words 
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    Since Gabor filter is able to recognize the object and use a 2-group classifier at the 

accuracy of 80%, we use multiple algorithms following the definitions below. 

 �𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 50 · 50,𝑢𝑢𝑠𝑠𝑠𝑠 𝐵𝐵𝐵𝐵𝐵𝐵 𝑜𝑜𝑜𝑜 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑢𝑢𝑢𝑢𝑢𝑢 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  (3.9) 

3.4.4 Feature Classifications 

    We use the open-source analysis tool Orange to build a network to train those images. 

Orange is a fast prototype analysis tool by simple drag-and-drop coding to test the 

possibility of an idea. The trained classifier can be saved for further use. The node “Test 

Learners” lists all the machine learning methods with their accuracy and other 

information for users. We are able to check if our features are chosen correctly and which 

method is the most suitable for us. Once the features are tested, we can use them in our 

system to predict behaviors. 

 

Figure 3-30 Fast prototyping and training using Orange 
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3.4.5 Custom Define Rules System 

    In order to make the system expandable and able to fit most of the environment, we 

support using custom define rules system to create new working patterns in modules 

without modifying the code. The new working patterns can be created with any 

combination of the raw information, pre-defined map points, and existing working 

patterns. You can even use a user-defined name as rules for more advanced analysis. 

These new defined rules are saved in the format of comma-separated CSV files. 

 

Figure 3-31 The setting panel of the custom define rules 

    With this feature, we are able to do a quick setup even in our own experiments. Here 

we will explain the setup in detail for each experiment sites. Currently, we provided nine 

types of define rules to let users to create new custom rules with the existing rules: 

1. STARTTIME 

This option provides users to create rules depend on the start time of the detected 

objects. 
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2. ELAPSETIME 

This option provides users to use the duration information in the data structure to 

create custom rules. 

3. POSITION 

The custom rules are depended by the name of the map points only. 

4. POSITIONDEFINE 

The custom rules are depended by the group of the map points only. 

5. TYPE 

The custom rules are depended by the type of the trajectories only. 

6. BEHAVIOR 

The custom rules are depended by the sub-image classification results only. 

7. TYPEwBEHAVIOR 

This mixture define provides users to create custom rules with both trajectories and 

sub-image classification results. 

8. ELAPSETIMEwPOSITION 

This mixture define provides users to create custom rules with both duration and the 

name of the define map points. 

9. TYPEPOSITIONwBEHAVIOR 

This mixture define provides users to create custom rules with trajectories, name of 
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the map points, and the sub-image classification results. 

10. TYPEPOSITIONDEFINEwBEHAVIOR 

11. This mixture define provides users to create custom rules with trajectories, group of 

the map points, and the sub-image classification results. 

Zhi Chen farm in Taoyuan County 

    Table 3-9 is the setup of the pre-defined map points in the Zhi Chen farm. With the 

map points and the data structure information such as trained sub-image features, we are 

able to create our custom rules to meet our needs. Group of the pre-defined map points 

categorize points into road. Same group names means that they belong to the same road. 

The custom rules for Zhi Chen farm are shown in Table 3-10. 
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Table 3-9 Pre-defined map points of Zhi Chen farm 

Map Points Coordinate Point Name Group 

1 (473, 291) entranceA A 

2 (566, 309) crossRoad A 

3 (438, 330) toCross (N/A) 

4 (237, 363) toEnC C 

5 (16, 397) entranceC C 

6 (728, 342) CB B 

7 (938, 378) entranceB B 

Table 3-10 Custom rules for Zhi Chen farm 

Custom Rule Type Define Rules 

Plantlets Operations TYPEwBEHAVIOR Stay carryingbox 

Carry TYPEwBEHAVIOR Walk carryingbox 

Walk TYPEwBEHAVIOR Walk nobox 

Others TYPEwBEHAVIOR Stay nobox 

Go straight POSITIONDEFINE A B;B A 

Turn POSITIONDEFINE A C;C A;B C;C B 
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3rd Vegetable packaging factory in Taoyuan County 

    Because the experiment of the packaging factory is a large field, we did not group 

any point. We only focus on the “most stay positon” analysis and the daily and weekly 

sunnaries. 

Table 3-11 Pre-defined map points of the Packaging Factory 

Map Points Coordinate Point Name Group 

1 (457, 339) entranceA (N/A) 

2 (337, 371) entranceB (N/A) 

3 (181, 450) entranceC (N/A) 

4 (585, 360) 4 (N/A) 

5 (559, 432) 5 (N/A) 

6 (492, 557) 6 (N/A) 

7 (803, 365) home (N/A) 

8 (806, 435)) 8 (N/A) 

9 (814, 565) 9 (N/A) 

10 (966, 370) parking (N/A) 

11 (1070, 432) entranceD (N/A) 
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Table 3-12 Custom rules for Packaging Factory 

Custom Rule Type Define Rules 

Cargo Operations TYPEwBEHAVIOR Stay car 

Forklift TYPEwBEHAVIOR Walk toragon 

Walking TYPEwBEHAVIOR Walk human 

Staying Operation TYPEPOSITIONwBEHAVIOR Stay human entrancA 

Passing Car TYPEwBEHAVIOR Walk car 

Passing Motor TYPEwBEHAVIOR Walk motor 

Passing Motor 2 TYPEwBEHAVIOR Walk motor2 

Go home 1 TYPEPOSITIONwBEHAVIOR Stay human home 

Go home 2 TYPEPOSITIONwBEHAVIOR Stay human home 
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Outside of the Tomatake Hall 

    This experiment is to test the traffic monitoring ability of our system. We use group  

names to analyze the pass-by cars and humans. We also try to figure out the around usage 

of the surroundings. 

Table 3-13 Pre-defined map points of the Tomatake Hall 

Map Points Coordinate Point Name Group 

1 (265, 471) RoadMostLeft A 

2 (456, 434) RoadLeft A 

3 (684, 383) RoadMid A 

4 (934, 334) RoadRight A 

5 (1104, 260) RoadMostRight A 

6 (427, 326) BuildingFront B 

7 (677, 281) Playground B 

8 (722, 592) TomatakeEntrance T 
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Table 3-14 Custom rules for Tomatake Hall 

Custom Rule Type Define Rules 

Passing by- human TYPEPOSITIONDEFINEwBEHAVIOR Walk A human 

Passing by-car TYPEPOSITIONDEFINEwBEHAVIOR Walk A car 

Field Activities TYPEPOSITIONwBEHAVIOR Walk playground 

human 

Stay under the 

overhangs of the 

building 

TYPEPOSITIONwBEHAVIOR Stay 

BuildingFront 

human 

Plaza in front of the Dept. of BIME 

    This experiment is to test the traffic monitoring ability of our system. We use group  

names to analyze the pass-by cars and humans. In this case, we use pre-defined maps to 

remove noises. Point 1 to 15, 30, 38 are noise points. 

Table 3-15 Pre-defined map points of the plaza in front of the Dept. of BIME 

Map Points Coordinate Point Name Group 

1 (109, 137) noise noise 

2 (321, 105) noise noise 

(Continued) 
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(Continued) 

15 (182, 222) noise noise 

16 (934, 334) parkingFront road 

17 (1104, 260) parkingLot road 

18 (427, 326) stairway road 

19 (677, 281) stairFront road 

20 (722, 592) roadEntranceA road 

21 (524. 400) A-B3 road 

22 (632, 385) A-B2 road 

23 (651, 336) roadEntranceB road 

24 (699, 353) B-C1 road 

25 (767, 360) B-C2 road 

26 (857, 376) B-C3 road 

27 (977, 384) B-C4 road 

28 (1092, 397) roadEntranceC road 

29 (1196, 402) roadEntranceC-2 road 

30 (1093, 534) noise noise 

38 (655, 675) noise noise 
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Table 3-16 Custom rules for the Dept. of BIME 

Custom Rule Type Define Rules 

Passing by- human TYPEwBEHAVIOR Walk human 

Passing by-car TYPEwBEHAVIOR Walk car 

Wandering TYPEwBEHAVIOR Stay human 

Go into the Building TYPEPOSITIONwBEHAVIOR Walk human stairway; 

Walk,human,stairFront 

parking TYPEPOSITIONwBEHAVIOR Stay cat parkingFront; 

Stay car parkingLot 

3.4.6 Working Pattern Analysis and Daily and Weekly Summary 

    The simplified trajectories and behavior features will be used to predict action of 

every trajectory. A daily summary in the format of CSV file is produced every day with 

24 hours a day recording the appearance, status, custom rules, and comments. Weekly 

summary records the difference between days and the total sum of all the daily summaries. 

3.4.7 Object View Manager 

    We provide a friendly GUI (Figure 3-32a) for users to look at the individual working 

analysis results just like the other commercial software. The Object View Manager has 

an internal clock to regularly search for the analysis results from the Cooperative 
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Surveillance system. Each of the object can be double-clicked to see captured PTZ images 

(Figure 3-32 b). 

 

(a) 

 

(b) 

Figure 3-32 GUI of the Object View Manager (a) is the object list (b) is the object detail 
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3.5 Experiment 

3.5.1 Experiment Sites 

    The system is set in the following places to test the performance. 

Table 3-17 Experiment sites and the purposes 

Experiment sites Purpose 

Greenhouse of National Taiwan University object tracking testing 

Inside and outside of the Tomatake Hall 
Static Object Detection testing 

PTZ Self-tracking Algorithm 

Zhi Chen farm in Taoyuan County system performance testing 

3rd Vegetable packaging factory in Taoyuan 

County 

system performance testing 

Plaza in front of the Dept. of BIME System performance testing 
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Greenhouse of National Taiwan University 

    We make use of the greenhouse in the National Taiwan University to do the simple 

test of our system functions. 

 

Figure 3-33 The panorama view of the NTU greenhouse 

As we can see in Figure 3-33, the NTU greenhouse is simple, and with less interference. 

It is a perfect place to do testing experiments. Figure 3-34 shows the view of the static 

camera installed in the system. 

 

Figure 3-34 The view of the static camera in the system 
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Inside and Outside of the Tomatake Hall 

We choose an indoor case and an outdoor case of the Tomatake Hall to test the Static 

Object Detection algorithm. The static object detection is used to remove moving 

foreground and noise. Only the static objects are left. Figure 3-35 (a) and (b) show the 

indoor and outdoor case of the Tomatake Hall. 

  

(a) Indoor case (b) Outdoor case 

Figure 3-35 Two cases of the Tomatake Hall 

    Another spot we choose is the end of the corridor in the second floor of the Tomatake 

Hall. We setup the system there and record the people walking on the street. Figure 3-36 

(a) is the road that appears in the record video. Figure 3-36 (b) and (c) is the different 

view of the setup system. 
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(a) 

 

(b) 

 

(c) 

Figure 3-36 The scene and the setup of the PTZ self-tracking algorithm 

Plaza in front of the Dept. of BIME 

    The plaza in front of the Dept. of BIME (Figure 3-37) is surely a nice place to test 

our system, the wiew here is clear enough to gather the information we need. 

Unfortunately, this is an outdoor experiment, which will be severely effect by shadows in 

sunny days and water reflections in rainy days. 
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Zhi Chen farm in Taoyuan County 

    Zhi Chen farm is the first place to test if the whole system works properly and useful. 

We choose this warehouse to observe how and when the farmers here works to sale the 

plantlets. We fortunately have a very well placed position for the system to record the 

activities (Figure 3-38 (a) and (b)). Figure 3-38 (c) and (d) show the view of the two 

different sections of the farm split by the view of our system. 

 

(a) Front view of the system 

 

(b) Back view of the system 

 

(c) The warehouse taken from section A 

to B 

 

(d) The main road of section A in the 

warehouse 

Figure 3-38 The experimental site of Zhi Chen farm 
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3rd Vegetable packaging factory in Taoyuan County 

This is the second place we choose to test our system. We try to analyze the working 

pattern of the traffic control in front of the packaging factory. We aim at to figure out 

when and how do the workers here take the packaged vegetable for sale. Figure 3-39 (a) 

shows the front view of the system, and Figure 3-39 (b) shows the doorway of the factory, 

where most of the vegetable loading operations are done here. 

 

(a) The front view of our system 

 

(b) The doorway of the packaging factory 

Figure 3-39 The experimental site of the 3rd vegetable packaging factory 

3.5.2 Object Tracking 

    We tested the improved object tracking method in NTU greenhouse. It is an ideal 

place with the least interference for us to test our system. Two cases were tested include 

horizontal and vertical movement on the screen in the farm. The horizontal movement 

tests the constancy of the object tracking and the vertical movement test the effect of the 

dynamic threshold for the Euclidean distance. 
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3.5.3 Static Object Detection 

    To prove the algorithm works, some simple experiment is done by choosing an 

indoor and outdoor position with total 6 cases: three indoors, and three outdoors. Each 

position is verified one object detection, multiple object detection with interference 

sources, and multiple interference sources only.  
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Chapter 4 Results and Discussion 

4.1 System Performance 

4.1.1 Simple Object Tracking 

The scene and the trajectory of a tracked human in the greenhouse of National 

Taiwan University in vertical and horizontal directions are shown in Figure 4-1. Due to 

the noises in the GMM subtraction model, the trajectory of a human is sometimes jittered. 

  

Figure 4-1 Simple object tracking demonstration. The trajectory (right) drawn by the 

system when a person’s movement is detected (left). 

We use two simple methods the test our performance of the simple object tracking. 

First, the multi-resolution GMM method is used to reduce the noise of the foreground 

detections. We test the performance by the following equation, 

 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 (4.1) 

We pick randomly 30 frames and get a result of 8%. As the GMM without multi-

resolution, we get a result of 21%. 
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Second, the purpose of the dynamic Euclidean threshold is used to prevent the 

improper disconnection due to the object distance to the lens. Thus, this method is 

checked by the following equation, 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 (4.2) 

The result is shown in Table 4-1. The reason of the improvement is simple; the fixed 

Euclidean distance must be set to a fixed value that may not work in other distance. Fixed 

Euclidean distance gets an average minimum error but is not the best performance. Be 

cautions that neither of these two methods are able to adapt great speed changes of the 

moving objects. 

Table 4-1 The disconnect rate comparison between fixed and dynamic Euclidean 

threshold 

Distance to the camera lens 20m 15m 10m 5m 

Fixed threshold 5% 4% 13% 20% 

Dynamic threshold 6% 7% 9% 8% 
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4.1.2 PTZ Image Mapping to PTZ Sphere Coordinate 

    When the point is selected in the PTZ image, it can be mapped to the sphere 

coordinate. After that, the PTZ is moved to the position with the estimated pan the tilt 

angles. We can see if the selected point is located in the center of the image. With the 

following equation, we can calculate the performance of our system, 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠((𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −

𝑤𝑤
2 )2 + (𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −

ℎ
2)2) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(�𝑤𝑤2�
2

+ �ℎ2�
2

)
 (4.3) 

where the (𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)  is the new position of the selected point in the 

previous pan and tilt angles. 

The first test is to test the performance of the value 𝑍𝑍 (from equation 3.4). Because 

the tilt value will affect the result, we use zero as the tilt angle to test the entire zooming 

rate to minimize the tilt effect. We randomly pick 5 point for each zooming rate. From 

Figure 4-2, we can see that the errors for each zooming rate is smaller than 2%. 

 

Figure 4-2 Errors in Different Zooming Rate 

The second test is to find out the effect from the tilt angle. From Figure 4-3, we can see 
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that when the tilt angle is zero, the error rate of distance to the center of the image is 

hardly affected by the tilt angle. When the tilt angle comes to 80, the error rate is severely 

affected by the tilt angle. The error rate and distance to the tilt angle relationship results 

comes from the average error rate of 5 points for each distance. This is reasonable because 

the geometry transform equations between x-y plane image and the PTZ sphere contain 

arc tangent. The variable put in the arc tangent are the tilt angle and the distance on the 

image. The error rate will be affected by the tilt angle and the distance. 

 

Figure 4-3 Errors caused by the tangent effect. 
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Figure 4-4 Threshold representation of the tilt angle for each error rate. The x-axis is the 

the tilt angle and the y-axis is the distance to the center of the image, which the 

maximum distance to the center of image is about 360 pixels. 

Figure 4-4 shows the angle threshold of the system. If the error rate smaller than 5 

% is desired, we have to set an angle threshold equals to 40 for the system to ensure the 

mapping function works as us expect. For any detected object that is larger than the 

threshold, we have to consider moving the PTZ twice or more to locate the object in the 

center. However, if we choose to accept the error rate smaller than 20%, then for any tilt 

angle smaller than 80 degrees are acceptable for us. Figure 4-5 shows the error rate of the 

angle threshold of the PTZ when the distance to the center of the image is 350 pixels. 
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Figure 4-5 The error rate of angle threshold for distance about 350 pixels of different tilt 

angle 

4.1.3 PTZ Self-tracking Algorithm 

    Figure 4-6 shows a very great example of how the PTZ self-tracking mechanism 

works. There are two reasons tell us that why this function is important. First, sometimes 

static camera fails to track the whole object due to the effect of noise or part of the tracked 

object is not moving. In Figure 4-6 (a) tells that only the man’s feet is moving in the view 

of the static camera. Second is that the geometry transform between cameras has error 

that fails to locate the PTZ into the right position. Figure 4-6 (b) shows the result when 

PTZ receive the estimated coordinate from the static camera. 
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(a) 

 

(b) 

 

(c) 

Figure 4-6 Example of PTZ Self-tracking algorithm (a) is the view of the static camera 

(b) is the estimated pan-tilt view from the static camera of the PTZ (c) is the correct 

pan-tilt view 

    Due to these two reasons, the result does not satisfied our needs. However, in Figure 

4-6 (c) shows that the PTZ redirect the view to the right positon when it found something 

is moving in the pan-tilt view. The performance of the self-tracking algorithm can be 

reviewed by two index, the mapping performance and the centroid estimation. The 



doi:10.6342/NTU201602109

 

99 

 

mapping performance is told in the last section. The performance of the centroid 

estimation is about 40 pixels (30 trials, image size 720x480) calculated by the following 

equation 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �(𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)2 + (𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)2 (4.4) 

where 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  are the real tracked object coordinate define by ourselves, 

𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are the computed coordinate. 

4.1.4 Acquired Images from PTZ 

  

  

Figure 4-7 Image captured from PTZ 

    Figure 4-7 show some example of close-up look from the PTZ camera. The 

information provides us able to check out the details from the Object View Manager when 

needed. The PTZ has some advantage and some drawbacks. We use the PTZ images in 

Zhi Chen farm (Figure 4-8) to explain the advantage more detailed. The PTZ is able to 

track and zoom in to get the detail of the tracked object. Figure 4-8 (c) shows the track 
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human and Figure 4-8 (d) shows the human carrying box. These images are able to let the 

managers and owners to identify the tracked object more clearly. They are also saved as 

usable features in the database of our system, especially the zoom-in images such as 

Figure 4-8 (d). Figure 4-8 (d) makes up the insufficient information of Figure 4-8 (b). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-8 The tracked object in static camera and its PTZ image in Zhi Chen farm 

Unfortunately, due to errors of the background subtraction and geometry transform 

between cameras, sometimes the predicted coordinate does not locate the tracked object 

at the center of the PTZ image. Figure 4-9 (a) shows a tracked human walking in the 

warehouse of the Zhi Chen farm. The estimated coordinate is sent to the PTZ. The PTZ 

will return a result of Figure 4-9 (b), which the detected object is not centered in the PTZ 
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image. If the self-tracking algorithm is not able to self-centered the object, the zoom-in 

image will still fail to get the detail of the tracked object shown in Figure 4-9 (c). 

 

(a) 

 

(b) 

 

(c) 

Figure 4-9 Fail case when zoom in object is not at the center of the PTZ image 
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Hardware Limitations 

 

  

Figure 4-10 PTZ self-centered the detected crowded objects and zoom in to the center of 

the image 

Although we develop a PTZ tracking strategy to capture the object for further details, 

the limitations of hardware still restrict us to get every information we needed. The motor 

of the PTZ installed in our system does not move very fast and cannot change its 

destination during moving. This cause a problem that if the object moves too fast related 

to the zooming rate of the PTZ or if the object moves in unpredictable ways, the PTZ is 

very likely to lose site of the object. Figure 4-10 is an example of nearly static crowded 

objects that only moves in a certain area randomly. The PTZ is able to easily track and 

center them. 
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(a) 

    

    

(b) 

Figure 4-11 Tracing single object with PTZ 

However, Figure 4-11 and Figure 4-12 shows the limitations of the hardware. Figure 

4-11 (b) shows that when the PTZ tries to zoom in to look at the man looking at his 

cellphone, the man can easily walk out of the sight of the PTZ. With our tracking strategy, 

we have to start all over again to request a new estimated coordinate from the static 

camera to relocate the man. 

    Fortunately, if we tried to track multiple objects in the same time Figure 4-12 (a), it 

is harder to lose sight of them because the zoom in rate will be small enough to prevent 

this situation happens. Figure 4-12 (b) shows that PTZ is able to zoom-in and self-

centered the crowds without losing them. 
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(a) 

    

    

(b) 

Figure 4-12 Tracing multiple objects with PTZ 

    We do a little test to find out the limitation of our PTZ installed in our system. The 

total reaction time of PTZ for every command is about 1 second. Which means the object 

cannot move exceed 720/2=360 pixels in x-axis or 480/2=240 pixels in y-axis in one 

second. We then can use the information from the IMM filter and Kalman filter to get the 

estimated velocity and direction to find the suitable zooming ratio for the PTZ system and 

can be concluded into the following equation, 

 

 

 



doi:10.6342/NTU201602109

 

105 

 

 

(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛) = V��⃑ es ∗ 𝑡𝑡 + (𝑥𝑥, 𝑦𝑦) 

(𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 ,𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛) = 𝐺𝐺(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛), (𝜃𝜃,𝜙𝜙) = 𝐺𝐺(𝑥𝑥,𝑦𝑦) 

(𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑) = (𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 − 𝜃𝜃,𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛 − 𝜙𝜙) 

𝑍𝑍1 =
𝑤𝑤
2

tan−1(𝑑𝑑𝑑𝑑) ,𝑍𝑍2 =
ℎ
2

cos−1(𝑑𝑑𝑑𝑑) tan−1(𝑑𝑑𝑑𝑑)  

𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑛𝑛𝑔𝑔 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
min(𝑍𝑍1,𝑍𝑍2) ∗ 𝐶𝐶𝐶𝐶𝐶𝐶 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑤𝑤
 

(4.5) 

where 𝑤𝑤, ℎ are the width and the height in the unit of pixels of the PTZ image, V��⃑ es is the 

estimated velocity vector in the unit of pixels from the static camera, 𝑡𝑡 is the reaction 

time of the PTZ camera, 𝑍𝑍 is the parameter introduced in equation 2.2, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the 

focal length of the PTZ, and CCD width is the CCD of PTZ in the unit of mini-meters. 

4.1.5 Human Face Detection by PTZ 

The PTZ camera zoomed-in to the estimated location to collect the information of 

any detected person and captured the face (Figure 4-13). The face is clear and 

recognizable in the accuracy of 40% (20 test faces). The misdetections are caused by the 

size of the tracked human and the viewing angle of the face. Faces that are too small or 

tilt is not recognizable. 

  

Figure 4-13 The acquired faces from the PTZ image 
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    The system still has drawback although it is able to capture the faces of the tracked 

human. Cause the limitation of the PTZ camera, we are not able to trace the object and 

change the view of the PTZ at the same time. With the errors from the estimated location, 

sometimes it is quite easy to lose track of the object when the object is not centered while 

the PTZ makes a close up look. 

4.1.6 Static Object Detection 

    The main purpose of this method is to find abandon objects or scene modifications. 

The following table is the results. Any interference while initializing is exclusive. 

Table 4-2 The results of static object detection 

Place Cases Success / Total Success rate 

Total  30 / 40 75 % 

Indoor 
General Cases 10 / 10 100 % 

With Static Interference 5 / 10 50 % 

Outdoor 
General Cases 9 / 10 90 % 

With Static Interference 6 / 10 60 % 
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(a) RGB results (b) Subtract (d) from (c) (c) Fast Self-tuning 

Background 

Subtraction Result 

(d) GMM Result 

Figure 4-14 The results of the static object detection. The 6 cases in sequence are: 

indoor single static object detection, indoor multiple static object detection, indoor 

multiple static object detection with multiple interference sources, outdoor single static 

object detection, outdoor multiple static object detection with multiple interference 

sources, and multiple interference sources only  
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Case 1 Indoor Single Static Object Detection 

    This is the simplest and realism case. Because indoor lights are far more stable 

than outdoors, so the object is easily detected. 

Case 2 Indoor Multiple Static Object Detection 

    The objects are all successfully detected. They all passed the accumulation test. 

Case 3 Indoor Multiple Static Object Detection with Interference Sources 

     This case has people walking around. The GMM result successfully caught the 

moving object only and the fast self-tuning background subtraction caught the foreground. 

The static objects were left after the subtraction of the two results. 

Case 4 Outdoor Single Static Object Detection 

    This is also a simple case, except the noise from the light source may affect the 

detection result. But the fast self-tuning background subtraction algorithm is able to 

against a certain degree of noise, we’re able to successfully caught the object. 

Case 5 Outdoor Multiple Static Object Detection with Interference Sources 

    The reason is same as case 3, except for the noise from the light, which is same as 

case 4. 

Case 6 Outdoor Interference Sources Only 

    This case is to verify that the system will not send a result if there is no static object. 
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False Alarm 

    Because the method we used will catch any static object on the screen, including a 

standstill person (Figure 4-15). This will cause a false positive. However, this can be fix 

by combining this method with other human detection algorithms such as the HOG 

classifier we used in our system. 

 
(a) 

 
(b) 

Figure 4-15 False alarm demonstration of the SOD algorithm. (a) The result of the 

detection. (b) The RGB version of (a) 

4.1.7 Mixture of the Static Object Detection and Object Tracking 

We use additional algorithms to prevent trajectory disconnected. Static Object 

Detection continues the trajectory if the tracked object is temporarily static on the screen. 

Table 4-3 shows the disconnect rate of the algorithm. We can see that the disconnect rate 

has slightly decrease. 
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Table 4-3 The performance of the Mixture of SOD and Object Tracking 

 Disconnect trajectories Total trajectories Disconnect rate 

With SOD 5 50 10% 

Without SOD 7 50 14% 

4.2 Data Analysis 

4.2.1 Choosing Machine Learning Method 

Zhi Chen Farm 

    We try to figure out if the detected object has a box with him or not (Table 3-5). We 

find a series of images of human with box and another group of images of human with no 

box (Figure 4-16), and train them with four different supervised machine learning 

methods. 

  

(a) human with box (b) human with no box 

Figure 4-16 Features chosen to classify between “with box” and ”no box” 

    The 2-feature training result using Gabor filter of the success rate is shown in Table 

4-4. The four machine learning methods have almost the same accuracies. Although 

Naïve Bayes has the highest accuracy, the Brier value is also the highest. We then decided 
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to use SVM instead because its accuracy is the second highest but with a lower Brier 

value. Before making the final decision, we will look at the confusion matrix of each of 

the learning method, and the accuracies of the feature training results using Bag of Words. 

Table 4-4 Gabor filter. 2-Feature training results of Zhi Chen farm. Cross validation 

(number of folds 10). Using first day images as our training data (74). 

 Accuracy Brier 

kNN 78.21% 0.3044 

Naïve Bayes 82.68% 0.3464 

SVM 79.82% 0.3167 

Neural Network 79.82% 0.3343 

    Table 4-5 is the confusion matrix of four machine learning method. Although kNN 

has a well accuracy, it has a low accuracy on detecting people with “no box”. The other 

results of the machine learning methods look just as same as the accuracy shown in Table 

4-4, at the accuracy about 80%. 
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Table 4-5 Gabor filter. Confusion matrix of the feature training results from Zhi Chen 

farm. 

kNN With Box No Box  SVM With Box No Box 

With Box 89.2% 18.9%  With Box 81.1% 18.9% 

No Box 32.4% 67.6%  No Box 21.6% 78.4% 

       

Naïve Bayes With Box No Box  Neural Network With Box No Box 

With Box 78.4% 21.6%  With Box 81.1% 18.9% 

No Box 13.5% 86.5%  No Box 21.6% 78.4% 

    Table 4-6 shows the accuracies of the 2-feature classifier using Bag of Words. There 

are two possibilities that makes the overall accuracies higher than the results using Gabor 

filter. First, the training image size of Bag of Words is larger than Gabor filters which 

contains more details. Second, Bag of Words uses SIFT feature points which is more 

robust to recognize the same object in different viewing direction. In this case, SVM has 

the highest accuracy; the confusion matrix of SVM shown in Table 4-7 also has great 

results with high accuracies. 
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Table 4-6 Bag of Words. 2-Feature training results of Zhi Chen farm. Cross validation 

(number of folds 10). Using first day images as our training data (74). 

 Accuracy Brier 

kNN 82.14% 0.2818 

Naïve Bayes 87.50% 0.2385 

SVM 95.89% 0.0818 

Neural Network 93.39% 0.1304 

Table 4-7 Bag of Words. Confusion matrix of the feature training results. 

kNN With Box No Box  SVM With Box No Box 

With Box 97.6% 2.4%  With Box 98.3% 1.7% 

No Box 36.1% 63.9%  No Box 8.3% 91.7% 

       

Naïve Bayes With Box No Box  Neural Network With Box No Box 

With Box 89.2% 10.8%  With Box 98.3% 1.7% 

No Box 13.9% 86.1%  No Box 13.9% 86.1% 

    We then choose SVM as our classifiers to train our dataset. Among the four machine 

learning methods and two different features classifier results, SVM has the highest 
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accuracy in average. The confusion matrixes of SVM is also close to its own accuracy. 

Now we will verify our decision with the data in the next case. 

3rd vegetable packaging factory 

    Because we are able to acquire bigger images in the packaging factory, the behaviors 

in the factory is also enough for us to train 5-feature classifiers with Bag of Words, here 

the Gabor classifier is a 2-feature classifier, and Bag of Words is a 5-feature classifier. 

The accuracy of the 5-feature Gabor feature classifier is seriously bad, so we abandon it. 

Table 4-8 Gabor filter. 2-Feature training results from 3rd vegetable packaging factory. 

Cross validation (number of folds 10). Using first day images as our training data (210). 

 Accuracy Brier 

kNN 80.48% 0.2796 

Naïve Bayes 82.38% 0.3512 

SVM 82.38% 0.2974 

Neural Network 73.81% 0.4235 

    In Table 4-8, we can see the accuracy results of using Gabor features. The accuracy 

of SVM is also about 80 percent just like the accuracy in the previous place. The 

confusion matrix in Table 4-9 gives a good explanation of the Brier values in Table 4-8. 

Naïve Bayes has almost the same accuracy as SVM, but it fails to detect if the object is a 
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human or not. The confusion matrixes of SVM and kNN also explain the phenomenon. 

While SVM has a higher accuracy compare to kNN, but the variance between “Car” and 

“Human” in SVM is larger than the values in kNN. 

Table 4-9 Gabor filter. Confusion matrix of the feature training results from 3rd 

vegetable packaging factory. 

kNN Car Human  SVM Car Human 

Car 86.6% 13.4%  Car 76.5% 23.7% 

Human 24.8% 75.2%  Human 12.4% 87.6% 

       

Naïve Bayes Car Human  Neural Network Car Human 

Car 92.8% 7.2%  Car 72.2% 27.8% 

Human 26.5% 73.5%  Human 24.8% 75.2% 

    Table 4-10 shows the accuracy results of a 6-feature classifier using Bag of Words. 

The enough details from the vegetable packaging factory make us able to get an accuracy 

of 80 percent in SVM. The accuracies of other machine learning methods are so low that 

we will skip their confusion matrixes later. These accuracies may due to the following 

reasons. kNN predicts the results by the determined k-value and the distribution of the 

data among the space. If the variance of the input data is fuzziness, or if a wrong k-value 
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is determined, kNN will fail to make predictions. Naïve Bayes decides the group by using 

Bayes theorem. It is quite data dependent that it will be better to do a 2-feature 

classification in this case while the feature of the trajectories is too complicated. At last, 

Neural Network requires large amount of data to train. Our method to train the classifier 

using the first day data maybe is not enough for Neural Network for making a 6-feature 

classifier. 

Table 4-10 Bag of Words. 6-Feature training results from 3rd vegetable packaging 

factory. Cross validation (number of folds 10). Using first day images as our training 

data (297). 

 Accuracy Brier 

kNN 43.34% 0.7275 

Naïve Bayes 66.32% 0.6430 

SVM 81.16% 0.2946 

Neural Network 75.63% 0.3582 

    The confusion matrix of SVM in Table 4-10 can be shown in Table 4-11. Each 

positive percentage looks well. The best result is detecting “Car” with an 89.1 percent 

accuracy, and 9.1 percent is detected as dog is because the training data of dogs and cars 

used in the packaging factory is black. The lowest accuracy comes from detecting 
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“Human”. This may cause by the training data. Since every motor must ride by a human 

and can be seen by the camera, it is very easy to misjudge the human as a motor as the 

SIFT features of the human is also a part of the features in the label “motor”. Forklift also 

has the same problem because the driver seat and the driver can also be seen from the 

camera videos. 

Table 4-11 Bag of Words. Confusion matrix of the feature training results of SVM from 

3rd vegetable packaging factory. Motor 2 is motor with platform. 

SVM Car Dog Human Forklift Motor Motor2 

Car 89.1% 0 1.8% 0 1.8% 7.3% 

Dog 0 80.0% 20.0% 0 0 0 

Human 0 1.4% 74.0% 2.7% 19.2% 2.7% 

Forklift 0 1.6% 9.8% 77.2% 1.6% 9.8% 

Motor 0 0 8.5% 0 87.3% 4.2% 

Motor 2 0 0 4.5% 4.5% 13.7% 77.3% 

Outside of the Tomatake Hall 

    The setup position of the hardware is a bit failure cause that the acquired sub-images 

are quite small. These small images only can be processed by the Gabor filter. Although 

from Table 4-12 we can know that SVM is not the best choice for this case, the accuracy 
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of the SVM is similar to other cases. This means that SVM is stable enough for most 

cases and will not provide randomly low-high accuracies in different cases. 

Table 4-12 Gabor filter. 2-Feature training results from outside of the Tomatake Hall 

(number of folds 10). Using first day images as our training data (55). 

 Accuracy Brier 

kNN 81.67% 0.2552 

Naïve Bayes 75.00% 0.4990 

SVM 86.00% 0.3353 

Neural Network 81.67% 0.3121 

    From Table 4-13 we can conclude the problem of the low accuracy using SVM in 

this case. The Gabor filter seems to misclassify the car to human in 25.9%.  

Table 4-13 Gabor filter. Confusion matrix of the feature training result of SVM from 

outside of the Tomatake Hall 

SVM Car Human 

Car 74.1% 25.9% 

Human 21.4% 78.6% 
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Plaza in front of the Dept. of BIME 

    From Table 4-14we can know that SVM is not the best choice for this case. But as 

the same reason as the one in the Tomatake Hall, SVM has similar results to other cases, 

which is stable enough to use. Table 4-15 shows the confusion matrix of the SVM result. 

Table 4-14 Gabor filter. 2-Feature training results from plaza in front of the Dept. of 

BIME (number of folds 10). Using morning (to 12:00PM) first day images as our 

training data (210). 

 Accuracy Brier 

kNN 89.00% 0.1849 

Naïve Bayes 68.33% 0.6333 

SVM 77.33% 0.2870 

Neural Network 75.67% 0.3316 

Table 4-15 Gabor filter. Confusion matrix of the feature training result of SVM from 

plaza in front of the Dept. of BIME 

SVM Car Human 

Car 84.8% 15.2% 

Human 25.0% 75.0% 
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    In the above four cases, we are able to choose SVM as our classifier since the 

accuracy of the result is at 80 percent and because the most stable one in all machine 

learning methods. Since the viewing angle and visibility caused by weather is not always 

fine and is not able to control, the accuracy of 80 percent is acceptable and is able to 

increase the overall accuracy by using multiple features from the same trajectories with 

voting method to make the result better. 

Table 4-16 The overview of all the accuracies 

ACC 

Case 1 Case 2 Case 3 Case 4 

Gabor 

(2) 

BOW 

(2) 

Gabor 

(2) 

BOW 

(6) 

Gabor 

(2) 

Gabor 

(2) 

kNN 78.21% 82.14% 80.48% 43.34% 81.67% 89.00% 

Naïve Bayes 82.68% 87.50% 82.38% 66.32% 75.00% 68.33% 

SVM 79.82% 95.89% 82.38% 81.16% 76.00% 77.33% 

Neutral 

Network 
79.82% 93.39% 73.81% 75.63% 81.67% 75.67% 
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4.2.2 Overall Accuracies and Misdetections 

    Although the training results of the SVM classifier has the accuracy at 80 percent, 

the reality of the overall accuracy of the other days (exclude the first day training data) is 

not always stable. When creating the classifier, we opt to choose the features that is able 

to recognize by ourselves. Which means we will not label a noise or a fuzziness feature 

and train them since we cannot determine the label for the feature. When analysis the 

other days’ data, we feed the system with every sub-image acquired from each frame for 

each trajectories. These sub-images may include misdetections such as noise, 

disconnected trajectories, or wrong tracking objects. Voting method is able to limited 

remove these misdetections if those happened seldom. Unfortunately, voting method is 

not able to remove high frequency noise or constant interference cause by the weather 

condition. The accuracy and misdetection can be seen in Table 4-17 and Table 4-18. Case 

4 does not have weekly overall accuracy because it is a one-day experiment. It has an 

accuracy of 74 percent. 
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Table 4-17 Overall accuracy of the vegetable packaging factory using raw trajectories 

sub-images 

  Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

Case 1 

Origin 77% 74% 76% 72% 74% 74% 70% 

Voting Method 86% 81% 81% 78% 81% 80% 77% 

Case 2 

Origin 75% 67% 71% 72% 69% 68% 70% 

Voting Method 78% 73% 76% 77% 75% 74% 75% 

Case 3 

Origin 76% 71% 70% 72% 71% 65% 72% 

Voting Method 77% 74% 74% 76% 72% 69% 75% 

    The nature weather is a big problem to any image processing system. The static 

camera we have in our system has the function of HDR and white balance. We can 

roughly ignore the effect cause by the natural light. However, shadows in sunny days and 

water reflections in rainy days (Figure 4-17) is not removable. Water reflection is a high 

frequency and random noise and is hardly to remove from our system. Shadows of a 

tracked object is a constant interference and is a challenge to remove from our foreground. 
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In Zhi Chen farm, the roof of the warehouse is none transparent, but part of the wall of 

the warehouse is transparent. The effect from the shadow is limited and with no water 

reflection noise. In the vegetable packaging factory, the scene is taken outside with both 

noise severely haunted. 

  

Figure 4-17 Water reflection (left) and shadow hazard (right) 

    From Table 4-18 we can see that rainy day and sunny day actually cause lots of noise 

and trajectories, which directly decrease our accuracy. The effect of the noise can be 

removed by the voting method. However, it is hard to increase the overall accuracy if the 

trajectories disconnect into pieces. Disconnected trajectories are hard to make voting 

decisions because the voters are limited. 

Table 4-18 Misdetections cause by noise and disconnected trajectories (2016/04/29 

(Case 2)) 

 Numbers of detection Noise Disconnected trajectories 

Rainy day 551 63 134 

Sunny day 663 48 107 
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4.2.3 Working Pattern Analysis 

    Our final goal is to visualize our data and present them the owners and the managers. 

Our system produces results shown in Figure 4-18. According to the recording time set 

by the user, the system gives the information of the numbers of people for each working 

patterns in the unit of hours. The bar chart gives the user the result of the long-time 

observation of a place and is able to tell the user the trend of a place.  
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Zhi Chen farm in Taoyuan County 

 

Figure 4-18 The daily result from Zhi Chen farm of the first day data 

    Figure 4-18 is the first day data of the Zhi Chen farm. The y-axis is the appearance 

of human and the x-axis is the time of 24 hours of a day. The system is record from 9 AM 

to 5 PM. We can see that most of the farmers works in the morning and in the afternoon 

and rest at noon. Furthermore, most of the operations are done in the morning.  

 

Figure 4-19 Weekly summary of Zhi Chen farm 
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    In Figure 4-19 shows the weekly summary of Zhi Chen farm, the same x-axis and 

the y-axis as Figure 4-18. From the figure, we can see that the activities in 2016-03-11 

and 2016-03-12 are much more than the other days. The information can be also acquired 

in the daily summary in Figure 4-20. We can see the activities of plantlets operations and 

the carrying plantlets in these two days. When reviewing the recording by hands, we can 

see the farmers in these two days are packaging the plantlets and send them for delivery. 

This matches the trend our system records. 

    Looking back into Figure 4-20, the activities at noon of each day are all lower than 

in the morning and in the afternoon. This tells us the resting time of the Zhi Chan farm 

starts from 12 PM to 14 PM. If that day is busy, the resting time will be shorten an hour. 

We can also find out that sometimes the farmers starts to work in the afternoon instead of 

starting from the morning in 2016-03-15. 
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Figure 4-20 Daily summary from 2016-03-10 to 2016-03-16 of Zhi Chen farm 

    Our system not only able to produce daily and weekly summaries but also able to 

produce geometry related information. The information include the path usage analysis 

and most stay positions of a place. 
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Figure 4-21 Path usage (left) and the most stay positions (right) of the Zhi Chen farm 

    From the “path usage” pie chart in Figure 4-21, we can see that most of the farmers 

here walks through path A more often than in path B. We can conclude that path A is the 

main route of the warehouse that leads to the other sections of the farm. From the “most 

stay position” pie chart in Figure 4-21, most stay position is entrance C. Entrance C is the 

entrance leads to another section of the warehouse and is located at the center of the 

warehouse (Figure 4-22). We can know that the working section is located at entrance C. 

The second and the third most stay position are entrance A and entrance B, which 

indicates that path A is the main route of the warehouse and these two positions are the 

second popular working section in the warehouse from the scene of the camera. 

82%
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Path A (Entrance A to Entrance B)
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Figure 4-22 Pre-defined map points of Zhi Chen farm  
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3rd Vegetable packaging factory in Taoyuan County 

    In the vegetable packaging factory, we get similar results either. 

 

Figure 4-23 The daily result from 3rd vegetable packaging factory of the first day data 

    Figure 4-23 is the first day data of the 3rd vegetable packaging factory, the y-axis is 

the appearance of any moving object and the x-axis is the time of 24 hours of a day. We 

change to detect any moving object instead of the human being because most of the 

moving objects here are transportations. The system is record from 7 AM to 5 PM. We 

can see that there is no significant resting time in this factory. However, around 2 PM the 

activities are less than other time, we may conclude 2 PM might be the resting time. It is 

quite reasonable that the temperature is the hottest in 2 PM of a day, and it is better to rest 

instead of working. 
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Figure 4-24 Weekly summary of 3rd vegetable packaging factory 

    In Figure 4-24 shows the weekly summary of the 3rd vegetable packaging factory. 

From the figure, we can see that the activities in 2016-05-01 is less than the other days. 

The information can be also acquired in the daily summary in Figure 4-25. We can see 

the activities happening in this day is just like the other days but with less frequency. If 

we check the date on a calendar, we can find out May 1 is Sunday, which is quite 

reasonable with less activities. 

    Looking back into Figure 4-25, the activities at noon of each day are all lower than 

in the morning and in the afternoon. However, the specific time of resting is not the same 

each day, and depends on how busy they are in that day. If that day is busy, the resting 

time will be shorten or removed. We can also know the peak of the working time and 
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working date by comparing data of 2016-05-01 with other days in daily and weekly 

summaries. 
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Figure 4-25 Daily summary from 2016-04-27 to 2016-05-03 of 3rd vegetable packaging 

factory 

    Because the scenery in the 3rd vegetable packaging factory is a clearing, producing 

the path usage analysis is quite meaning less. Instead, we have “most stay position” 

analysis to show that where most of the people stay under or pass through the eye of the 

camera. 

 

0
10
20
30
40
50
60
70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ap
pe

ar
an

ce

Time (hour)

2016-05-02

Cargo Operations Forklift Operations Walking

Operations at factory doorway Passing in / out Going home

Parking

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ap
pe

ar
an

ce

Time (hour)

2016-05-03

Cargo Operations Forklift Operations Walking

Operations at factory doorway Passing in / out Going home

Parking



doi:10.6342/NTU201602109

 

136 

 

 

Figure 4-26 Most stay positions of 3rd vegetable packaging factory 

    From the “most stay position” pie chart in Figure 4-26, most stay position is entrance 

A of the factory. The represented map points are shown in Figure 4-27. The second and 

the third most stay point are also the entrances of the factory. This matches the truth 

working patterns of the factory. Most of the operations such as vegetables loading, 

vegetable carrying, are done in front of the factory doorway. With our system, we can 

even tell the users which section of the factory doorway is the most popular staying 

position. 
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Figure 4-27 Pre-defined map points of 3rd vegetable packaging factory  
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Outside the Tomatake Hall 

 

Figure 4-28 Daily summary outside of the Tomatake Hall 

    Figure 4-28 is the first day of the outside of the Tomatake Hall in NTU, the y-axis is 

the appearance of any moving object and the x-axis is the time of 24 hours of a day. We 

do a little traffic-monitoring test here to prove our system is fully environment adaptable. 

The system is record from 13 PM to 18 PM. The road here is a minor path near the back 

door of the NTU. The result is surprising that even this minor path in NTU still have 

hundreds of usage in one single afternoon. We can found out that this road is more suitable 

for human passing by than car passing by according to the bar chart. We also try to look 

and monitor at the possible staying position beside the path to see if there is any related, 

including the sand box, building path (field activities), and the overhangs of the building 

across from the Tomatake Hall. 
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Figure 4-29 Weekly summary outside of the Tomatake Hall 

    Figure 4-29 is the weekly summary result outside of the Tomatake Hall. The traffic 

here is very stable with the average usage of 400 passed-by per afternoon. We can say 

that the passed-by humans are more than the passed-by cars. Something interesting is that 

although June 25 and 26 are Saturday and Sunday, the activities here are still about the 

average. Normally, the path usage should be far lower than weekdays because students 

here do not require taking classes. Below Figure 4-30 is the daily summaries of a week, 

the figure might contains more usable information for us to explain. 

 

(Continued) 

0

200

400

600

23/6/2016 24/6/2016 25/6/2016 26/6/2016 27/6/2016 28/6/2016 29/6/2016

Ap
pe

ar
an

ce

Date

Weekly Summary

Passing by- human Passing by- car field activities stay under the overhangs of the building

0

50

100

150

13 14 15 16 17

Ap
pe

ar
an

ce

Time (hour)

2016-06-23

Passing by- human Passing by- car Field activities Stay under the overhangs of the building



doi:10.6342/NTU201602109

 

140 

 

 

 

 

(Continued) 

0

50

100

150

13 14 15 16 17

Ap
pe

ar
an

ce

Time (hour)

2016-06-24

Passing by- human Passing by- car Field activities Stay under the overhangs of the building

0
20
40
60
80

100

13 14 15 16 17

Ap
pe

ar
an

ce

Time (hour)

2016-06-25

Passing by- human Passing by- car Field activities Stay under the overhangs of the building

0
20
40
60
80

100

13 14 15 16 17

Ap
pe

ar
an

ce

Time (hour)

2016-06-26

Passing by- human Passing by- car Field activities Stay under the overhangs of the building



doi:10.6342/NTU201602109

 

141 

 

 

 

 

Figure 4-30 Daily summary from 2016-06-23 to 2016-06-29 of outside the Tomatake 

Hall 

    The daily summaries from June 23 to 29 outside of the Tomatake Hall does not seem 

very pattern, but the activities here are quite repeatedly. Normally, the passed-by humans 
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are much more than the passed-by cars. If the weather in that day is heavy raining like 

June 28 around 16 PM, the passed-by cars will be more than the passed-by humans will. 

Note that field activities here can be people playing in the sandbox or walking from the 

building across the Tomatake Hall to the road and vice versa. 

 

Figure 4-31 Most stay position of the road outside of the Tomatake Hall 

    Figure 4-31 shows the most stay position among the path. Interestingly, the most 

staying position of the road is the spot nearest to the entrance of the building across the 

Tomatake Hall (Small Road Left) (Figure 4-32). If we dig into the recorded video, we can 

see that the spot is a great position for people to have a small chat. This spot is shadowed 

under a tree and is near the entrance of the building. When people come out of the building, 

this spot will naturally become a suitable meeting spot for bikers and walkers. Our system 

is able to provide interesting information that normal surveillance system cannot. 
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Figure 4-32 Pre-defined map points outside of the Tomatake Hall  
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Plaza in front of the Dept. of BIME 

 

Figure 4-33 Daily summary of the plaza in front of the Dept. of BIME (2016-08-10) 

    This is a short experiment of the daily summary of the plaza in front of the Dept. of 

BIME. We monitored the entrance of the department to observe the path usage. The result 

can be seen in Figure 4-33. Surprisingly, not so much people and cars passed by compare 

to previous cases. When we review some data by the Object View Manager, we found out 

that most of the people passed here are the professors and student of the Dept. of BIME. 

This meets the result of the most stay position in Figure 4-34. The most high-frequently 

used spot are parkingLot, and the spots among entrance to stairway. Figure 4-35 shows 

the pre-defined map points in image. The pre-defined points in this case is quite many so 

it is detailed listed in Table 3-15. 
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Figure 4-34 Most Stay Position of the plaza in front of the Dept. of BIME 

 

Figure 4-35 Pre-defined map points of the plaza in front of the Dept. of BIME 
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4.3 Software Performance 

    Our system uses an ultra-wide FOV camera instead of using panorama images. 

Although panorama image has the advantage of capture every movement in a place when 

the camera is placed at the center of the area, the computing time of stitching images into 

panorama takes too long. By replacing the system to a corner of an area, we are also able 

to get most of the information of a place. We are also able to detect objects with higher 

velocities. We also use OpenCL to speed up the whole process. Comparing to the previous 

system, the processing time is significant increased. The saved time can be used to add 

more processing technics or add a new camera in another direction to make a surveillance 

network. 

Table 4-19 The performance comparison between the old system and the new system 

 FPS 

Old system (Panorama stitching) 4 (360 degree) 

New system (ultra-wide FOV) 60 (135 degree) 
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Chapter 5 Conclusions and Suggestions 

5.1 Conclusions 

    We successfully developed a cooperative surveillance system to perform an all-in-

one task from observation to final working pattern results of a place. The system is able 

to analyze the daily and weekly behavioral summaries instead of manually monitoring by 

human eyes, and provide a nice GUI for users to look up every tracked object detail. We 

also provide customizations for users to meet their needs. With the combination of 

different kind of cameras, we are able to find the maximum information. 

    To achieve the goals of our objectives, we designed five different experiments to 

approach. The first experiment in the NTU farm tested the simple case of the static object 

tracking. We verified that if the object is close enough to the camera, a dynamic Euclidean 

Distance threshold is required to make sure the object will not lose track when certain 

camera-viewing angle is set. This solves the problem when the object is too close to the 

camera, any move of the object might exceeds the threshold. By the second experiment 

in the Zhi Chen farm, we set up a brand new Custom Define System in order to fit different 

environment. We can quickly setup the system by a simple click-and-type and does not 

need to recompile our program when the experimental site changes. In the third 

experiment in 3rd Vegetable packaging factory, we verified our system is able to easily 

setup and customize to fit the environment with the previous changes. We added some 
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more pre-defined feature types to make the Custom Define Rules System more adaptive. 

With the last two experiments (outside the Tomatake Hall, plaza in front of the Dept. of 

BIME), we added a PTZ self-tracking algorithm to increase the accuracy of desired PTZ 

images of our system by letting the PTZ to research the tracked object when the static 

camera send a coordinate to the PTZ. We improve our system’s stability and change the 

data and system structure. The system structure is redesigned to be more “cooperative” 

by using programming technics- parallel programming. The data structure is rewritten to 

use Windows File Manager instead of creating our own database. We use system’s 

internal category functions to quick search any tracked object we want. Comparing to the 

old system, we have some changes and new features: 

1. Using ultra-wide FOV images instead of panorama images by changing the webcam 

arrays to Sony network camera. 

We removed the panorama imaging system. The computing speed has increase 

15 times comparing to the old system. Since the computing time has significantly 

decrease, the saved time can be used to add more functions or to install a higher frame 

imaging hardware to perform real-time tasks. 

2. Improved object tracking methods 

We improved the Gaussian Mixture Model background subtraction with multi-

resolution AND logic process. This change is able to remove some noise produced 



doi:10.6342/NTU201602109

 

149 

 

from the background subtraction. We also use a dynamic threshold of the Euclidean 

distance to solve the problem of the non-constant threshold cause by the real distance 

between the object and the camera lens. With the combination of the Static Object 

Detection, we are able to keep tracking of the object that temporarily static. 

3. Custom Define Rules System 

    We provide users to customize their own analysis results with our unique module 

system without recompiling the program. By using the existing raw features from the 

hardware as basic rules, the users are able to create their own custom define rules. 

Moreover, the created rules can be used as basic rules to create a second layer custom 

define rules. The cooperative surveillance system is a flexible and self-adaptive tool 

for the owners and the managers to run in their facilities. 

4. Working Pattern Analysis 

We are able to use several features to represent the working patterns we assigned 

to the system. The system fetches the rules we created from the Custom Define Rules 

system to create daily and weekly summaries. We let the surveillance system to do 

the long-time observations and analyze for us to replace manual monitoring. 
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5. Friendly Graphic User Interface 

    The cooperative surveillance system provides a Video Live View to monitor the 

cameras in real-time, and an Object View Manager to check every tracked detail with 

individual analysis results and captured images. The system is not only a researcher 

purpose but also an amiable product. 

5.2 Suggestions 

1. In order to remove the noise and the failure of the voting method, we suggest stabilize 

the tracking results to avoid disconnected trajectories. Improving the core algorithm 

of the background subtraction will be a great choice. 

2. It is better to find more representative module features and create a LabVIEW like 

system for users to create more custom rules with ease, especially creating a drag-n-

drop GUI for fast prototyping. The modules of the Custom Define Rules System can 

be used to create multiple-layer working pattern analysis for further data mining. 

3. The weight of the system is quite heavy, it is necessarily to make the system lighter 

to make it easier to install and provide a better mobility. The current PTZ can be 

replaced by a smaller and newer model, and the aluminum frame can be replaced by 

other lighter materials that are strengthen enough.  
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