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Abstract

The N-barrier maximum principle (NBMP) is a technique to estimate the total
density of traveling wave solutions to one-dimensional diffusive competitive Lotka-
Volterra systems. In this study, two-species cases, which are considered in [4], are
generalized to multi-species cases. In addition, the constraints of the tangent line

method proposed in [4] to obtain a refined estimate is released.

iii
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1 INTRODUCTION

1 Introduction

In mathematical biology, the diffusive competitive Lotka-Volterra models are sec-
ond order partial differential systems often used to describe the dynamics of ecological
systems such as the diffusion and the growth of each species, and the competitions
between species. In population dynamics, how to estimate the total density is an
important issue for understanding the ecological capacity of inhabitants. For one-
dimensional cases, an upper bound and a lower bound of the total density of traveling

waves can be obtained by employing the method of N-barrier.

This article studies the one-dimensional diffusive competitive Lotka-Volterra sys-

tem:

fbt:dlﬁ +ﬂ(01—C11€L—012@), yER, t>07
" (1.0.1)

vy = dg@yy + 17(0'2 — Co U — 02217), Yy < R, t >0,
where 4(y,t) and 0(y,t) stand for the population density of two species @ and o,
respectively; dy, dy are diffusion rates, o1, oo are intrinsic growth rates, ci1, coo are
intra-species competition rates, and cjo, c9; are inter-species competition rates. All

of the coefficients are assumed to be positive.

When one species, say 0, is absent in (1.0.1), the system is reduced to the Fisher-

Kolmogorov equation

Uy = dy Ty, + @(oy — cnat), y € R, t > 0. (1.0.2)

For the case d; = 0 = ¢1; = 1, Komolgorov, Petrovsky and Piskunov [5] proved that

under the initial condition

3 1, fory <0,
u(y,0) =
0, fory >0,
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1 INTRODUCTION

the solution (y,t) of (1.0.1) evolves to a traveling wavefront solution u(z) with
T =1y — Opint, where 0,;, = 2 is the minimum evolving speed which will be discussed

more in the Appendix §7. In fact, there exists a function ¢ such that
la(y,t) —u(y — 2t —4(t))] = 0ast —0

uniformly in z, and tlim Y'(t) = 0. This motivates us to study traveling wave solutions
— 00
of (1.0.1):
(uly, 1), 05, £)) = (u(2), o(x)), © =y — B, (1.03)

where 6 stands for the wave velocity of the traveling wave. Substituting (1.0.3) into

(1.0.1), the system becomes a nonlinear second-order ordinary differential system:

diu” + 0u' + u(oy — cpyu — c12v) =0, z € R,
(1.0.4)

dav” 4 0V 4 v(og — c1u — cov) =0, x € R.

There are four choices of the artificial boundary conditions (u,v)(—oc) = e_ and

(u,v)(+00) = e, for (1.0.4):

01 02 01C22 — 02C12  02C11 — 01C21
e; = (0,0), e; = (—,0),e3: (O,—) and e; = ( ,

)
C11 C22 C11C22 — C12C21 C11C22 — C12C21

which are the solutions to the algebraic equations:

u(oy — cppu —cpv) =0, x € R,

'U(O'Q — Co1U — CQQ'U) = O, r € R.

A typical boundary condition discussed in [4] is the (e, e3)-boundary condition.

That is,
(1, v)(—00) = (ﬂ,o) , (u,0)(+00) = (0, 2) . (1.0.5)

C11 C22
The boundary condition represents that u is dominant on the left region and v is
dominant on the right region in z € R. In this situation, if we track back to the

primitive equation (1.0.1), u will occupy the whole domain in y € R eventually if
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1 INTRODUCTION

6 > 0 while v will occupy the whole domain eventually if § < 0.

In order to obtain a priori estimates for the total density, [1] considered the three-
species case and used the classical elliptic maximum principle with the method of
completing the square to obtain a priori estimates of u + v + w under particular
boundary conditions, the hypothesis that all the diffusion rates equal to 1 and other
parametric assumptions. In [4], upper and lower bounds of au + fv, for arbitrary
positive o and (3, were obtained without any constraint on diffusion rates d;,dy in

our two-species case (1.0.4).

Sometimes (1.0.1) is rescaled for convenience as

Uy = Uyy + (1l — 0 —a10), y € R, t >0,
" (1.0.6)
Uy = dUyy + 00(1 —asu —0), y € R, t > 0.

where a(y,t) = Lu((L)2y,Lt), 0(y.t) = Lo((L)2y, Lt), a1 = 2L, gy =

aen g =% and ¢ = 22, Then the corresponding traveling wave solution satis-
o2 Cc11’ di g1

fies

(

' +0u +u(l—u—aw)=0, v €R,
dv" + 60v' 4+ ov(l —asu —v) =0, = € R, (1.0.7)

(uav)(_oo) = (170)’ (u,v)(—I—oo) = (07 1)'

\

This thesis is organized in the following way. In §2, we review the N-barrier
maximum principle for 2-species case and generalize the results to multi-species cases.
As a corollary, the nonexistence theory is proposed in §3. A refined estimate is
obtained explicitly in §4 by the improved tangent line method. Examples are shown
in §5, summary and future researches are in §6, and the minimum wave speed is

discussed in the Appendix §7.
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2 N-BARRIER MAXIMUM PRINCIPLE (NBMP)

2 N-barrier Maximum Principle (NBMP)

In this section, the method of N-barrier is performed to obtain a lower bound
in Theorem 2.1 with a complete proof proposed in [4]. Other results such as upper

bound, generalized and multi-species cases are raised thereafter.

2.1 NBMP for 2-species

Theorem 2.1 (Lower bound). Let (u(z),v(x)) be a nonnegative solution to

/

diu” + 0u' 4+ u(oy — cjyu — ¢12v) <0, x € R,
dov” + 0v" 4+ v(0ogy — ca1u — coov) < 0, = € R, (2.1.1)

(u,v)(=00) = (£.0) , (w,0)(+00) = (0.2).

\

Suppose that > 22 oand 22 > 2, then for any o, 5> 0 we have the following

lower bound:
min{d1 y d2}
max{dy,ds}

au(z) + Bu(z) > min {aﬂ @ﬂ}

e’ Cra
Proof. For any given a,b > 0, we take the linear combination of the first two equations

in (2.1.1) to get

0> aldiu” + 0u' + u(oy — cryu — c120)] + bldav” + 60" + v(0y — coru — 290)]

= ¢"(z) + 0p'(z) + F(u(z),v(z)),
(2.1.2)

where )

q(z) = adyu(x) + bdyv(x),

pl) = au(x) + bo(x),

F(u,v) = au(oy — c11u — ¢19v) + bv(og — ca1u — Ca90).
\

First of all, we leave the first two linear terms ¢(z) and p(z), and focus on the
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2.1 NBMP for 2-species 2 N-BARRIER MAXIMUM PRINCIPLE (NBMP)

nonlinear term F'(u(x),v(x)). Since the determinant of the quadratic curve F(u,v) =

0 is

2 2 .2 2 2
(a012 -+ bCQl) — 4@011[)022 = Q4 Cpy + 2@[)012021 + b Co1 — 4&[)011022

AL (g 13)

> a’c?, + 2abciacyy + bPcs, — dab

= (aciy — begy)? >0,

F(u,v) = 0 is a hyperbola. Here, we have used the parameter assumptions 601—11 > ;‘2—21

c22 ci12’

Furthermore, by observing the signs of F(u,v) on the u- and v-axes and the

g

fact that F'(u,v) = 0 passes through the three points (0,0), (0, 22) and (Z-,0), we

C1

) and (-, 0) lie on the same branch while (0, 0) lies on the other

c11’

conclude that (0, 22
branch (see Figure 1). Actually, F'(u,0) = au(oy — cjyu) and F(0,v) = bv(og — caov)
indicate that F'(u,0) > 0 for 0 <u < Z-, F(u,0) <0foru <Ooru> 2, F(0,v) >0

for 0 <v < 2, and F(v,0) <0forv<0orv> 22

A

(%

g2
C22

~

Figure 1: F(u,v) = 0 and the sign of F

We are ready to construct our N-barrier. Firstly, by the parameter assumptions
L > 22 gnd 22 > 2L the intersection of the two lines o1 — c¢j1u — ¢12v = 0 and
c11 Cc21 C22 C12

09 — Co1U — Cov = 0 is in the first quadrant, and it also lies on the quadratic curve

F(u,v) = au(oy — c11u — ¢120) + bv(0og — co1u — c9v) = 0. Therefore, the line segment

5
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2.1 NBMP for 2-species 2 N-BARRIER MAXIMUM PRINCIPLE (NBMP)

between (0, Z-) and (Z%,0) lies underneath the quadratic curve F(u,v) = 0. This
line segment together with the u-axis and v-axis form a right triangle 7 lies entirely
below the curve F(u,v) = 0 in the first quadrant (see Figure 2). Thus F(u,v) >0

for all (u,v) € T.

v
92
C22
o1
C12
T N
\
T 4
92 91
Cc21 C11

Figure 2: blue lines: o; — c¢j1u — ¢19v = 0 and 09 — co1u — c99v = 0; red line: the line
segment between (0, Z-) and (2*,0); and the right triangle 7

o1
c12 ca1’

Let us denote
Q= {(u,v) | adyu+ bdyv <\, u,v > 0}

and

Py = {(w,0) [ au+bv <7, u,v > 0},
corresponding to the linear terms obtained in (2.1.2).

(i) The first line of the N-barrier is ¢ = adyu+bdav = Ay, where Ay = sup{\ | Q) C
T}. To be more specific, since the intercepts of adyu + bdev = Ay are <ﬁ 0>

ady’

7 bda adi — c21 bds — ci2’

and <0 ﬁ), and the condition Q,, C T requires that 22 < 22 and 22 < 9L
hence A; = min {adlg—i, bd2ﬂ}.

C12

(ii) The second line of the N-barrier is p = au + bv = 7, where nn = sup{n | P, C

Q). }. To be more specific, since the intercepts of au + bv = 7 are (g, 0) and

6
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2.1 NBMP for 2-species 2 N-BARRIER MAXIMUM PRINCIPLE (NBMP)

(0,%), and the condition P, C Q,, requires that I < a’\—dQI and § < 15\722’ SO

—mindAd2 A1 Ay
1 = min{ di0 dpJ T max{dida)

(iii) The third line of the N-barrier is ¢ = adju + bdev = Ay, which is parallel to
the first line, where A\; = sup{\ | @\ C P,}. To be more specific, since the
intercepts of adiu + bdyv = A\ are (%,0) and (O, 1;\712>> and the condition
9, C P, requires that a/\Tzll <4 b% < i, therefore A\; = min{din,don} =

mil’l{dl,d2} . . o2 o1 min{dl,dg}
/\2 max{di,d2} min adl c21”? bd2 ci2 | max{di,d2}"

The three lines established above form the N-barrier as Figure 3. It is easy to realize
that the term 'N-barrier’ comes from the resemblance to the English alphabet "N’

even the shape of the N-barrier may the reflection of the character 'N’.

N
o2 K v
C22
o1
C12
U
\
T 7
o2 a1
C21 C11

Figure 3: the N-barrier

Now, we show \; is the lower bound as the following:
Claim. ¢(x) = adju(z) + bdyv(z) > A1, for all x € R.

Suppose contrary, then there exists zp € R s.t. q(z0) = adiju(zg) + bdav(z) < Ai.

Since

A1 = min {adlﬂ,bdgﬂ} min{dy, o} _ adi < adyZy
Ca1 c12 J max{dy,dy}

by 2 < by 22

C12 C22
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2.1 NBMP for 2-species 2 N-BARRIER MAXIMUM PRINCIPLE (NBMP)

and

q(—o0) = 0Ld12 > A1, ¢(+00) = bdg2 > A1, (2.1.4)
C11 C22

we may assume that g(z9) = miﬂg q(x). Therefore, ¢'(z9) = 0. Let z; and 25 be the first
Te
point at which the solution (u(z),v(x)) intersects the first line ¢ = adiu + bdayv = Xy

in the uv-plane when x moves from z, toward —oo and 400, respectively. That is,
2 = inf{z € (—00, 20) | ¢(x) = adyu(zx) + bdyv(z) < A2, Yz € (2,20)}

and
2y = sup{z € (29, 4+00) | q(z) = adyu(x) + bdv(x) < A, VY € (20, 2)}.

Hence, ¢'(z1) < 0 and ¢'(22) > 0. Furthermore, since (u(z),v(20)) lies underneath
the second line p = au+bv = n while (u(z1),v(21)) and (u(z2),v(22)) lie above which,

p(z0) < n and p(z1),p(22) > n (see Figure 4).

C22

adiu + bdov = q(z9) 11

Figure 4: 2, z1, 22 and solution curve (u(x),v(x))

In addition, since the arcs {(u(z),v(z)) | = € (z1,20)} and {(u(z),v(v)) | x €
(20, 22)} lie in the right triangle T in Figure 2, F(u(x),v(z)) > 0 for all € (21, 2¢)

or x € (29, 22).
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2.1 NBMP for 2-species 2 N-BARRIER MAXIMUM PRINCIPLE (NBMP)

For the case where 6 > 0, integrating (2.1.2) from z to 2y yields a contradiction:

@_ME 0lplz2) ~ i) +/ Flu(e), v(@)ds < 0 (215)

>0

For the other case where 0 < 0, we integrate (2.1.2) from z; to zy to obtain a contra-

diction:

T = g () +0(pz0) e + [ " Flu(z), o(2))dz < 0 (2.1.6)

SN~ S =~ 21 [

Thus

. oy o1 | min{d,ds}
1au(x) + debv(z) > Ay = min {a Yooy 2012} max{d,ds}

By taking a = %, b= d%, we obtain the desired result:

au(r) + Bu(x) > min {a27 52} %.

C21  Ci12
]

Note that if d; and dy, are equal, the three lines of the N-barrier in the proof
coincide. However, the proof above still works. In fact, the first line and second line
of the N-barrier are used to deal with the two linear terms in (2.1.2), respectively.
And the third line works in the proof of contradiction to show that ¢(zy) = Iilelﬂgl q(z).

Thus, if the three lines coincide, the two linear terms become the same, and we still

have q(2) = min ¢(z).

Similarly, by constructing an N-barrier above the quadratic curve F'(u,v) = 0 (see

Figure 5), the corresponding upper bound can be obtained as follows.
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2.1 NBMP for 2-species 2 N-BARRIER MAXIMUM PRINCIPLE (NBMP)

Theorem 2.2 (Upper bound). Let (u(z),v(x)) be a nonnegative solution to

/

dlu” + o’ + U(O'l — C11uU — 612’0) Z 0, T e R,
dav” + 0V + v(og — coyu — cov) > 0, x € R,

(u,0)(00) = (25,0}, (w,v)(+00) = (0, 22).

\

Suppose that L > 22 and 22 > 2L, then for any o, 5> 0 we have the following

C22 2

upper bound:

01 09 max{dl,dg}
au(x) + Pv(r) < max {a—,ﬂ—} min{dy, dy}

Ci1 Co22
Proof. We only show how to construct an N-barrier above F(u,v) = 0, and obtain
A1. For checking A\; an upper bound for au + fv, the argument is same as which of

Theorem 2.1 and is hence omitted.

(i) The first line of the N-barrier is ¢ = adju + bdav = Xy. Since the intercepts
of adiu + bdyv = Ay are (ﬁ,0> and (O A2 >, and we requires a% > 2L and

ady ? bdy c11

A2 > o2 — o1 o2
L > o=, hence A\ = max {adl o bd, = }

(ii) The second line of the N-barrier is p = au + bv = 1. Since the intercepts of

au + bv = n are (3,0) and (O,%), and we requires ! > (3‘721 and { > b%, SO
— A2 Aoy Ao
n=max{g, 22} = min{di,da} "

(iii) The third line of the N-barrier is ¢ = adju + bdyv = Ay, which is parallel to the
first line. Since the intercepts of adiu-+bdyv = Ay are ( AL O) and (O ﬂ), and

ady’ » bdy
we requires 2- > 2 and AL > 1, therefore, A\; = max{di7, don} = \xldrda}
q ad; = a bds = b 1 M 177, @21 2 nin{dy,da}
a1 o | max{d,da}
max {adl o, bds = } in{di D)

Similarly, taking a = ;‘—1 and b = d%, we have the desired upper bound.

10
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2.2 Generalized NBMP 2 N-BARRIER MAXIMUM PRINCIPLE (NBMP)

Figure 5: N-barrier for upper bound

2.2 Generalized NBMP

Recall that the parameter assumptions cb>ZFand 22> Zin Theorem 2.1 and
Theorem 2.2 have been used to show that the quadratic curve F'(u,v) = 0 is a hyper-
bola in (2.1.3), that the right triangle 7 in Figure 2 lies below the curve F'(u,v) = 0
and that g(—o0) = adi Z- > A1, ¢(+00) = bda 22 > Ay in (2.1.4).

First of all, without these parameter assumptions, the quadratic curve F'(u,v) = 0

may be a parabola or a ellipse. Fortunately, using the positivity of the coefficients o;

and ¢;; (1,j=1,2), the signs of F'(u,v) can be shown as Figure 6.

€22

v

g2

€2

v

€11

Figure 6: left: parabola; right: ellipse

Secondly, it is easy to see from Figure 6 that, for each case, there exists a right

triangle 7 as in Figure 2 lies below the curve F'(u,v) = 0 in the first quadrant so that

11
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2.2 Generalized NBMP 2 N-BARRIER MAXIMUM PRINCIPLE (NBMP)

F(u,v) > 0 for all (u,v) € T. Therefore, N-barriers can also be constructed in both

cases.

Moreover, for (2.1.4), we only need to require the boundary conditions e_ and e
lie above the first line ¢ = adiu + bdyv = Aq.

Consequently, the assumptions 4> and o= > 7= can be dropped. Actu-
ally, the proof also works for F'(u,v) = u™f(u,v) + v"g(u,v), for certain hypotheses

on f(u,v), g(u,v) and the boundary conditions e, e_, which will be explained in

Theorem 2.3 and Theorem 2.4 (see Figure 7).

el

<

€t
F(u,v) >

u 7

Figure 7: general conditions

Theorem 2.3 (Generalized lower bound). Let (u(x),v(x)) be a nonnegative solution
to

;

dyu” + 0u' + u" f(u,v) <0, z € R,

§ dov” + 60U +v"g(u,v) <0, z €R,

\(u,v)(—oo) =e_, (u,v)(+00) =e;.

Suppose that there exists w > 0 and v > 0 s.t. f(u,v) > 0 and g(u,v) > 0, for all

12
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2.3 NBMP for Multi-species 2 N-BARRIER MAXIMUM PRINCIPLE (NBMP)
(u,v) € R and e_, e, € [0,400)* \ R, where

R = { (1.0) € 0, 0]

u v
-+-<1}.
u v

Then for any o, B> 0 we have the following lower bound:

Hlil’l{dl, dg}

au(z) + fo(r) > min {au, Sv} A

Theorem 2.4 (Generalized upper bound). Let (u(z),v(x)) be a nonnegative solution

to
4

diu” + 0u' +u" f(u,v) >0, v € R,

dov" + v + v"g(u,v) >0, z € R,

\(u,v)(—oo) =e_, (u,v)(+00) =e;.

Suppose that there exists w > 0 and v > 0 s.t. f(u,v) < 0 and g(u,v) < 0, for all
(u,v) € R and e_,e, € [0,+00)*\ R, where

R = {(u,v) € [0, +00)?

LI 1} .
u v
Then for any a, 5> 0 we have the following upper bound:

max{dl, dg}

au(z) + fv(z) < max{au,fv} min{dy o}

2.3 NBMP for Multi-species

By replacing all 'lines’ in the argument of the two-species case discussed above by

"hyperplanes’; the corresponding results for multi-species case rise.

Theorem 2.5 (Multi-species lower bound). Let (uq(z),- - ,u,(x)) be a nonnegative

solution to

di! + 0ul +ul" fi(uy, - yu,) <0, z€R, i=1,--- n,
(2.3.1)

(U, -+ up)(—o00) =e_, (ug, -+, u,)(+00) = ey.

13
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2.3 NBMP for Multi-species 2 N-BARRIER MAXIMUM PRINCIPLE (NBMP)

Assume that for each i = 1,--- n, there exists u; > 0 s.t. fi(ug, -+ ,u,) > 0,

whenever (uy, -+ ,u,) € R, and e_, ey € [0,+00)" \ R, where

— < 1}.
— U,
=11

Then for any a; > 0, we have the following lower bound:

R = {(ul,--- ,Up) € [0,400)"

n min d;
. =1, n
5 aui(z) > | min qu; | ———, z € R.
i=1 i=1,,n
Proof. For any given aq, - -- ,a, > 0, we take the linear combination of the n equations

in (2.3.1), we obtain a single equation involving p(z) and ¢(x)
¢"(z) + 9 (z) + F(ui(x), uz(x),...;u(x)) <0, z€eR, (2.3.2)

where
.

CJ(«%’) = iilaidiui (x)a

p(z) = Zu()

n
Fuy,ug,...;up) = Y oz uy filur, ug, ..., uy).
\ =1

The construction of the N-barrier consists of determining A9, 7, and \; such that
n n n

the three hyperplanes > a; d;u; = Ao, Y a;u; = n and > a; d;u; = A\ enjoy the
i=1 i=1 i=1

property
O\, CP,C Qy CR, (2.3.3)

where
Q)\ = {(Ul,UQ, ,Un) ) Zai dz Uy S )\, U, Uy «vvy Up 2 O}, (234)
=1

P, = {(ul,u2, ooy Uy ) Zai w; <0y U, Uy ...y Uy > 0}. (2.3.5)
i=1
14
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2.3 NBMP for Multi-species 2 N-BARRIER MAXIMUM PRINCIPLE (NBMP)

We follow the three steps below to construct the N-barrier:

(i) The first hyperplane of the N-barrier is ¢ = > a;d;u; = Ao, where Ay =
i=1

sup{A | Qx C€ R}. To be more specific, since the intercepts of Y a;d;u; = Ay
i=1
A A A g
are (TCQH’O’ ., 0), (0, ?(212,0, ..,0),..., and (0,0, ...,0, Kén)’ and the condition

@, C R requires that a>-\§l< <uw,; forv=1,2,...,n, hence \y = r{un a;d;u,;.
(] 1

i=

(i) The second hyperplane of the N-barrier is p = Y a;u; = n, where n = sup{n | P, C
i=1

n
Q). }. To be more specific, since the intercepts of > a;u; = n are(aﬂl,o, ., 0),
i=1

(0, a—TA 0,...,0),..., and (0,0, ...,0, gL), and the condition P, C Q,, requires that
% < ai\ilz f0r2—1727~-'7n7 Son_l_r{nn %: m:L\f( d;’

i=1,,n

(iii) The third hyperplane of the N-barrier is ¢ = Y a;d;u; = A;, which is parallel
i=1
to the first line, where Ay = sup{A | @» C P,}. To be more specific, since

the intercepts of izzlazdzu, = )\ are (a1 dl,O,...,O), (0, a2d2,0,...,0),..., and
(0,0,...,0, a)\}i ), and the condition @), C P, requires that )‘g < —71 for
e ‘mln d @i me d
i=1,2,...,n, therefore \; = nlmn din = /\2 . d = 1{1111 a;d; ulﬁ
i i= i=1,-

The three hyperplanes > a; d;u; = Ao, Y a;u; = n and > oy d; u; = Ay constructed
i=1 i=1 i=1
above form the N-barrier.

Now, we show A; is the lower bound as the following:

Claim. ¢(x) = > a;dju;(x) > Ay, for all x € R.

Suppose that, contrary to our claim, there exists zp € R such that g(zy) =
Zaduz(zo) < A1. From e_,e; € [0,+00)" \ R and Q,, C R, we know that
q(:l:oo) > A\;. So we may assume I:?Elﬂg q(x) = q(z0). Therefore, ¢'(z9) = 0. Let
z1 and 2o be the first point at which the solution (ui(x),--- ,u,(x)) intersects first

hyperplane ¢ = > a;d;u; = A9 in the uy - - - u,-space when x moves from zy toward
i=1

15
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2.3 NBMP for Multi-species 2 N-BARRIER MAXIMUM PRINCIPLE (NBMP)

—oo and +o00, respectively. That is,
= inf{z € (—o0, 20) | q(z Zald ui(z) < Ao, Yo € (2,20)}

and

2y = sup{z € (20, +00) | q(z Zazd ui(x) < Ao, Vo € (20,2)}

Hence, ¢'(z1) < 0 and ¢/(29) > 0. Furthermore, since (uy(2o), -+ ,un(20)) lies un-
derneath the second hyperplane p = Zn:ai w; = n while (uy(21), - ,u,(21)) and
(u1(22), - -+, un(22)) lie above which, p(z(;):1< n and p(z1), p(z2) > n. In addition, since
the arcs {(u1(x), -+ ,un(x)) | @ € (21, 20)} and {(u1(x), -+ ,un(x)) | © € (20, 22)} lie

in @), CR, F(ui(x),--- ,u,(x)) > 0 for all z € (21,20) or x € (20, 22).

For the case where 6 > 0, integrating (2.3.2) from 2 to 2y yields a contradiction:

0 22
o (o2) ~hei] + (plez) — plan) + / Plue).-+ una)ils < 0

>0

For the other case where 6 < 0, we integrate (2.3.2) from z; to zg to obtain a contra-

diction:
0 z0
el = ¢ (1) +0lpa) ~ ple) + [ Flus(a)se - unla))de < 0
—— —— = 21 e
<0 <n >n ~ ~ -
>0
Thus
_min d;
Zald ui(x) >N = ( mm a,d u) L
2ax d
By taking a; = d , we obtain the desired result:
;r{lin d;
Zalul > ( min azu) e A
=l,n max d;

16
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2.3 NBMP for Multi-species 2 N-BARRIER MAXIMUM PRINCIPLE (NBMP)

Note that if the diffusion rates d;’s are all equal, then the three hyperplanes of
the N-barrier coincide. Nevertheless, the proof can still be accomplished as remarked

after the proof of Theorem 2.1.

Theorem 2.6 (Multi-species upper bound). Let (ui(z),--- ,u,(x)) be a nonnegative

solution to

duf +0u) +ul" fi(uy, - yu,) >0, zeR, i=1,---,n,

(ur, = up)(—00) =e_, (ur, -+ ,u,)(+00) = ey.
Assume that for i = 1,--- n, there exists u; > 0 s.t. fi(uy, - ,u,) <0, whenever
(U1, -+ ,up) €R, and e_, ey € [0,4+00)" \ R, where

R = {(ul,--- ,Uy) € [0, +00)"

nUi

Then for any a; > 0, we have the following upper bound:

n lilax dz
Zaiui(w) < ( ax aiﬂi) e L
: i=1,n min d;
=1 i=1,,n
Although the lower and upper bounds achieved above are used for the traveling

wave solutions of the Lotka-Volterra systems, say (1.0.1), they actually can be applied
to the steady state solutions for (1.0.1):

dlu” + U(O'l — C11uU — 012?]) = 0, x e R,
(2.3.6)

dQU” + U(O'Q — C1U — CQQU) = 0, r € R.

Namely, 6 = 0 in the traveling wave version (1.0.4). In fact, § = 0 invalidates the
affect of the linear term p in (2.1.5) and (2.1.6). Therefore, the first line of the N-
barrier is the only line used in the proof, and the estimates of au + Sv in the steady

states are better than which in the traveling waves. That is to say,

gy O o1 0
min {a—2,ﬁ—1} < au + fv < max {a—l,ﬂ—Z} ,

C21  Ci12 C11 Ca22

17
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3 APPLICATION: NONEXISTENCE RESULTS

which is independent of d; and d», for the solutions to the steady state system (2.3.6).

3 Application: Nonexistence Results

The existence of traveling wave solutions of three-species diffusive competitive
Lotka-Volterra systems is achieved in [2]. Chen, Hung, Mimura and Ueyama made

an ansatz that
(u(z),v(z), w(z)) = (k1 (1 4 tanhz), ky(1 + tanh )%, k3(1 + tanh® x))

and verified it an exact solution under certain parameters and for suitable &, ks and

ks.

On the other hand, the nonexistence of traveling wave solutions of three-species
diffusive competitive Lotka-Volterra systems can be achieved with the aid of Theo-

rem 2.1.
Theorem 3.1 (Nonexistence of 3-species wave). Suppose that

~ o ~ o
[H]_] o1 = 01 —Clgé > 0, 09 = Oy —ngé > 0,

. fc3182 c3261 ) min{di,do}
[H2] min{ L e (drdo] > 03.

Then the three-species Lotka-Volterra system

)
div” +0u' + u(or — enu — ¢ — cizw) =0, z € R,

dov” + 0V + v(og — Co1u — €U — co3w) =0, x € R,

(3.0.1)
dzw” + 0w’ + w(o3 — ca1u — c3v — czzw) = 0, ¥ €R,

| (u,v,w)(—00) = (;’1—11,0,0> , (u,v,w)(+00) = (0, ;—Z,O)

has no positive solution (u(x),v(x),w(zx)).

18
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3 APPLICATION: NONEXISTENCE RESULTS

Proof. Suppose contrary, then there exists a solution (u(z),v(x),w(z)), where u(z),
v(z), and w(z) > 0, for all x € R. According to the boundary condition w(£00)=0,
there must be a xy € R s.t. w(xy) = maxw. At this point, the third equality of the
system (3.0.1) becomes

0
ds w"(xg) +0uwag)+ w(xo) (03 — cz1u(xg) — czav(xg) — cazw(xg)) = 0.
M~ N——~ N——
>0 <0 >0
This shows that

g3 — C31U(.1'0) — 6321)(.1'0) — ngU)(fﬂo) 2 0. (302)

Hence, w(z) < w(xg) < é(@'g —czu(xo) — ca2v(20)) < 22, Vo € R. Substituting the
upper bound for w into the first two equations in (3.0.1), the three-species case will
be reduced into the two-species case:
" / ag
dyu” + 0u' 4+ u(oy — cjyu — c1ov — Clgé) <0,

dQU” + 6v' + U(O'Q — C21U — C22V — 023%) < O,

or
( " ’ 03
diu” + Ou’ + U((O’l — 013—) —C11U — 012’[)) < 0,
C33
———————
X i
" ’ 03
dov” + 0v" 4+ v((09 — 0230—) —C91U — C290) < 0.
33
————
\ G2

Apply Theorem 2.1 with oo = ¢31, f = ¢32 and exploit the hypothesis [H2] to get the

lower bound:

> 03.

C3102 C32071 min{dth}
max{dl,dz} -

C31U + €320 > min ,
Ca1 Ci2

But from (3.0.2),

(03 — czru(wo) — c32v(x0)) <0,

a contradiction. O]

19
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4 IMPROVED TANGENT LINE METHOD

Note that the steps of the proof for the nonexistence of three-species waves are
that, first, reducing the three equations to two inequalities and, second, applying the
lower bound obtained from the N-barrier maximum principle to reach a contradiction.
Consequently, once the N-barrier maximum principle for multi-species Theorem 2.5

has been established, the nonexistence of multi-species waves follows:

Theorem 3.2 (Nonexistence result for multi-species). Suppose that

5 e— o -
0; = 03 = Cin g™ >0,i=1,---,n—1,
- , Ilniﬂ d;
: s | T,
min < ¢,; min —*- > op,.
i=toon | =t n G [ X di = 00

Then the n-species Lotka-Volterra system

( n

diui + 0u; + u; (Ui - ZQ’J’%’) =0,zeR, i=1,---,n,
j=1

(i, )(=00) = (2.0,-++.0).

(g, -+, un)(400) = (070_2 0, 70>

co2’

\

has no positive solution (ui(x),---  u,(zx)).

For another application of the N-barrier maximum principle, the readers are re-
ferred to [3] for the existence of three-species waves under a different boundary con-
dition. Hung first reduced the three equations to a single equation and employed
the N-barrier maximum principle to construct a subsolution, then the method of

supersolution-subsolution guarantee a solution.

4 Improved Tangent Line Method

In this section, a refined lower bound for au + v will be derived. For computa-
tional convenience, we consider the scaled system (1.0.7) with the bistable condition:

ay, ay > 1 and apply the improved tangent line method.

20
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4 IMPROVED TANGENT LINE METHOD

In [4], it is shown that, under certain restrictions on the parameters, the lower
bound in Theorem 2.1 can be improved by means of the tangent line method. How-
ever, the restrictions are redundant, since the idea is to enlarge A\, so that the N-barrier

still lies underneath the quadratic curve:

F(u,v) = au(l — u — a1v) + bov(l — agu — v) = 0.

To be more specific:

Oy CP, CQx CR, (4.0.1)
where
Py = {(wv ‘au+bv<7], w0} (4.0.2)
Q, = { ‘au—l—dbv<)\ u v>0}; (4.0.3)
R = { ‘ ) >0, uv>0} (4.0.4)
In fact, Ay can be given by
Ay =sup{\ | Q) C R}. (4.0.5)

Replacing the first step for determining As in Theorem 2.1 by (4.0.5), a stronger lower
bound than the one given by Theorem 2.1 can be found. In other words, the estimate

can be refined without any further restriction on the parameters.

To calculate Ay, we first solve v as a function of u in the hyperbola

F(u,v) = bkv* + (aa1u + bo(agu — 1))v + au(u — 1) = 0,

and choose the branch which does not pass through the origin. That is,

—(aayu + bo(asu — 1)) + /(aayu + bo(agu — 1))2 — dabou(u — 1)
2bo '

v(u) =

21

d0i:10.6342/NTU201601053



4 IMPROVED TANGENT LINE METHOD

So the tangent to the curve is

(aa1u+bo(azu—1))(aa1+boaz)—2abo(2u—1)
dv \/(aalu+ba(a2u—1))2—4abou(u—1)

@(u) 2bo

—(aay + boasy) +

For given a, b and d, the slope of the line au + dbv = A, is determined by . The
supremum expression (4.0.5) shows that the line au + dbv = Ay should tangent to the
hyperbola F' = 0. However, since we are working in the first quadrant, there are two
critical tangents: 22(0) = W and 2(1) = aarTho(a 1)~ Decause the branch

of the hyperbola we have chosen is convex (see Figure 1), the tangent to the curve

v(u) is increasing. Thus, there are three cases to be considered:

 —a _ —alai—1)-boas
(1) d_l()1< alal — O'(ZQ'

In this case, the first line of N-barrier au+dbv = A5 passes through the boundary

(0,1), so Ay is determined as

)\2:a-0+db‘1:db.

Figure 8: N-barrier for case (i)

Note that 2o may be 400 in the proof of Theorem 2.1 in this case. In fact,

lim ¢'(x) > 0, lirf p(x) > n and f;goo F(u(z),v(z))dx > 0 still reach a
T—r—+400

T—r+00

contradiction as (2.1.5).

22
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4 IMPROVED TANGENT LINE METHOD
(H> ;_Z? > aal—i-b;?ag—l):

In this case, the first line of N-barrier au-+dbv = A passes through the boundary

(1,0), so Ay is determined as

X=a-1+db-0=a.

Figure 9: N-barrier for case (ii)

Note that z; may be —oo in the proof of Theorem 2.1 in this case. In fact,

lim ¢'(x) <0, lim p(z) >nand [7 F(u(x),v(z))dz > 0 still reach a con-
T——00

T—r—00

tradiction as (2.1.5).

.o —a(a1—1)—boas —a —a i
(111) bo < db < aa1+bo(az—1)"

In this case, the first line of N-barrier au + dbv = )y is tangent to the curve

v(u).

23
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4 IMPROVED TANGENT LINE METHOD

Figure 10: N-barrier for case (iii)

Therefore,
_ (aa1u+bo(azu—1))(aa1+boaz)—2abo(2u—1)
d_'U(u) B (aal + bO’az) + \/(aa1u+bg(a2u_1))2_4abo_u(u_1) B __a
or

(X2 — 4abo)u + (—bo X + 2abo))? B 200\ >
(Xu —bo)? — 4abou(u —1) <X a ) ’

where X = aa; + boas. Then it becomes

Au’+ Bu+C

— 4.0.6
Du?+ Fu+ F ’ ( )

where

A= (X? - 4abo)?,
B = 2(X? — 4abo)(—boX + 2abo),
C = (=boX + 2abo)?,
D = X* — 4abo,
E = —2boc X + 4abo,

F =b*0?,

24
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4 IMPROVED TANGENT LINE METHOD

Write (4.0.6) as
(A—DG)u*+ (B - EG)u+ (C - FG) =0,

we have

. _ —(B—EG)+ /(B - EG) — 4{(A - DG)(C - FG)

2(A— DG)

Hence,

Ay =aug + dbv(ug)

—(aayug + bo(agug — 1)) + v/(aayu + bo(agug — 1)) — daboug(ug — 1)

=aug + db T ,
where
" —(B—EG) £ +/(B—EG)?>—4(A— DG)(C — FQG)
0 2(A — DG)
and the branch is chosen s.t.
O<ug<1
and (Xug—bo) X —2abk(2ug—1)
_X ug—bo) X —2a ug—
@(u ) _ . \/(Xuo—ba)2—4abau0(uo—1) _ —_a
du" " 2bo db

Note that the branch of uy can not be determined unless the coefficients are given.
Actually, by using the computer program MATLAB, we can show that for a = 12, b =

2, a1 =5, a, =3,d=2and o0 =6, ug should be _(B_EGH\/(BQ_(fE;;)l(A_DG)(C_FG);

while for a« = 12, b = 1, a1 = 12, a5 = 2, d = 1 and ¢ = 12, ugy should be

—(B-EG)—+/(B-EG)2~4(A-DG)(C-FG)
2(A—DG) :

Recall that in the proof of Theorem 2.1 we took a = 7- and b = d%; while in this

25
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5 EXAMPLES

rescaled case, a = a and b = g. In conclusion, we have the following refined lower

bound:

Theorem 4.1 (Refined estimate). Let (u(x),v(x)) be a nonnegative solution to
(1.0.7), d.e.
(

w4 0u +u(l —u—aw) =0, xR,

dv" 4+ 60V + ov(l —agu —v) =0, z € R,

(u7v)(_oo) = (1’O)a (uvv)(+oo) = (Oa 1)7

\

where ay, ay > 1. Then for any «, 5> 0 we have the following lower bound:

min{1, d}
au(z) + po(r) > N\ —————,
(@) + o) 2 M M
where
( —a(a1—-1)-8sa
B , Zf% < %7
d
A= f =& - -« @
! a ’ Zf B > aa1+%a(a271)’
—(aajw ﬁO’(lU* aaq U éaauf 7%0"& uo— .
aug + 3 (caruot oo D)+ 1250+d (G20 D)V -4 ouoluo) , otherwise,
\ a°

—(B—EG)£+/(B—EG)?~4(A-DG)(C—FG) o aB \2 _
3(A—DG) . where A = (X? —4570)", B =

2(X2—4%0')(—§UX+2%60), C= (—SJX + 2%0)2 , D= X2—4O‘Tf0, E = —2§O'X—|—

4%0, F= d—jO'Q and G = (X — 2?“7")2 in which X = aa1+§aa2. The branch is chosen
wy—80) X228 5(2u0—

s.t. 0 <wuy<1and (—X+ (Xuo—go)X 24 9Cuo- 1) >/(2§a):_—o‘.

in which uy =

VvV (Xug—20)2-4°C 5ug(ug—1) B

5 Examples

Exact solutions to two- and three-species Lotka-Volterra systems are proposed
in [8] and [2], respectively. Both examples will be performed in this section. For
the three-species exact solution, we will check that the upper and lower bounds in
Theorem 2.5 and Theorem 2.6 are valid. For the two-species exact solution, we first

compute the lower bound via the improved tangent line method Theorem 4.1 and
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5.1 An Example of NBMP for 3-species 5 EXAMPLES

check the lower bound valid. Then compare it with the lower bound obtained from

the original N-barrier maximum principle Theorem 2.1.

5.1 An Example of NBMP for 3-species

By the ansatz that

.

u(x) = ki(1 — tanh x)?,
v(z) = ko(1 + tanh z),

w(x) = ks(1 — tanh? z),

\

[2] provides exact solutions to the 3-species Lotka-Volterra system:

(
diu” + 0u' 4+ u(oy — cjyu — c190 — cj3w) =0, = € R,

dov” + 6V + v(02 — c1u — caav — c3w) = 0, T ER,

(5.1.1)
dgw// + Hw’ + U)(O’g — C31U — C32V — nglU) = 0, S ]R,
\(u,v,w)(—oo) = <ngl,0,0> , (u,v,w)(400) = (O, ;—i,())
fOI‘]{/’l:%, k’QZ%,d1:d2:d3201120222033:1,0'1:0'2:0'3:0',
3623 —1 -8 — 30 + 023(30' — 24) (0‘ — 24) (623 — 1)
€1 = (77—~ Ci2 = y €13 = )
U(—1+Cg3) 0'(]_ —023) 16
2(—0’—8023—|—0'023) 8(—1—|—3023) 4
C32 = y Gl = 3= 1, . >
O'(—1+C23> O'(-l—l-ng) —1—|—C23
0 — —4+0+ 20023 — 0Ca3
B 2(-1"‘023)
and
16 —8 424
¢<0<M,if1<013§3,
—1+ci3 —1+c3
-84 24
24<0<ﬂ,if013>3.
—1+013

Take o0 = 28 and c93 = 4 for example, then ¢y = %, Clp = %, Cc13 = i, C32 = 57,
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5.1 An Example of NBMP for 3-species 5 EXAMPLES

c31 = 2, and § = —3. Thus, (5.1.1) becomes

(
u +0u +u(28 —u— 3o — 3w) =0, z €R,

V" + 00 +u(28 — Bu—v—4w) =0, z €R,
(5.1.2)

w” + 0w + w28 — Zu— By —w) =0, z R,

| (u,v,w)(=00) = (1,0,0), (u,v,w)(+00) = (0,1,0).

And the exact solution is

/

u(x) = 7(1 — tanh z)?,

v(z) = 14(1 + tanh x),

w(z) = 3(1 - tanh? z).
\

_— = 2821 — o~ _ 28-21
Also, we can choose Uy = u = 28, uy = u = =57, Uy =V = 28, uy = v = =,

= %‘4, and us = w = 7 in Theorem 2.5 and Theorem 2.6. Take a; = 1,

g = %, and ag = % in Theorem 2.5 and Theorem 2.6 for example, we have the

gl

Us =

following estimates:

28-21 1 28-21 1 1 1 1 1 28-4
in ——, - -7, < - —w < 28, —-28, < —F—
mm{ 59§ 57 3 }_u+5v—|—2w_max{ 3 . 5 },
or
1 28-21< +1 +1 < 98
- U+ v+ Zw .
5 37 5 2 -

The upper bound and lower bound are shown in Figure 11.
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5.2 An Example of Improved Tangent Line Method 5 EXAMPLES

30

251

201

0 I T

. , .
Z6 a4 2 0 2 4 6

Figure 11: blue curve: u; green curve: v; pink curve: w; black curve: u + %v + %w;
red line: upper and lower bounds

5.2 An Example of Improved Tangent Line Method

By the ansatz that v = Y a;u’ and v' = Y b;u’ are both polynomials of u, [§]
i=0 i=0
provides exact solutions of (1.0.7) under the parameter assumption:

[¢5) 5\/5 \/E —2+CL2
d=3— =24 —- — < < 0 = .
(11\/_ + 3 az, as \/E al\/g \/2_&2

29

. 29 _ 2 _
In particular, for d = £, 0 =1, a1 = 7 and ay = i,

(1o
(14 taun

Take a =2 and § = % in Theorem 4.1 for example. Since

2

DO = s
5§
e~ e~

))
))

is an exact solution.

—afa; — 1) —

g

al®

< %(: —6) <

(= —0.5)

(= —27.5),

al®

aay + ga(ag - 1)
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5.2 An Example of Improved Tangent Line Method 5 EXAMPLES

this is a tangent case, then A; should be taken as

—(aajug + %a(aguo —-1))+ \/(aa1u0 + %a(aguo —-1))2 - 4"7.?07,@0(1;0 —1)

Al = aug+
1 0 ﬁ 250

—(B—EG)—+/(B—EG)2—4(A—DG)(C—FG)
2(A—DG)

—56.3) # —*(= —6); while if the branch of g is chosen as

in Theorem 4.1. If we choose uy = , then 2 (ug)(~

_ ~(B-EG) + (B~ EGP ~4(A-DG)(C ~ FG) 5.2.1
(e 2(A— DG) 7 o2y

then 2 (up) = —6 = = Thus, we choose ug as (5.2.1) in the expression of A;.
Consequently, the lower bound in the improved tangent line method Theorem 4.1

becomes

1 5
2u(x) + gv(w) > )\12—9 ~ 0.05,

which is shown in Figure 12. However, from the original N-barrier maximum principle

Theorem 2.1, the lower bound is

15 1 15] min{l, 2} 5.5
ind2.-= —.%2 2 — ~ 0.03
mm{ 29" 3 26}max{1, 21~ 2629 ’

which is worse than the lower bound obtained via the improved tangent line method.

0.8

0.6

0.4r

0.2

0 L + L L L
-30 -20 -10 0 10 20 30

Figure 12: blue curve: u; green curve: v; black curve: 2u + %v; red line: lower bound
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7 APPENDIX: MINIMAL WAVE SPEED

6 Conclusion and Future Studies

For one-dimensional multi-species diffusive competitive Lotka-Volterra systems,
the N-barrier maximum principle still provides a priori estimates for the total density
of traveling wave solutions. As a corollary, nonexistences of traveling wave solutions
in one-dimensional diffusive Lotka-Volterra system of multiple competing species rise.
Furthermore, the improved tangent line method ameliorates the lower bound explic-

itly.

One of the crucial assumptions is the uniformity of different species waves, in both
velocity and direction. Based on this hypothesis, we can easily choose the reference
coordinates as their wavefronts, while difficulties raise when the waves goes in various
speed or direction. Another interesting and practical question is that whether there

are some relevant results for the two- or higher-dimensional case.

7 Appendix: Minimal Wave Speed

In this section, we first investigate the minimal wave speed of the Fisher-Kolmogorov
equation (1.0.2) by phase plane analysis as in Chapter 13 of [6], and then apply the

same approach to the Lotka-Volterra systems.

Consider traveling wave solutions to the Fisher-Kolomogroff equation (1.0.2) with

the boundary condition u(—oc0) = Z-, u(+00) = 0, we have

diu” + 0u' + u(oy — cpyu) =0, z € R,
(7.0.1)

u(—o0) = Z-, u(+00) = 0.
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To be specific we assume 6 > 0. Denote the first derivative u’ by U, then

/

u U
- . (7.0.2)
U dil(—QU — U(O'l — 011U))
Around the singularity (u,U) = (0,0),
/
u U 0 1 u
~ = ) (7.0.3)
U %(—QU — oqu) - ;—19 U

The eigenvalues are

2
Then, if (di> < 4%, the eigenvalues would be complex numbers, and then (u,U)
1 1
would be a stable spiral near (0,0). This violates the non-negativity of u. Therefore,
0

2
(E) > 43+, or we have a lower bound for the wave velocity:

0 Z 2\/ O'ldl. (704)

Note that, in this case, the eigenvalues are real and non-positive, and (u, U) is a stable

node near (0,0). On the other hand, at the other singularity (u,U) = (Z-,0),

cin’

!/

U U 0 1 U
~ ) = , . (7.0.5)
U d—l(—OU + o1u) gi ;—1 U

The eigenvalues are

2
0 0 o
\ —a * (d—> +4a
_ - ,

which are real and have different signs, hence it must be a saddle point. Furthermore,

for the positive eigenvalue, v, and U, must have the same sign in the corresponding

u
eigenvector - , while for the negative eigenvalue, u_ and U_ must have different

U,
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U_

U_

sign in the corresponding eigenvector

Now, we show that there exists a solution for any 6 > 2v/o1d;. Consider the

triangle I'" in the u, U-plane formed by u = 2+, U + %lu = 0 and the w-axis (c.f.

c11’

Figure 13). We are now to show that I' is a trapping zone. First of all, on the line

segment OA, v/ = U = 0 and U’ = u" = —d—llu(al — cp1u) < 0. Furthermore, |U'|

decreases to 0 as u tends to 0 or tends to 1. Secondly, on AB, d U’ + v’ = 0, hence

W=U<0and U = —d%u’ > 0. In addition, |«/| and |U’| both increase as U moves

from A to B.

B

Figure 13: the trapping zone I

For OB, if there is a trajectory cross OB from right to left at s = s, then

! 0 /
U(S())—FQTJIU(S())<O
and
U(s0) + —-u(s) = 0
S0 leuso = U.
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But, according to (7.0.1),
/ v 0
U'(sg) + =—u'(so) = —[—0U(s0) — u(so)(o1 — crau(so))] + =—U(so)

2d, 2d;
0 1

= — —U(sg) — d—IU(SO)(UI — cuiu(so))

- _ i(—iu(sg)) — iu(So)(01 — criu(so))

dy
oo | () -

>0 (by the lower bound for the wave speed (7.0.4)),

which is a contradiction. This is to say, there is no trajectory cross OB from right to
left. These facts certify that I' is a trapping zone. Consequently, there must exists
a trajectory from the saddle point (u,U) = <ng1’ 0) to the stable node (u,U) = (0,0)
lying entirely in I'. The existence of the trajectory is equivalent to the existence of
solution to (7.0.1) for § > 2y/o1d;, so these shows that O,;, = 2v/01d; is indeed the

minimal wave speed.

For the Lotka-Volterra systems (1.0.7), [7] deal with the special case where d =
oc=1,a14+ay=2,a; <1,ay,>1and# > 0. They added the two equation in (1.0.7)
together to obtain

¢"+0q+q(l-q) =0,

where ¢(+00) = 1. Then the classical maximum principle yields ¢ = 1 or u+v =1
for all z € R. In fact, suppose contrary there exists zo € R with g(xy) # 1, say
q(zo9) > 1. Then for some z; € R, we have ¢(z1) = max ¢. At this point, ¢"(z1) <0,
¢ (1) =0, and ¢q(z1) > 1. Accordingly, ¢"(z1) + 0q(x1) + q(x1)(1 — ¢(z1)) < 0, which
is a contradiction. The case ¢(xy) < 1 can be shown in a similar manner. Substituting

v =1 — u into the first equation in (1.0.7) gives
u" +60u' + (1 — aqu(l —u)) =0,

which is the Fisher-Kolomogroftf equation. Employing the minimal wave speed for
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Fisher-Kolmogroff equation, 6*. = 24/1 —aq, i.e. 8 > 24/1 — a;. On the other hand,

min

it is readily seen that v satisfies

V" 4+ 0v 4+ (a2 — Nv(l —v) =0,

and the minimal wave speed is 0°. = 2y/as — 1 = 2/1 —a; = 0"

min min*
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