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摘要

我們改進了 “多維奇異值分解”及 “基於閉曲線積分的特徵值分解”。

在 “多維奇異值分解”中，我們使用不同的方式實作兩個演算法，

並提升解決巨量資料的能力。隨著資料越來越多樣，找到方法去快速

且有效得壓縮和分析資料中的多角關係對於高效能計算中是非常重要

的。我們實做了兩個已經存在的演算法：多維奇異值分解及逐步降維

多維奇異值分解將多維矩陣分解，利用 GPU來加速他們是非常困難

的，因為我們幾乎無法把資料一次放進 GPU的記憶體當中。所以我

們利用 QR和 Gram來協助我們縮減問題的大小，而我們實作 QR和

Gram是將資料分成一部份一部份來解決，這樣不但能讓 GPU有能力

處理，還能利用計算的部分遮蓋掉資料搬移的時間，最後我們相對於

原先利用 cuda函式庫時做的能加速 163.21倍，在未來希望能夠將這個

方法使用在實際問題上。

在 “基於閉曲線積分的特徵值分解”中，我們藉由基於閉曲線積分

的特徵值分解，展示了一個分治法的處理方式去解決區域中有太多的

特徵對的問題，並應用它在有機材料模擬。在許多應用上，解特徵值

分解扮演了重要的角色，這些矩陣通常都是稀疏的大矩陣，但通常實

際上我們只需要一小部分的特徵對，現在有 FEAST或 CIRR能夠幫忙

解決這類的問題，然而當區域中有許多特徵對時，會變得非常慢，所

以必須將問題切成許多小問題。決定分區雖然困難但非常重要，要讓

每個小問題都能被輕鬆解決，另外當有些特徵對收料的比較早時，原
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先的方法還是會花時間繼續迭代他們。我們介紹了兩種分區方式：藉

由預測特徵對的數量來分解、藉由先備知識來分解。我們提升解決區

域中有過多的特徵對問題，且藉由恰當的分區，分治法會比較原先的

還快，也利用凍結技巧去讓程式不要花費時間在已經收斂的特徵對上。

之後想設計一個方法能夠讓各個分區解決的時間差不多。

關鍵字： 多維陣列、多維奇異值分解、特徵值問題、凍結、閉曲線積

分、加速、巨量資料
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Abstract

We implement, accelerate, and improve “Higher-Order Singular Value

Decomposition” and “Contour Integral based Eigen Decomposition”.

In “Higher-Order Singular Value Decomposition”, we implemented two

methods with different strategies and improved the ability to solve the large

tensor problem. With the explosion of big data, finding ways of compressing

and analyzing large data sets with the multi-way relationship - i.e., tensors -

quickly and efficiently have become critical in High-Performance Comput-

ing. We implement two existed methods which are Higher-Order Singular

Value Decomposition and Sequential Truncated Higher-Order Singular Value

Decomposition to achieve Tucker Decomposition. Implementing them with

GPU is very difficult because we usually can not store the whole tensor into

GPU memory. We use QR method and Gram method to reduce the prob-

lem size to make its size allowed by GPU memory. We also implemented

QR method and Gram by part-by-part. It can help us to solve the large data

problem and use computing to cover data transferring. Finally, We achieve

163.21x speedup over a CUDA library-based solution. In the future, we want

to apply it to the real application.

In “Contour Integral based Eigen Decomposition”, we proposed a divide-

and-conquer flow to solving the certain eigenpairs in the specific region con-

taining many eigenpairs with eigensolver based on contour integral with the
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locking technique, and use it to solve the generalized eigenvalue problem from

the organic material simulation. Solving eigenvalue problems is an essential

part of many applications. Those matrices are often large and sparse, but

the eigenpairs only are required in the region of interest. Several solvers can

solve the eigenpairs in the selected region such as FEAST and CIRR. When

there are many eigenpairs in the selected region, the performance is slow, so

the partition of the region is needed. Deciding the partition is very difficult

but critical such that solving each sub-region should be efficient. When some

eigenvector is converged early, the solver still spends time on them. We intro-

duce the two partition method, uniform dividing by the estimated eigenvalue

number and dividing by domain acknowledgment. We increase the eigen-

solver ability to solve the region containing many eigenpairs and get better

performance with the proper partition. We also use the locking technique to

avoid spending the time on converged eigenpairs. In the future, we would like

to design an automatic flow to generate the partition whose sub-region spends

almost the same executing time.

Keywords: Tensor, Higher-Order Singular Value Decomposition, General-

ized Eigenvalue Problem, Locking, Contour Integral, Acceralating, Big Data
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Chapter 1

Introduction

Singular Value Decomposition displays a critical role nowadays. We can use it to extract

the critical feature and to compress the data. Singular Value Decomposition can find the

best rank-n approximation of the matrix. However, we do not just want to analysis the

bi-relationship of the data. Thus, we need to explore some ways to find the multi-way

relationship.

With the explosion of big data, finding ways of compressing and analyzing large data sets

with multi-way relationship - i.e. tensors - quickly and efficiently have become critical in

HPC. For example, we want to compress the image with RGB channels. We can use Sin-

gular Value Decomposition on each channel before. The image structure is similar in each

channel, but applying SVD on each channel is to use same feature to explain it. It leads

to the performance is not good. If we use tensor decomposition to compress the image,

it also take the relationship of color channel. It can compress the image more efficiently

than SVD.

We will introduce Tucker decomposition, which is a kind of tensor decomposition. They

areHigher-Order Singular ValueDecomposition (HOSVD) and Sequential-TruncatedHigher-

Order Singular Value Decomposition (STHOSVD). They are easier to implement and do

not need much additional knowledge about tensor.

While Higher-Order Singular Value Decomposition (HOSVD) and Sequential-Truncated

Higher-Order Singular Value Decomposition (STHOSVD) provide us with the means to

attain both extremely high compression ratio and low error rate though low-rank approx-

3
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imation, optimizing them on accelerators with limited memory is difficult.

We proposed some methods to overcome the two problems of GPU, slow performance in

SVD and the memory problem. We use QR methods to make the program not to store

whole data in the memory such that GPU can handle much larger tensor than directly im-

plementation. We try different QR method to achieve the better performance in GPU such

that the program in GPU have the competitive performance with MKL implementation.

We share our experience and findings on optimizing these algorithms on a node with mul-

tiple GPUs, and demonstrate up to 163.21× speedup over a CUDA library-based solution.

The notations used in this part of this thesis are as follows. The regular letters or Latin

letters such as a, α, denotes the scalar. The bold lower case letters, such as v, denotes

the vectors. The bold uppercase letters, such as A, denotes the matrix. The bold special

letters, such as T , denotes the tensor, We show the detail in the Table 1.1

a, α scaler

v,w vector

A,U matrix

T ,G tensor

vi the i-th element of vector

Aij orAi,j the (i, j) elemtent of matrix

Ai the i-th column vector of matrix

Ti1i2···iN the (i1, i2, · · · , iN) element of tensor

T(i) the mode-i of tensor

A(i) the i-th matrixA

Table 1.1: Notation in HOSVD part of this thesis

4
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Chapter 2

Preliminary

Tensor is a multi-dimension array. An N-way or Nth-order tensor is an element of N

vector space. For example, a vector is a first-order/1-way tensor, a matrix is a second-

order/2-way tensor, and the image with RGB color channels is a third-order/3-way tensor.

A third-order tensor whose dimension is I × J × K and elements are real number can

be express T ∈ RI×J×K . T (i, j, k) or Tijk is the element (i, j, k) of T . We show some

definition and formula of tensors, and [21] shows more detail.

2.1 Tensor Formula

Definition 2.1.1. The norm of a tensor T ∈ RI1×I2×...×IN is

∥T ∥ =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

T 2
i1i2...iN

This is analogous the matrix Frobenius norm.

Definition 2.1.2. Matricization: transforming a tensor into a matrix.

Matricization is known as unfolding or flattening. Use T(n) to express the mode-n matri-

cization of a tensor T ∈ RI1×I2×...×IN and the leading dimension of Tn is In. We map the

5
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tensor element (i1, i2, ..., iN) to matrix element (in, j) where

j = 1 +
N∑

k=1,k ̸=n

(ik − 1)Jk, with Jk =
k−1∏

m=1,m ̸=n

Im

The dimension of resulting matrix is In ×
N∏

i=1,i ̸=n

Ii

Definition 2.1.3. Tensor multiplication: the n-mode product.

Tensors can be multiplied together, but it is more complex than the matrix multiplication.

The more detail of tensor multiplication is shown in [1]. We focus the tensor n-mode

product, that is, multiplying a tensor by a matrix in mode n.

The n-mode product of a tensor T ∈ RI1×I2×...×IN and a matrix A ∈ RJ×In is a tensor

whose dimension is I1× ...× In−1× J × In+1× ...× In. we use operation ×n to express

n-mode product.

(T ×n U)i1···in−1jin+1···iN =
In∑

in=1

Ti1i2···iNU jin

The formula can be expressed in terms of flatten tensor.

S = T ×n A ⇐⇒ S(n) = AT(n)

Definition 2.1.4. Vector outer product ◦:

T = v(1) ◦ v(2) ◦ · · · ◦ v(N)

For element,

Ti1i2...iN = v(1)i1
v(2)i2
· · · v(N)

iN
∀1 ≤ in ≤ IN

We also call the tensor T as a rank-one tensor.

6
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2.2 Tucker Decomposition

The Tucker Decomposition is a form of higher order principal component analysis. It is

composed of a core n-way tensor and n matrices.

T ≈ G ×1 U
(1) ×2 U

(2) ×3 · · · ×N U (N) =

I1∑
i1

· · ·
IN∑

iN=1

Gi1...iNU
(1)
i1
◦ · · · ◦U (N)

iN

The tucker decomposition is also denoted by JG;U (1), · · · ,U (N)K, and we call G as a core
tensor and U (n) as factor matrices.

The Tucker decomposition goes by many names mentioned in [21], and they summarized

in Table 2.1

Name Proposed by

Three-mode factor analysis (3MFA/Tucker3) Tucker, 1966[35]

Three-mode principal component analysis (3MPCA) Kroonenberg and De Leeuw, 1980[22]

N-mode principal components analysis Kapteyn et al., 1986[17]

Higher-order SVD (HOSVD) De Lathauwer et al., 2000 [2]

N-mode SVD Vasilescu and Terzopoulos, 2002[37]

Table 2.1: Names for the Tucker decomposition from [21]

Remark. Tucker decomposition are not unique.

Let JG;A,B,CK is a Tucker decomposition, and U ,V ,W are not singular matrices.

Then,

JG;A,B,CK = JG ×1 U ×2 V ×3 W ;AU−1,BV −1,CW−1K

7
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Chapter 3

Methods and Results

If we wish to find a low-rank approximation to compress or extract significant features

from a large data set with the multi-way relationship, Higher-Order Singular Value de-

composition allows us to represent the original data with a core tensor, G, and a set of

factor matrices along each mode {A(i)}Ni=1.

For example, if we want to store a tensor with dimension 1024 × 1024 × 1024, we

need 10243 × 8 bytes which are approximate 8 GBs of memory. If we apply HOSVD on

this data with the rank of 256, 256, 256, we can reduce its size to a mere≈ 0.13 GB, while

retaining most of its properties like Figure 3.1.

Figure 3.1: X ≈ G ×N
i=1 A

(i)

For a general tensorX with dimensions d1×d2×· · ·×dn, we can calculate a low-rank

approximation using the following two algorithms: Algorithm 1: Higher Order Singular

Value Decomposition (HOSVD) [2] and Algorithm 2: Sequential Truncated Higher Order

Singular Value Decomposition (STHOSVD) [36]

9
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3.1 Algorithm

We show the algorithms in Algorithm 1 and Algorithm 2.

Algorithm 1 Higher Order Singular Value Decomposition (HOSVD)
Require: X , {ri}
Ensure: G, A(1), ..., A(N)

for i = 1 to N do
A(i) ← ri leading left singular vectors of X(i) ▷ X(i) is mode-i of X

end for
G = X ×1 A

(1)⊤ ×2 A
(2)⊤ ×3 ...×N A(n)⊤

return G,A(i) ▷ tensor G, matrices A(1), ..., A(N)

Algorithm 2 Sequential Truncated Higher Order Singular Value Decomposition
(STHOSVD)
Require: X , {ri}
Ensure: G, A(1), ..., A(N)

G = X
for i = 1 to N do

A(i) ← ri leading left singular vectors of G(i) ▷ G(i) is mode-i of G
G ← G ×i A

(i)⊤

end for
return G,A(i) ▷ tensor G, matricesA(1), ...,A(N)

The difference between two algorithms iswhat tensor they use in each iteration. STHOSVD

applies SVD on the truncated tensor, so the tensor dimension is reduced in each iteration.

We get the benefit of solving a smaller tensor in each iteration than HOSVD’s. In [36],

they show the detail performance and error between two algorithms. We also show the

different performance in Figure 3.8

First, we implement these two methods directly in CPU and GPU by MKL and CUDA as

our baseline. The implementation by MKL is fast, but we have some troubles in imple-

mentation by CUDA.

Remark. Unlike Singular Value Decomposition, the Tucker Decomposition from Algo-

rithm 1 and Algorithm 2 is not the best approximation. There are several algorithms to

improve the accuracy such as higher-order orthogonal iteration (HOOI) based on HOSVD

in [20].

10
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3.2 cuSOLVER SVD

When we implement the HOSVD/STHOSVD by CUDA, one of the critical bottlenecks

is calculating the rn left singular vectors of the matricized tensor. For dense tensors with

large mode lengths or large number of modes, these are extremely large matrices that will

not fit on the GPU memory. Unfortunately, SVD library provided by NVIDIA’s cuSolver

library requires that the entire data set is in memory before it can be factorized, limiting

the range of tensors that can be decomposed, and a more scalable solution is required. we

show the memory usage of data in Figure 3.2

0
10
20
30
40
50
60
70

256 512 768 1024 1280 1536 1792 2048

Gi
ga
By
te
s

Device	Memory	Usage

3-order	tensor K40 P100

out of	K40 out of	P100

Figure 3.2: CUDA SVD is failed when tensor is large

Thus, we need to find some methods on GPU to solve the memory problem of GPU.

3.3 QR method

By Definition 2.1.2, we can know the resulting matrix of matricization is usually wide

and short when the largest dimension is less than the sqrt of the total number of elements.

Even if the largest dimension is larger than the sqrt of the total number of elements, it only

leads to one mode matrix is tall-and-skinny and others still are wide-and-short. Thus, we

only focus on how to solve this problem here.

One first solution is to use QR decomposition to reduce the matrix size before finding its

singular vectors. We show the flow in Figure 3.3. The matrix is wide-and-short, so we

need to transpose it. We do not need to implement transpose if we use row-major to store

11
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the matrix in CPU. We can do SVD on the upper triangular matrix of QR factorization.

The matrix is much smaller than the original matrix so that GPU can solve its SVD.

Another thing we need to consider, that is, how to solve the QR factorization. If we still

use CUDA to solve it entirely in GPU, it still needs whole data in GPU memory, and we

face the same problem again. Thus, we need some vector-wise or block-wise QR factor-

ization methods.

Figure 3.3: QR-based method

(a) HouseholderQR (b) BlockQR (c) TSQR

Figure 3.4: Three QR method overview

12
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3.4 Householder QR

We implemented the commonly used Householder QR method in [4] which allows us to

stream the data vector-by-vector Figure 3.4(a), thereby requiring very little device mem-

ory. We show the algorithm in Algorithm 3

However, Householder QR has limitation. First, transferring the data vector-by-vector

reduces bandwidth utilization. Second, the calculation is composed mostly of BLAS-2

operations, leading to reduced compute utilization

Householder QR is good at calculating HOSVD for large tensors but is slower than cu-

Solver SVD due to lower bandwidth and computing utilization in Figure 3.5.

Algorithm 3 Householder QR
Require: A ∈ Rm×n

Ensure: U ,R
R = A
U = zeros(m,n)
for i = 1 to n do

x = R(i : m,n)
u = sign(x(1))norm(x)e1 + x
u = u/norm(u)
R(i : m, i : n) = R(i : m, i : n)− 2uu⊤R(i : m, i : n)
U(i : m, i) = u

end for
return U ,R ▷ U are householder factors andR is the upper triangular matrix of QR

1.00E+00 

1.00E+01 

1.00E+02 

1.00E+03 

1.00E+04 

1.00E+05 

Ti
m
e	
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Performance	(Householder	 QR	vs	CUDA	SVD)

HOSVD	direct	cuda	SVD

HOSVD	Householder	QR

cudaSVD	is	failed
because	tensor	is	
too	large

Better

Figure 3.5: Householder QR method can solve large tensor
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3.5 Modified Block QR

The main idea of Block QR is to compute the block-wise householder factors. We can

update the matrix by block-wise factors, and it is more efficient in GPU.

Theorem 3.5.1. A series householder matrix can be a form of (I +WY ⊤)

Proof. P (i) = I + βiu(i)u(i)
⊤
= I + v(i)u(i)⊤ is the matrix from one householder factor.

P is composed of a series P (i)

P = P (1)P (2)...P (r) = (I + v(1)u(1)⊤)(I + v(2)U (2)⊤) · · · (I + v(r)u(r)⊤)

We show that (I+WY ⊤)(I+uv⊤) = (I+Ŵ Ŷ
⊤
), for Y ,W ∈ Rn×k and u, v ∈ Rn×1

(I +WY ⊤)(I + vu⊤) = I +WY ⊤ + (I +WY ⊤)(vu⊤)

= I + [W , (I +WY ⊤v)][Y , u]⊤

= I + Ŵ Ŷ
⊤

where Ŵ = [W , (I +WY ⊤v)] ∈ Rn×(k+1) and Ŷ = [Y , u] ∈ Rn×(k+1)

We do it recursively on the series of P (i), so we can get P = (I + WY ) for some

W ,Y

In algorithm 4 line 13, there are two Mat-vec operations. However, the Blas-2 opera-

tions are slow in GPU, so we modify a little part of these codes to make it more powerful.

In algorithm 5, there are only one Mat-Mat operation (line 10) out of for-loop and one

Mat-Vec operation (line 14) in for-loop.

We replace r level-2 operation with one level 3 operation. It is more suitable in GPU than

the original one.

By using extra device memory, modified Block QR (Figure 3.4(b)) combines several

Householder factors into two matrices to increase the memory throughput. Modified

14
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Algorithm 4 Block QR
Require: A, r
Ensure: Q,R
1: Q = I
2: for k=1:n/r, s=(k-1)r+1 do
3: for j=1:r do
4: u = s+ j − 1
5: [V , β] = house(A(u : m,u))
6: A(u : m,u : s+ r − 1) = (I + βvv⊤)A(u : m,u : s+ r − 1)
7: V (:, j) = [zeros(j − 1, 1); v],b(j) = β
8: end for
9: Y = V (1 : end, 1)
10: W = b(1)V (1 : end, 1)
11: for j=2:r do
12: v = V (:, j)
13: z = (I +WY ⊤)v
14: W = [W , b(j)z],Y = [Y , v]
15: end for
16: A(s : m, s+ r : n) = (I + Y W⊤)A(s : m, s+ r : n)
17: Q(1 : m, s : m) = Q(1 : m, s : m)(I +WY ⊤)
18: end for

Algorithm 5Modified Block QR
Require: A,R
Ensure: Q,R
1: Q = I
2: for k=1:n/r, s=(k-1)r+1 do
3: for j=1:r do
4: u = s+ j − 1
5: [v, β] = house(A(u : m,u))
6: A(u : m,u : s+ r − 1) = (I + βvv⊤)A(u : m,u : s+ r − 1)
7: V (:, j) = [zeros(j − 1, 1); v],b(j) = β
8: end for
9: Y = V
10: C = V ⊤V
11: W = b(1)V (1 : end, 1)
12: for j=2:r do
13: v = V (:, j)
14: z = v+W ∗C(1 : j − 1, j)
15: W = [W , b(j)z],Y = [Y , v]
16: end for
17: A(s : m, s+ r : n) = (I + Y W⊤)A(s : m, s+ r : n)
18: Q(1 : m, s : m) = Q(1 : m, s : m)(I +WY ⊤)
19: end for

15
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Block QR has the more blas-3 operation than Householder QR. Not surprisingly, Modi-

fied Block QR is faster than Householder QR. Also, we only need some column blocks of

the matrix in GPU memory, so we can also solve larger data. However, when the matrix

is tall, the corresponding block used in modified Block QR is too skinny to utilize the

compute units fully and reduces the overall performance (much like the Household QR

case).

3.6 Tall Skinny QR

R

R

R

R

R

R

R

Figure 3.6: solve upper triangular matrix by TSQR

We can only compute the upper triangular matrix of QR factorization in Figure 3.3, so we

show how to solve it by tall skinny QR in Figure 3.6. How to solve Q matrix by TSQR

and more details are shown in [3].

TSQR is more suitable for this problem than Block QR because it splits the rows to

avoid the above situation. It divides the matrix into several square blocks in a column.

To solve the QR problem, we solve the QR factorization for two adjacent blocks indepen-

dently and combine them. Inductively, it forms the whole process.

We explored using Tall Skinny QR - TSQR (Figure 3.4(c)) to overcome the throughput is-

sues. Moreover, we do not need to solve Q of QR by TSQR, so we reduce many operations

16
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to achieve better performance. Modified Block QR and TSQR significantly improve the

performance of the HOSVD algorithm. The performance of them are shown in Figure 3.7
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Figure 3.7: Performance of HOSVD with QR methods

Modified Block QR and TSQR improve performance over the Householder QR and

cuSolver SVD methods. However, HOSVD’s performance is independent of the rank.

Even if we want just a small rank approximation of the tensor, we need to spend similar

time computing it like computing full rank approximation.

Therefore, we introduce the STHOSVDmethod that can further improve the performance,

and reduce the overall work when the rank is smaller by calculating the Tensor-Times

Matrix (TTM) step within the inner loop.
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Figure 3.8: STHOSVD vs HOSVD with different rank
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3.7 Gram Method

Besides QR methods we also use Gram method followed by eigenvalue decomposition to

solve the problem (Figure 3.9(a)). In this process, we multiply the matricized tensor by its

transpose and regard the initial SVD problem as an eigenvalue problem of Gram matrix

with smaller problem size (Figure 3.9(b)).

(a) Gram flow (b) Gram

Figure 3.9: Gram method

The block multiplications used in Gram method are independent, so we can interleave

the matrix transfer with computation to increase efficiency, and then combine it with the

STHOSVD method to increase performance. The Performance of STHOSVD is shown

in Figure 3.10
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Figure 3.10: STHOSVD: Gram method is the fastest algorithm
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3.8 Error

We generate the dense tensor with random numbers whose condition number is small, so

the accuracy of QRmethod and Grammethod are competitive in Figure 3.11. The random

generating tensor is not main structure inside itself, so the non-full rank approximation is

lower accuracy.
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Figure 3.11: Gram and QR methods have similar accuracy
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Chapter 4

Implementation

4.1 Transpose

For the QR methods, the transpose of the matrix we need to consider. However, when we

store the matrix row-major in CPU, we can do the transpose implicitly. In the memory,

the data is stored as sequential, that is, A is stored as A11A12A13 · · ·A1MA21 · · ·ANM

(row-major) in CPU memory. When we move the data to GPU sequential, the ordering of

elements is still the same. The function provided by NVIDIA is for column-major so that

the function will see the transpose ofA

In GPU view, such as Figure 4.1,



A11 A21 · · · AM1

A12 A22 · · · AM2

... . . . . . . ...

A1N A2N · · · AMN


=



A⊤
11 A⊤

12 · · · A⊤
1M

A⊤
21 A⊤

22 · · · A⊤
2M

... . . . . . . ...

A⊤
N1 A⊤

N2 · · · A⊤
NM


= A⊤
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A (row-major)

Memory

tran(A) (col-m
ajor)

Figure 4.1: the view on different major

Similarly, we can get back the V ⊤ back to GPU without transpose.

Remark. In cuSolver 8, 9.0, 9.1, 9.2, the routine cusolverDn<t>gesvd returns V ⊤ not V

for real number.

4.2 CUDA Stream

We use CUDA stream on GPU to schedule the works. The different streams are ’almost’

independent, so the GPU can do several small tasks at the same time if they can. The

stream thought is also between different GPU. If there is no constraint, the streams in

different GPUs are really independent. In Section 4.3, we use two GPU to do the updating

step at the same time. For BlockQR, Housholder QR Blas-2 operation, we also use several

streams to do it.

Remark. The streams mentioned here are not the default stream.

Whether the function can be run simultaneously in several streams of the same GPU de-

pends on the number of SM function using, or data movement, etc.

22
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4.3 Multiple GPUs

1 Build Householder Block

1 Update Matrix

Dependence: 'Update' must be after 'Build' 
                       with same number

1 1

1

1

1

1

1

1

1 1

2GPU 0

GPU 1

2

2

Figure 4.2: the idea of blockQR multigpu

Householder QR (Figure 3.4(a)) and Block QR (Figure 3.4(b)):

We implement Householder QR and Block QR block-wise. The information also

updates block-wise. These methods update simultaneously on multiple GPUs. We

make one GPU update fewer blocks than the other GPUs and solve QR factorization

of the next block when other GPUs still update the remaining blocks. We show the

idea in Figure 4.2. With this schedule, the next round updating step does not need

to wait for the QR factorization.

• TSQR (Figure 3.4(c)):

We split a matrix into several tall and skinny blocks by the number of GPUs. We use

TSQR to solve each block, so it is an independent process. And then we combine

the results together in a single matrix and apply TSQR method on this matrix.

• Gram method (Figure 3.9(b)):

We split the matrix into several small blocks. For each block, we only need to

calculate the product of its transpose and itself. The operations in each block are

independent so that we can assign those works to multiple GPUs equally.
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Figure 4.3: Scalability of multiple GPUs
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Chapter 5

Conclusion

We study and optimize four methods - Householder QR, Modified Block QR, TSQR,

and Gram method - to solve the SVD step in HOSVD and STHOSVD. QR methods im-

plemented by the vector-wise or the block-wise algorithm can solve the GPU memory

problems. Among these QR methods, TSQR is the fastest one. TSQR can ignore the

computing Q step, and it uses row block which is more suitable for our problems.

We also use another algorithm, Gram method. Among them, Gram method is the fastest

algorithm and the Simplest to implement, and provides comparable accuracy in less time

when the condition number of the tensor is small.

Although QR methods are slower than Gram method, in the case that the condition num-

ber of the original tensor is large, it may provide higher accuracy.

For the overall performance, we show it in Figure 5.1 or figure in https://goo.gl/QsovD1.
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Part II

Contour Integral based Eigenvalue

Decomposition
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Chapter 6

Introduction

Solving eigenvalue problems is an important part of many applications. Those matrices

are often large and sparse but the eigenpairs only are required in the region of interest.

Several solvers can solve the eigenpairs in selected regions such as FEAST and CIRR.

FEAST is a density-matrix-based algorithm proposed by Polizzi [27] [26], [19]. CIRR is

the Raleigh-Ritz-type approach of the contour integral eigensolver proposed by Ikegami

and Sakurai [29], [12], [13], [16]. These eigensolvers are extended to solve non-Hermitian

eigenvalue problems. The numerical analysis are shown in [16] and [26]

These eigensolvers require inputs of columns of the initial subspace. If the initial

subspace is too small, it can not solve the eigenpairs in the region of interest. There are

some algorithms for estimating the number of eigenpairs in certain region in [5], [6], and

[24]. We use the estimated number of the eigenpairs as the number of columns of ini-

tial subspace with the scale (we use 1.5 as the scale). That is, #{cols of subspace} =

⌈scale(1.5)× #{estimation}⌉. The estimated number is only used to build the initial sub-

space. Moreover, FEAST also estimates the number of the eigenpairs in second loop [26],

and it uses its estimated result in stopping criterion.

Partition of the region is a crucial part of solving generalized eigenvalue problems

by the eigensolver based on contour integral. The eigensolver based on contour integral

is a powerful tool to solve the whole eigenpairs in a given region for generalized eigen-
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value problem. In some applications, there are many eigenpairs in the region. It increases

the difficulty of the problem. We can separate the original region into several sub-regions

whose union is the original one. However, it will solve some eigenpairs repeatedly in their

intersections. Thus, the deflating technique is needed to avoid these problems. Based on

deflating technique, we introduced a divide-and-conquer method on the eigensolver based

on contour integral.

The deflating technique can remove those repeated eigenpairs we have solved. The

matrices are sparse, so we can explicitly form the deflated matrices. It will turn the ma-

trices into dense matrices. We can use Woodbury Identity Theorem to solve the linear

systems without building matrices explicitly, but it will increase the number of linear sys-

tems [7]. Locking technique [31], [28] is known as an implicit deflating technique. It may

lead the convergence problem [31], but it can decrease the number of linear systems by

removing solved vector out of the searching base. In [39], they show how to apply locking

technique in FEAST for solving Hermitian standard eigenvalue problems.

This paper discusses the dividing-and-conquer method with locking technique based

on FEAST for solving Hermitian generalized eigenvalue problems and shows how to ap-

ply the locking technique to generalized eigenvalue problems with some condition and

discuss the performance between different kinds of partition, such as auto-partition and

pre-knowledge partition. We choose the PENTF cases from [9] as our testing data. We

show the benefits of locking, and the fact that partition is helpful when solvingmuch larger

problems and sometimes accelerate the solving process.

The notations used in this part of this thesis are as follows. The regular letters or Latin

letters such as a, α, denotes the scalar. The bold lower case letters, such as v, denotes the

vectors. The bold uppercase letters, such asA, denotes the matrix. We show the detail in

the Table 6.1

30



doi:10.6342/NTU201803532

a, α scaler

v vector

A matrix

vi the i-th element of vector

Aij orAi,j the (i, j) elemtent of matrix

Ai the i-th column vector of matrix

A(i) the i-th matrixA

A[k] specified the column of matrix.

Table 6.1: Notation in CI part of this thesis
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Chapter 7

Preliminary

7.1 Eigensolver based on Contour Integral

We consider a circle in the complex plane, and we call the boundary Γ and the interior Ω

such as Figure 7.1. Eigensolver based on Contour Integral computes some equations on

the quadrature points to get the basis of the eigenpairs in the Ω. After building the basis,

we project the original matrix pairs on this basis to form a smaller generalized eigenvalue

problem than the original one. Then we solve its eigenpairs, and we can reconstruct the

eigenpairs in the interior Ω of the original matrix pair A, B. We will introduce some

algorithm in later.

Figure 7.1: Circle on complex plane
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7.2 Quadrature rules

We need to calculate the equations of the contour integral numerically. Thus, we introduce

some quadrature rules show how to build up x, w of P quadratic points for k = 1 · · ·P .

It is gotten from [39]

• midpoint rule:


xk =

2k − 1

2P

wk =
1

P

• Gauss-Chebyshev rule for the first kind:


xk =

1

2
(1 + cos(

(2k − 1)π

2P
))

wk =
2π

P
sin(

(2k − 1)π

2P
)

• Gauss-Chebyshev rule for the second kind:


xk =

1

2
(1 + cos(

kπ

P + 1
))

wk =
2π

P
sin(

kπ

P + 1
)

• Gauss-Legendre rule:


xk =

tk + 1

2

wk =
1

(1− t2k)(L
′
P (tk))

2

where tk is the k-th root of the pth Legendre polynomial LP (x)

Among these quadratic rule, the Gauss-Legendre rule (Section 7.2) is popular. MKL

FEAST and our implementation use this rule.

Remark. For using Section 7.2, we need to compute the point z on the circle boundary Γ
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θk = −
π

2
(xk − 1)

zk = c+ reiθi

wk ← −
wk

2

By theway, we implement the complexHermitian version on the eigensolver. The quadratic

point of the lower part is conjugate with those point of the upper part, and weight is not

changed.
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Chapter 8

Theorem

8.1 Deflation

The original generalized eigenvalue problem is given by

Ax = λBx

If all eigenvectors are B-orthonormal, we can use the following deflation technique.

Let a set {y}j is B-orthonormal, i.e. ,

y∗iByj =


0 i ̸= j

1 i = j

Collect those eigenvectors we have solved in S.

y is an eigenvector. Ay = λBy

Consider Ã = A+ σB(
∑
v∈S

vv∗)B∗.

If y ∈ S, then Ãy = Ay+ σB(
∑
y∈S

vv∗)B∗y = λBy+ σBy = (λ+ σ)By.

If Y /∈ S, then Ãy = Ay+ σB(
∑
v∈S

vv∗)B∗y = λBy+ 0 = λBy.

By applying such deflation technique, the eigenvectors belonging to S can be removed

from S
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8.2 Theorem

The method can be applied to these problems which satisfy the following conditions.

Condition 8.2.1.

∀{λ, x} eigenpairs,Ax = λBx ⇐⇒ A∗x = λ∗B∗x (8.1)

∀x, y, ⟨x,By⟩ = ⟨Bx, y⟩ (8.2)

Theorem 8.2.2. If Ax = λBx and A∗x = λ∗B∗x, then the eigenvectors with distinct

eigenvalues are B-orthogonal.

Proof. WriteAx = λBx andAy = µBy, which λ ̸= µ

⟨y,Ax⟩ = y∗λBx = λy∗Bx

⟨y,Ax⟩ = ⟨A∗y, x⟩

⟨A∗y, x⟩ = ⟨µ∗B∗y, x⟩ = y∗Bµx = µy∗Bx

0 = ⟨y,Ax⟩ − ⟨A∗y, x⟩ = (λ− µ)y∗Bx

λ ̸= µ, so y∗Bx = 0. i.e. they are B-orthogonal.

Note that, in this argument, condition(2) are not required.

Theorem 8.2.3. Ax = λBx, A∗x = λ∗B∗x, and ⟨x,By⟩ = ⟨Bx, y⟩. The eigenvec-

tors with identical eigenvalues can be reformulated as B-orthogonal eigenvectors with

the same eigenvalues.

Proof. By collecting independent eigenvectors with identical eigenvalues, we can recon-

struct an orthonormal eigenvector with the same eigenvalue via linear combination.

y =
r∑

i=1

aix(i)

Ay = A
r∑

i=1

aix(i) =
r∑

i=1

aiAx(i) =
r∑

i=1

aiλBx(i) = λB

r∑
i=1

aix(i) = λBy
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Thus, the eigenvalue of a linear combination of eigenvectors remains the same

One can re-scale them to make it B-orthonormal. For example, x and y are eigenvectors

with same eigenvalue. Assume ⟨x,By⟩ = k is not B-orthonormal. we denote ŷ = y−kx.

Then,

⟨x,Bŷ⟩ = ⟨x,B(y− kx)⟩ = ⟨x,By⟩ − ⟨x, kx⟩ = k − k = 0

⟨ŷ,Bx⟩ = ⟨(y− kx),Bx⟩ = ⟨y,Bx⟩ − ⟨kx, x⟩ = ⟨ atBx, y⟩ − k = k − k = 0

Theorem 8.2.4. Ax = λBx, A∗x = λ∗B∗x and ⟨x,By⟩ = ⟨Bx, y⟩. One can construct

a collection of B-orthogonal eigenvectors.

Proof. Under the Condition 8.2.1, this is the direct conclusion from previous theorems.

Theorem 8.2.5. B is and Hermitian matrix and B = LL∗. If A = LUDU∗L∗, where

U is a unitary matrix and D is a diagnol matrix, this matrix pair (A, (B)) satisfied our

conditions. That is, L−1AL∗−1 is a normal matrix.

Proof.

Ax = λBx

LMDM∗L∗x = λLL∗x

(LM)D(M∗L∗)x = λ(LM)(M∗L∗)x

Disadiagnalmatrix, soλarethediagnalvalue

A∗x = µB∗x

LMD∗M∗L∗x = µLL∗x

D∗isadiagnalmatrix, soµarethediagnalvalue

Thus, µ is conjugate of λ

8.3 Cases

1. A is a symmetric matrix, and B is a symmetric positive definite matrix.
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2. A is a Hermitian matrix, and B is a Hermitian positive definite matrix.

3. B is a Hermitian positive definite matrix, and L−1AL∗−1 is a normal matrix

These cases satisfy our condition. The eigenvalues can be complex in some cases.
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Chapter 9

Algorithm

Denote

ρ(A,B, z,w)Q =
N∑
i=1

wi(ziB −A)−1Bq

,where z and w are quadratic points shown in Section 7.2

9.1 Estimation

We choose the estimation method shown in [6] becasue its linear systems are similar with

those of FEAST(Algorithm 7). Thus, we can reuse the implementation of solving the

linear systems.

Algorithm 6 estimate the number of eigenvalue in the circle in [6]
Require: A,B, z,w
Ensure: the estimated number of eigenvalue in the circle
1: Initial the random matrix: Q
2: Approximate subspace projection: Y ← ρ(A,B, z,w)Q
3: Calculate the trace:

1

P
Q⊤Y

9.2 FEAST

The Algorithm 7 is declared in [26]. We use this algorithm as our main eigensolver.
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Algorithm 7 FEAST
Require: Q(0),A,B, z,w
Ensure: Q(k),Λ(k)

1: Set k ← 1
2: Approximate subspace projection: Y (k) ← ρ(A,B, z,w)Q(k−1)

3: Form reduced system: Â
(k)
← Y (k)∗AY (k), B̂

(k)
← Y (k)∗BY (k)

4: Solve eigenproblem: Â
(k)
X̂

(k)
= B̂

(k)
X̂

(k)
Λ̂

(k)
for Λ̂

(k)
, X̂

(k)

5: SetQ(k) ← Y (k)X̂
(k)

6: Set Λ(k) = Λ̂
(k)

7: Set k ← k + 1

9.3 Locking Technique

The locking technique is shown in [28] and the subspace iteration with locking is discussed

in [39], suggesting the case of the algorithmwhenA is a Hermitianmatrix and B is identity.

Here, we generalize such algorithm for generalized eigenvalue problem. It can apply to the

Algorithm 8 Subspace iteration with locking method
Require: Q(0),A, z,w
Ensure: Q(k),Λ(k)

1: Set k ← 1, j ← 0

2: Approximate subspace projection: Ŷ
(k)
←

[
Q

(k−1)
j , ρ(A, I, z,w)Q(k−1)

m−j

]
3: Orthonormalize the column vectors of Ŷ

(k)
=

[
Ŷ

(k)

j , Ŷ
(k)

m−j

]
into Y (k) (first j

columns will be invariant such that Y (k) =
[
Y

(k)
j ,Y

(k)
m−j

]
, which Y

(k)
j = Q

(k−1)
j ,

Y
(k)
m−j = Ŷ

(k)

m−j −Q
(k−1)
j (Q

(k−1)
j )∗Ŷ

(k)

m−j

4: Form reduced system: Â
(k)
← (Y

(k)
m−j)

∗AY
(k)
m−j

5: Solve eigenproblem:Â
(k)
X̂

(k)
= X̂

(k)
Λ̂

(k)
for Λ̂

(k)
, X̂

(k)

6: SetQ(k) ←
[
Q

(k−1)
j ,Y m−jX̂

(k)
]

7: Set Λ(k) = Λ̂
(k)

8: Test the eigenvalues for convergence. Let iconv be the number of newly converged
eigenvalues. Set j ← j + iconv.

9: Change the eigenvectors ordering in Q(k) to make Q(k)
j are the converged eignevec-

tors.
10: Set k ← k + 1

problemwith the condition Condition 8.2.1. The first j0 column ofQ(0) is the eigenvectors

solved in the previous sub-regions.
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9.4 FEAST with locking on general propose

Algorithm 9 FEAST with locking
Require: Q(0),A,B, z,w, j0
Ensure: Q(k),Λ(k)

1: Set k ← 1, j ← j0

2: Approximate subspace projection: Ŷ
(k)
←

[
Q

(k−1)
j , ρ(A,B, z,w)Q(k−1)

m−j

]
3: B-orthonormalize the column vectors of Ŷ

(k)
=

[
Ŷ

(k)

j , Ŷ
(k)

m−j

]
into Y (k) (first j

columns will be invariant such that Y (k) =
[
Y

(k)
j ,Y

(k)
m−j

]
, which Y

(k)
j = Q

(k−1)
j ,

Y
(k)
m−j = Ŷ

(k)

m−j −Q
(k−1)
j (BQ

(k−1)
j )∗Ŷ

(k)

m−j

4: Form reduced system: Â
(k)
← (Y

(k)
m−j)

∗AY
(k)
m−j , B̂

(k)
← (Y

(k)
m−j)

∗BY
(k)
m−j

5: Solve eigenproblem:Â
(k)
X̂

(k)
= B̂

(k)
X̂

(k)
Λ̂

(k)
for Λ̂

(k)
, X̂

(k)

6: SetQ(k) ←
[
Q

(k−1)
j ,Y m−jX̂

(k)
]

7: Set Λ(k) = Λ̂
(k)

8: Test the eigenvalues for convergence. Let iconv be the number of newly converged
eigenvalues Set j ← j + iconv.

9: Change the eigenvectors ordering in Q(k) to make Q(k)
j are the converged eigenvec-

tors.
10: Set k ← k + 1

When the matrices pairsA,B satisfied our condition shown before, we can use Algo-

rithm 9 to solve its generalized eigenvalue problems.

9.5 Processing Flow

We show a flexible flow in Figure 9.1, we use this flow to solve the pentacene application

problem.
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Give matrices 
and region

Generate the
partition

Collect the solved
eigenvector in this

regionNo. 
Generate partition of this region 

automatically and add them 
into partition list

Yes 
Add the converged eigenvectors

check whether the  
subspace is 

Yes, take one unsolved region

check whether the 
region is still 

unsolved 

Compute the result

Use the results to get
needed information

Figure 9.1: the processing flow
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Chapter 10

Implementation

10.1 Linear Solver

The critical part is the step for solving the linear systems, so the fast linear system is

helpful for the eigensolver based on contour integral. There are many libraries to solve

linear systems. For sparse iterative solver, MAGMA provides the solution on the GPU,

Paralution, and Petsc provides the solution on the CPU. For sparse direct solver, MUMPS,

PARDISO also provide the solution on CPU. Among them, we choose MKL Pardiso as

our solver because MKL Pardiso is robust direct solver and it is faster than other methods

in this application.

MKL Pardiso (Parallel Direct Sparse Solver) has three part to solve linear systems.

1. Analysis: Fill-reduction analysis and symbolic factorization

2. Factorize: Numerical factorization

3. Solve: Forward and Backward solve including optional iterative refinement

First, in the solve part, MKL pardiso allows us to solve transpose/hermitian part without

analyzing and factorization. It is very suitable for our application because the matrices of

the upper part and lower part are Hermitian. It can reduce almost half of solving time.

Second, becauseMKL pardiso is a direct sparse solver, we can store the factorization in the

first loop. Then, we can only do solving part in later loops. The factorization needs much

45



doi:10.6342/NTU201803532

memory, so it can not be used in huge matrices. For example, storing the factorization is

fine in PENTF20400, PENTF98736, and PENTF 183600, but it fails in PENTF734400.

MKL pardiso reduce the solving time by storing the factorization can make us focus on

the partition.

10.2 Data Structure

In the beginning time, we implement the eigensolver on GPU by MAGMA. However, we

have tried different iterative solvers for PENTF application, but their performance is not

faster than MKL pardiso due to the matrix structure. For now, we focus on the version

on CPU which is done on MKL. We write some wrapper to handle the data structure by

MAGMA. If we find some suitable iterative solver or fast direct solver on GPU, we can

move on the GPU version very quickly.

We use the CSR to store the sparse data such asA,B, and column-major to store the dense

data such as random matrices, eigenvectors. Because the function provided by NVIDIA

almost only support the column-major function, so we use column-major to reduce the

work which moving to GPU version.

10.3 Partition List

We will introduce partition in Chapter 11, we have several partition methods. Some of

them depend on the pre-knowledge, and others depend on the estimation. Formore quickly

developing, we use MATLAB to estimate the partition from the previous result, so we

need to use files to store the information. We store the center, radius, estimated number

and whether the circle is split. Storing whether the circle is split is important because one

of the algorithms needs the information to decide the residual setting. We can use it re-

peatedly and keep that the program result comes from the same list. Another benefit of the

partition list, we can draw the circle picture easily in MATLAB not C++ like Figure 11.1
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and Figure 11.2
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Chapter 11

Partition

We can use some small sub-regions to cover the given region and solve these small sub-

regions directly. A pitfall of the deflation technique is that eigenpairs in the intersection

will repeatedly be computed. To avoid such problem, one can move those eigenpairs

outside these regions.

11.1 Partition and Estimation

We use two strategies, which are auto-partition and pre-knowledge partition, to divide the

region into sub-regions. Auto partition only depends on the estimated number of eigen-

pairs, so the partition maybe is not very good. Pre-knowledge partition depends on the

eigenvalue distribution of smaller cases. We estimate the number of eigenpairs in each

sub-region. The sub-regions are not overlapped in Figure 11.1, but the sub-regions are

overlapped in Figure 11.2.

The strategies for partition:

1. Auto partition:

Calculate the estimation of the number of the eigenpairs in the region. When the

estimated number of eigenpairs in the region is larger than the allowance, divide the

region into sub-region uniformly. Check whether the estimated number of eigen-

pairs in each sub-regions are smaller than the allowance. Repeat this process until

the estimated number of eigenpairs in all sub-regions are smaller than the allowance.
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2. Pre-knowlege partition:

These cases of different sizes have similar eigenvalue distribution. Thus, we use the

distribution of smaller cases to estimate the distribution of larger ones. Moreover,

we can know the exact number of eigenpairs in [-0.42, -0.4]. There is a gap in [-0.43,

-0.42]. We only use the estimated number of eigenpairs in [-0.48, -0.43]. Combine

the information of the number of eigenpairs in each interval and the eigenvalue

distribution of smaller cases to get a proper partition.

11.2 Conquering Partition

Figure 11.1 shows the partition we compute, the number after method is the max esti-

mated number in each circle. The legends in Figure 11.1 shows ’(center) radius esti-

mated_number (actual_number)’. The strategies for overlapped partition:

1. scale(1.1):

When we use auto partition strategy to compute the partition, we scale the radius of

the middle circles by 1.1 when dividing the circle. It causes each circle will overlap

with its neighborhood.

2. conquer_s:

We found that FEAST can not solve every eigenpair in some regions with the small

number of eigenpairs. We delete the region with the smallest number of eigenpairs

and add the whole region to get the lost eigenpairs.

3. conquer_m:

First, we order the sub-regions from the least to the largest according to the estimate

of eigenpairs. Then we delete the first n-th sub-regions such that the sum of the

deleted is the largest number that smaller than the allowance.

In Figure 11.2, we show the overlapping partition. In scale(1.1) cases, we use the arrow

following by the text to specify the number in the intersection. The conquer_s and con-

quer_m partitions come from the previous no-overlapping partition with deleting some

circles and add the original circle to conquer all sub-circles.
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Partition Time (sec)

20400 23.4

98736: one 176.7

98736: auto(750) 1966.8

98736: auto(1000) 1427.2

183600: one 396.2

183600: auto(750) 9457.3

183600: auto(1000) 8150.8

734400: one 2880.2

Table 11.1: the computing time of generating list

When we use the pre-knowledge partition, we only compute the estimation of the

whole region. It is another benefit in the pre-knowledge partition.

(a) PENTF20400 (b) PENTF98736 auto(750) (c) PENTF98736 auto(1000)

(d) PENTF98736 pre(750) (e) PENTF98736 pre(1000) (f) PENTF183600 auto(750)

(g) PENTF183600 auto(1000) (h) PENTF183600 pre(750) (i) PENTF183600 pre(1000)

Figure 11.1: Partition
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(a) PENTF98736 auto(750) scale1.1 (b) PENTF98736 auto(1000) scale1.1

(c) PENTF98736 auto(750) conquer_s (d) PENTF98736 auto(750) conquer_m

(e) PENTF98736 auto(1000) conquer_s (f) PENTF98736 auto(1000) conquer_m

Figure 11.2: Overlapped Partition
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Chapter 12

Results

12.1 Application

We use PENTF matrices as our testing cases. PENTF stems from a two-dimensional thin-

film (TF) of disordered pentacene (PEN), and it is a famous organic molecule. A typical

target range of eigenvalues is [−0.4,−0.48]. Pentacene is one of most famous organic

molecules, in particular, for the organic transistor, and can be found in [8]. In [25], they

show the shows the experimental measurement of the participation ratio (PR) value, and

it is important for device property. The all eigenpairs of PENTF cases are computed by

EigenKernel [10, 15, 32] and the results are also shown in [9]. We know the exact number

of eigenpairs in [−0.43,−0.4], and it is the size of matrices
102

.

All the matrix data stem from the electronic state calculations of pentacene thin films.

The difference between them is the number of molecules in the calculated system. The

eigenvalue distribution is similar to among the matrix data when the value is normalized

by the matrix size. Consequently, the result of a smaller system can be used as the pre-

knowledge for a larger system. Since systematic research from small systems into large

systems is general in computational material science, the use of the preknowledge for large

systems is fruitful among many researches.
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(b) PENTF183600

Figure 12.1: participation ratio

12.2 Environment

We run this code on the Reedbush whose CPUs are Intel Xeon E5-2695v4 (Broadwell-EP)

with 36 threads and 2.1 GHz, and the ram is 256GB. We run the code with full threads

(36) on one CPU.

The testing matrices can be found in [9], and we choose the PENTF cases of the sizes

20400, 98736, 183600.

The given region is [−0.48,−0.4]

There are 606, 2922 and 5487 eigenpairs in [−0.48,−0.4] of PENTF 20400, PENTF

98736, and PENTF 183600. We set the residual is 10−12 in the eigensolver based on

contour integral. The correct answers are computed by the mini-application of EigenKer-

nel (https://github.com/eigenkernel)[10, 15, 32] that uses the dense-matrix solver algo-

rithm in ScaLAPACK. We plot the eigenvalue - participation ratio by correct answer and

our solver.

12.3 MKL FEAST vs FEAST vs FEAST with locking

Our implementation is similar to the algorithm of MKL FEAST. We compare the time

and the number of iteration of solving the problem in [-0.48, -0.4]. We do not know the

detail of the implementation of MKL, so the time performance of ours and MKL’s are not

comparable. We show our base implementation is viable. We also compare with FEAST

with locking to show that locking technique provides some benefits when those eigenpairs
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have different convergence rate.

time (sec) PENTF 20400 PENTF 98736 PENTF 183600

MKL FEAST 534.7 16023.6 failed

FEAST 196.8 7215.3 failed

FEAST_LOCK 102.2 5650.9 failed

Table 12.1: Performance in one region
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Figure 12.2: the benefit of locking technique

i-th iteration MKL FEAST FEAST FEAST_LOCK

0 2.51E-03 1.99E-03 1.99E-03

1 2.02E-06 1.78E-06 1.78E-06

2 1.48E-09 1.42E-09 1.42E-09

3 1.82E-12 1.59E-12 1.59E-12

4 3.32E-14 2.69E-14 1.93E-14 (1E-12)

Table 12.2: PENTF 20400: max-residual
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i-th iteration MKL FEAST FEAST FEAST_LOCK

0 5.78E-03 4.93E-03 4.93E-03

1 4.28E-06 3.78E-06 3.78E-06

2 3.27E-09 3.19E-09 3.19E-09

3 4.82E-12 4.92E-12 4.92E-12

4 1.53E-13 1.09E-13 1.07E-13 (1E-12)

Table 12.3: PENTF 98736: max-residual

The maximum residual of each iteration step is similar. All of them solve the same

number of converged eigenpairs in [-0.48, -0.4]. Although our implementation is faster

than MKL’s, it shows that our implementation can be a baseline.

12.4 Locking Effect

(a) linear systems (b) reduced eigenvalue problem

Figure 12.3: PENTF98736: detail performance

(a) linear systems (b) reduced eigenvalue problem

Figure 12.4: PENTF183600: detail performance
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12.5 Dividing Partition

Figure 12.5: Performance
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Note. EigenKernel spends 8.7 hours(31320 secs) solving PENTG183600 with 32 nodes

of Reedbush.

It fails when we use one interval [-0.48, -0.4] to solve PENTF 183600. However, when we

divide the interval into several sub-regions, we can solve this problem easily. In PENTF

98736 case, the computing time of pre-knowledge partition with four methods is shorter

than computing time of one partition, but the auto partition the two methods which store

the result of matrix factorization by MKL pardiso are faster than one partition’s.

The factorization is a heavy overhead in each iteration, so we also implement the algo-

rithms which store the matrix factorization by MKL pardiso. Although it needs more

memory to store the information, it can reduce the repeating work in each iteration. The

speed of FEAST and FEAST_LOCK provided in the different partition are faster than

solving one region.

12.6 Conquering Partition

Locking technique also works successfully on this overlapping cases. That is, we scale

the radius of the middle circle to make each sub-regions has an intersection with its neigh-

borhood. We do not solve the eigenvector done before again. This method can be used

when we doubt the eigenpairs near the boundary of the circle. Furthermore, we can use a

bigger circle to cover the smaller circle for picking up the lost eigenpairs.
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Dividing can make us solve the larger problem and sometimes accelerate the solving pro-

cess, but it sometimes fails in sub-regions. For example, in the fourth circle of auto par-

tition (750) of PENTF98736, FEAST run it in 10 iterations, but there are no eigenpairs

converged.

Conquering can help us to solve those lost eigenpairs. We introduce the conquer method

in the previous section. The conquer_s can get the lost eigenpairs successfully. The con-

quer_m get the issue of locking technique, it can not solve all lost eigenpairs due to the

locking eigenpairs numerical error. We can solve the sub-region with higher precision

(10−13), and then we solve the conquering part, which is the whole region, with 10−12. It

can avoid the locking technique convergence problem if the process can arrive the desire

residual in each circle.

PENTF 98736 Partition Converged eigenpairs

auto(750) 2922

auto(1000) 2893

conquer_s(1000) 2922

conquer_m(750) 2192

conquer_s(750) 2922

conquer_m(1000) 2631

scale(1.1)(750) 3040

scale(1.1)(1000) 2893

conquer_s(750)(different error) 2922

conquer_m(750)(different error) 2922

conquer_s(1000)(different error) 2922

conquer_m(1000)(different error) 2922

In auto(1000)method of PENTF98736, the eigensolver based onContour Integral does

not solve all eigenpairs(2922). However, we can use the conquer method to pick up the

missing eigenpairs.

58



doi:10.6342/NTU201803532

Chapter 13

Conclusion

We declare FEAST with the locking technique on the generalized eigenvalue problems

under the conditions. The locking technique is helpful inside the FEAST, and it can re-

duce the computing time of solving linear systems and compute the reduced eigenproblem

when some eigenpairs arrive the required residual early.

Dividing the partition can solve the large problem which fails on solving in only one re-

gion and sometimes can accelerate the whole process. Due to the smaller number of the

eigenpairs in each circle than the given region, the solving time in each circle is less than

one in the given region. Dividing do not ensure that the FEAST can solve all eigenpairs

in sub-regions.

Conquering is based on the locking technique, and we use it to pick up the lost eigenpairs.

FEAST might not find all eigenpairs in each sub-region by dividing, so we use a bigger

circle to cover the given region and compute the lost eigenpairs.

Pre-knowledge is important for solving the eigenvalue problems. Pre-knowledge can al-

low us only to estimate the number of eigenpairs in the given region, but we get the ex-

cellent partition. Moreover, pre-knowledge partition only contains the smallest number of

sub-regions, so we do not compute the factorization many times. Thus, we get the benefits

of pre-knowledge on both of estimation and solving part.

We introduce the strategies for dividing and conquer with locking technique, and they

work on PENTF cases well. Although the convergence problems in locking technique or

FEAST, we can use different regions to make the results better based on those eigenpairs
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we solved without the expensive cost.
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