CEES PEE L LT IR
Rt
Institute of Applied Mathematical Sciences

College of Science
National Taiwan University
Master Thesis

R EFIRE L BEAE S 47 B o M BB dh 4
TR0 0 B A 0 AR
Efficient Higher-Order Singular Value Decomposition and

Contour Integral Based Eigen Decomposition on
CPU/GPU Cluster

Yu-Hsiang Tsai

R EfEMAE L
Advisor: Weichung Wang, Ph.D.

PEEH 107 %6 A
June, 2018

doi:10.6342/NTU201803532



doi:10.6342/NTU201803532



GRS PR B WS
DRAZAGELE )

m ||[

sl g 11
EEREFARE LGRS %5 EEBEEDE

B AR 0 B E
Efficient Higher-Order Singular Value

Decomposition and Contour Integral Based Eigen
Decomposition on CPU/GPU Cluster

WA T AME (R05246003) 42 B i & % K42 i B $2 #
PHEMRTARZAETLMUBHX > RERE 107456 8 12 BAFF £
REBEDTRBBRORBAE » 45 LB

DHRLE

}é’ﬂ w%
R 2

I -3

iii

doi:10.6342/NTU201803532



v

doi:10.6342/NTU201803532



NI

B3l

BB RH RO IE IR EEA AL ARFAREGRF 0 BT
BRIAFLOTEB 0 Bl HBIRBI R ERBAEH L R ER SR KA
% IBM Thomas J. Watson Research Center 534 > 3 £ % A % $3[ 1% 04 %
A4 B4 R 0 £ Karlsruhe Institue of Technology #4571 %2 » 4L3E &
At 9 % B 5 & 3% SuperComputing 2017 (SC17) #4734 5 7 /M4 3%
FEME BRAXA LG IBM A TIAR R T X% > @R TN
B MARILTR T AN F — 3G > Mg L8 I8 H R
AR GG TR X Z R ERAAA AR ML RAT
WE)RABH LROER > L E =3RRI ML SRR - +
DRAEER R R Ao b3 S 9 BRI & 2 F o B Jeewhan Choi
# & ~ Xing Liu # & ~ Takeo Hoshi #44% » £FA % L& T R¥F S a9 5 8 -
EREBRTELLEEIRERT - BRBARAAR L2 > REHF
REERETHRAARY  EA BB EARFLEREWE kT 5 FHE

REFNBIBAI A TR AR EFARZ LG BENRE A THE LABA
R PRI ERAF Y E R A o BAF R RGHAR R AR IR 2 A 61 B
TR RREERERAXNME  LFFEEAIBZ T ERARRAE
MIRRBERZNFTF AR F » BB B R RER A B AEHE
Al BFIRAT AR © 1% > S RO ZABIA R G BY - RBRT A EAR
RAZ B B3N

doi:10.6342/NTU201803532



vi

doi:10.6342/NTU201803532



Acknowledgements

First, I am glad to thank my advisor Prof. Weichung Wang. He always
gives me a lot of resources and connections. He helps me to find some fund-
ing to support me to go aboard to visit the top research place. For example,
visit IBM Thomas J. Watson Research Center, discuss projects with the stu-
dents and professors of Tokyo University, do some researches in Karlsruhe
Institue of Technology, and attend conference SuperComputing 2017 (SC17)
to present the student poster. When he attends the speeches and meetings,
he always gives me a chance to work with the top researcher or connect my
project to different sides. I work with Dr. Jeewhan Choi and Dr. Xing Liu
in IBM to finish the first part of my thesis, and also present it on SC17. Prof.
Wang also brings the application of the second part of my thesis. He connects
my algorithm and Prof. Takeo Hoshi’s application. Thanks a lot for the mas-
sive help of Prof. Wang. Thanks to Dr. Choi, Dr. Liu and Prof. Hoshi. They
also give many advisements to me, and I also learn a lot from them. Thanks
to classmates of the same laboratory. When I face some problem, they are al-
ways enthusiastic to help me. When discussing the paper or something else,
they give their comment. I would like to thank Dung-Cheng Lin and Yen-
Chen Chen. They help a lot with my English problem. After discussing some
paragraph of the thesis, I just discovered the different meaning between what
I think and what I write. Due to their help, I can finish the thesis on time.
Finally, I'm glad to thank my family and friends. They allow I can involve

the thesis without any problems.

vii

doi:10.6342/NTU201803532



viii

doi:10.6342/NTU201803532



NI

&

BATEET “% 47 A A B R H dh AR 5 0 S E o AR o

LT REMATR F RPMERARR T X EERMEEE X
TRABAEZ AR - BETRARRES 4L > KB T xEFHRR
BREBARERHER TS AMGEN SRR T AT ESR
By o RPIEMTHECEFAYGEE L SHTEENBRES G4
S BASRN S BBy AR GPU Rpvik todr] 2 9 % H 3
o RARME T &K EH —RMiE GPU s BB E T - UK
4] B QR F= Gram 2R 1) B #1745 & Bl R 64 Ky 0 M &AM 4F QR #n
Gram &A% B8 5 i — 340 — 340 R B AR124563% GPU A #E
RIZ > EAEA A S H eI R B4 B IRAS e B R 0 kAR AR B
B A M cuda ok X R B A RE AR 163.21 1% 0 AR RA R E1E
IR RAETREAL -

F R R A B F o BB AN RS
AR BT MBS REFRXERAEEGRTAKR S W
P rE > TR AR BMES - £ 5 A L BEHAE
TRLRERTERMAE  BEERBTALMRGRER  2EFE
BRI RE T — a8 0 A A FEAST & CIRR #6938 1o
FRACHEOMAE AMEERTAF S HMHENS  e9FEFTIR A
WAsb BRI RF SR AR s R ABEEEETEL > F3%
BB P REAR AEAR SR AR L 0 AN E A A O b B T 8F 0 R

ix

doi:10.6342/NTU201803532



Sy Fh R RGBSR RMNB T RAENEFA
A O B B R A~ B At ko AR AR - R RAED
BP0 5 e P AR YN E > pikik o b ROR AL

s | |

B AR REKITEEEZAR %&‘E%aﬁaﬁ&a&uiﬁié@#%f;i# . “
Z BT — AT R RS AN ERANBNET $ - g

MSEE : SHma] - 54 B AR R - B Sk
/77\ > 7&\7% N E%;é;;i_:_"

doi:10.6342/NTU201803532



4. :"‘.‘u 1

Abstract

We implement, accelerate, and improve “Higher-Order Singular Value

Decomposition” and “Contour Integral based Eigen Decomposition”.

In “Higher-Order Singular Value Decomposition”, we implemented two
methods with different strategies and improved the ability to solve the large
tensor problem. With the explosion of big data, finding ways of compressing
and analyzing large data sets with the multi-way relationship - i.e., tensors -
quickly and efficiently have become critical in High-Performance Comput-
ing. We implement two existed methods which are Higher-Order Singular
Value Decomposition and Sequential Truncated Higher-Order Singular Value
Decomposition to achieve Tucker Decomposition. Implementing them with
GPU is very difficult because we usually can not store the whole tensor into
GPU memory. We use QR method and Gram method to reduce the prob-
lem size to make its size allowed by GPU memory. We also implemented
QR method and Gram by part-by-part. It can help us to solve the large data
problem and use computing to cover data transferring. Finally, We achieve
163.21x speedup over a CUDA library-based solution. In the future, we want

to apply it to the real application.

In “Contour Integral based Eigen Decomposition”, we proposed a divide-
and-conquer flow to solving the certain eigenpairs in the specific region con-

taining many eigenpairs with eigensolver based on contour integral with the

Xi
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locking technique, and use it to solve the generalized eigenvalue problem from
the organic material simulation. Solving eigenvalue problems is an‘esseptial
part of many applications. Those matrices are often large and sparse, I}_Et
the eigenpairs only are required in the region of interest. Several solve_fs cz‘}n :
solve the eigenpairs in the selected region such as FEAST and CIRR., When
there are many eigenpairs in the selected region, the performance is slow, so
the partition of the region is needed. Deciding the partition is very difficult
but critical such that solving each sub-region should be efficient. When some
eigenvector is converged early, the solver still spends time on them. We intro-
duce the two partition method, uniform dividing by the estimated eigenvalue
number and dividing by domain acknowledgment. We increase the eigen-
solver ability to solve the region containing many eigenpairs and get better
performance with the proper partition. We also use the locking technique to
avoid spending the time on converged eigenpairs. In the future, we would like
to design an automatic flow to generate the partition whose sub-region spends

almost the same executing time.

Keywords: Tensor, Higher-Order Singular Value Decomposition, General-

ized Eigenvalue Problem, Locking, Contour Integral, Acceralating, Big Data
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Chapter 1

Introduction

Singular Value Decomposition displays a critical role nowadays. We can use it to extract
the critical feature and to compress the data. Singular Value Decomposition can find the
best rank-n approximation of the matrix. However, we do not just want to analysis the
bi-relationship of the data. Thus, we need to explore some ways to find the multi-way
relationship.

With the explosion of big data, finding ways of compressing and analyzing large data sets
with multi-way relationship - i.e. tensors - quickly and efficiently have become critical in
HPC. For example, we want to compress the image with RGB channels. We can use Sin-
gular Value Decomposition on each channel before. The image structure is similar in each
channel, but applying SVD on each channel is to use same feature to explain it. It leads
to the performance is not good. If we use tensor decomposition to compress the image,
it also take the relationship of color channel. It can compress the image more efficiently
than SVD.

We will introduce Tucker decomposition, which is a kind of tensor decomposition. They
are Higher-Order Singular Value Decomposition (HOSVD) and Sequential-Truncated Higher-
Order Singular Value Decomposition (STHOSVD). They are easier to implement and do
not need much additional knowledge about tensor.

While Higher-Order Singular Value Decomposition (HOSVD) and Sequential-Truncated
Higher-Order Singular Value Decomposition (STHOSVD) provide us with the means to

attain both extremely high compression ratio and low error rate though low-rank approx-

3
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imation, optimizing them on accelerators with limited memory is difficult.

We proposed some methods to overcome the two problems of GPU, slow performance-in

SVD and the memory problem. We use QR methods to make the program net to, store
";,"-o,

whole data in the memory such that GPU can handle much larger tensor than fdiré‘i:tly m-

plementation. We try different QR method to achieve the better performance in‘GPU such

that the program in GPU have the competitive performance with MKL implementation.

We share our experience and findings on optimizing these algorithms on a node with mul-

tiple GPUs, and demonstrate up to 163.21 x speedup over a CUDA library-based solution.

The notations used in this part of this thesis are as follows. The regular letters or Latin

letters such as a, «, denotes the scalar. The bold lower case letters, such as v, denotes

the vectors. The bold uppercase letters, such as A, denotes the matrix. The bold special

letters, such as 7, denotes the tensor, We show the detail in the Table

a,q scaler

V, W vector

AU matrix

T,G tensor

V; the 1-th element of vector
A;jorA,;; the (i, j) elemtent of matrix

A, the i-th column vector of matrix
Titinwin the (41,19, -+ , i) element of tensor
T the mode-i of tensor

AW the i-th matrix A

Table 1.1:

Notation in HOSVD part of this thesis
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Chapter 2

Preliminary

Tensor is a multi-dimension array. An N-way or Nth-order tensor is an element of N
vector space. For example, a vector is a first-order/1-way tensor, a matrix is a second-
order/2-way tensor, and the image with RGB color channels is a third-order/3-way tensor.
A third-order tensor whose dimension is / x J x K and elements are real number can
be express T € R™>*7K_ T (i, j, k) or Ty is the element (i, j, k) of 7. We show some

definition and formula of tensors, and [21] shows more detail.

2.1 Tensor Formula

Definition 2.1.1. The norm of a tensor 7 € R *[2X-xIn g

L I In
ITH=\D"D > Tiin
i1=112=1 in=1

This is analogous the matrix Frobenius norm.

Definition 2.1.2. Matricization: transforming a tensor into a matrix.
Matricization is known as unfolding or flattening. Use 7, to express the mode-n matri-

cization of a tensor 7~ € R/ /2% *IN and the leading dimension of 7,, is I,,. We map the

5
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tensor element (71, 7o, ..., )y ) to matrix element (i,,, j) where

N k—1
J=1+ Y (x—DJwith o= [[ In
k=1,k#n m=1,m#n :—:
N
The dimension of resulting matrix is 7,, X H I;
i=1,i#n

Definition 2.1.3. Tensor multiplication: the n-mode product.

Tensors can be multiplied together, but it is more complex than the matrix multiplication.
The more detail of tensor multiplication is shown in [[I]]. We focus the tensor n-mode
product, that is, multiplying a tensor by a matrix in mode n.

The n-mode product of a tensor 7 € R/ >*/2XXIN and a matrix A € R7*!" is a tensor
whose dimension is /; X ... X I, _1 X J X I,11 X ... X I,. we use operation X, to express

n-mode product.

In
(T X0 Uiy 1 jing1in = E Tivizin U ji,

in=1

The formula can be expressed in terms of flatten tensor.

S:TXnA g S(n):A'ﬁn)

Definition 2.1.4. Vector outer product o:

T — v o y® 6. oy

For element,

We also call the tensor 7 as a rank-one tensor.
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2.2 Tucker Decomposition

The Tucker Decomposition is a form of higher order principal componént ahalysis. “It is

composed of a core n-way tensor and n matrices.

=
A

I In ' 3
1 N
T% g X1 U(l) X9 U(2) Xg oo XNU(N) — Z Z gil---iNUil) o...oUZ(,N)
i in=1
The tucker decomposition is also denoted by [G; U W W )]], and we call G as a core

tensor and U ™ as factor matrices.

The Tucker decomposition goes by many names mentioned in [21]], and they summarized

in Table

Name Proposed by

Three-mode factor analysis (3MFA/Tucker3) Tucker, 1966[35]

Three-mode principal component analysis (3MPCA) Kroonenberg and De Leeuw, 1980[22]

N-mode principal components analysis Kapteyn et al., 1986[|17]
Higher-order SVD (HOSVD) De Lathauwer et al., 2000 [2]
N-mode SVD Vasilescu and Terzopoulos, 2002[37]

Table 2.1: Names for the Tucker decomposition from [21]

Remark. Tucker decomposition are not unique.
Let [G; A, B,C] is a Tucker decomposition, and U,V , W are not singular matrices.
Then,

[G;A,B,C]| =[G x1U x, V xs W; AU ', BV~ CW™!]

doi:10.6342/NTU201803532
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Chapter 3

Methods and Results

If we wish to find a low-rank approximation to compress or extract significant features
from a large data set with the multi-way relationship, Higher-Order Singular Value de-
composition allows us to represent the original data with a core tensor, G, and a set of

factor matrices along each mode { AV |

For example, if we want to store a tensor with dimension 1024 x 1024 x 1024, we
need 1024° x 8 bytes which are approximate 8 GBs of memory. If we apply HOSVD on
this data with the rank of 256, 256, 256, we can reduce its size to a mere =~ 0.13 GB, while

retaining most of its properties like Figure [3.1.

Figure 3.1: X ~ G x, A®

For a general tensor X’ with dimensions d; X ds X - - - X d,,, we can calculate a low-rank
approximation using the following two algorithms: Algorithm [[: Higher Order Singular
Value Decomposition (HOSVD) [2] and Algorithm P: Sequential Truncated Higher Order
Singular Value Decomposition (STHOSVD) [36]

9
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3.1 Algorithm

We show the algorithms in Algorithm [[] and Algorithm [.

Algorithm 1 Higher Order Singular Value Decomposition (HOSVD)
Require: X, {r;}
Ensure: G, A" ... AN

fori =1to N do

AD r; leading left singular vectors of A{; > X;) is mode-i of X
end for
G =X x; ADT X o AT X3 .o XN AT
return G, A > tensor G, matrices A1), ..., AN

Algorithm 2 Sequential Truncated Higher Order Singular Value Decomposition
(STHOSVD)

Require: X, {r;}

Ensure: G, AW ... AW

G=2X

for: =1to N do
A « 1, leading left singular vectors of G > G is mode-i of G
G Gx; AV

end for

return G, AY > tensor G, matrices AW, ..., AW

The difference between two algorithms is what tensor they use in each iteration. STHOSVD
applies SVD on the truncated tensor, so the tensor dimension is reduced in each iteration.
We get the benefit of solving a smaller tensor in each iteration than HOSVD’s. In [36],
they show the detail performance and error between two algorithms. We also show the
different performance in Figure
First, we implement these two methods directly in CPU and GPU by MKL and CUDA as
our baseline. The implementation by MKL is fast, but we have some troubles in imple-

mentation by CUDA.

Remark. Unlike Singular Value Decomposition, the Tucker Decomposition from Algo-
rithm [l| and Algorithm 2 is not the best approximation. There are several algorithms to
improve the accuracy such as higher-order orthogonal iteration (HOOI) based on HOSVD

in [20]].

10
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3.2 cuSOLVER SVD

When we implement the HOSVD/STHOSVD by CUDA, one of the crltlcal };\ lfg_é\(\i‘ks:____

‘)

is calculating the r,, left singular vectors of the matricized tensor. For dense ﬁrﬁ’é:ﬂl ||With_._
large mode lengths or large number of modes, these are extremely large matrlLEs ha’t w111
not fit on the GPU memory. Unfortunately, SVD library provided by NVIDIA’S cuSolver
library requires that the entire data set is in memory before it can be factorized, limiting
the range of tensors that can be decomposed, and a more scalable solution is required. we

show the memory usage of data in Figure

Device Memory Usage

60 out of K40 out of P100

w b U
o O O

GigaBytes

N
o

256 512 768 1024 1280 1536 1792 2048

=
o

o

B 3-order tensor K40 —P100
Figure 3.2: CUDA SVD is failed when tensor is large

Thus, we need to find some methods on GPU to solve the memory problem of GPU.

3.3 QR method

By Definition 2.1.2, we can know the resulting matrix of matricization is usually wide
and short when the largest dimension is less than the sqrt of the total number of elements.
Even if the largest dimension is larger than the sqrt of the total number of elements, it only
leads to one mode matrix is tall-and-skinny and others still are wide-and-short. Thus, we
only focus on how to solve this problem here.

One first solution is to use QR decomposition to reduce the matrix size before finding its
singular vectors. We show the flow in Figure B.3. The matrix is wide-and-short, so we

need to transpose it. We do not need to implement transpose if we use row-major to store

11
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the matrix in CPU. We can do SVD on the upper triangular matrix of QR factorization.

e
[l r.l ...ﬂ

The matrix is much smaller than the original matrix so that GPU can solyéwv

"//

’.‘.
B

Another thing we need to consider, that is, how to solve the QR factorizatio

TR 5] i

use CUDA to solve it entirely in GPU, it still needs whole data in GPL".L.'m&w

¥ N /G
. . .y =~ &)
face the same problem again. Thus, we need some vector-wise or block-wise factor-
ORIl

ization methods.

A FTranspose> AT —QR— Q SVDonR> Q

V is leading singular matrix

Figure 3.3: QR-based method

(a) HouseholderQR (b) BlockQR (c) TSQR

Figure 3.4: Three QR method overview

12
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3.4 Householder QR

EEET

" - I
33 B .

ory. We show the algorithm in Algorithm 3

However, Householder QR has limitation. First, transferring the data Vector-'by vector
reduces bandwidth utilization. Second, the calculation is composed mostly of BLAS-2
operations, leading to reduced compute utilization

Householder QR is good at calculating HOSVD for large tensors but is slower than cu-

Solver SVD due to lower bandwidth and computing utilization in Figure B.3.

Algorithm 3 Householder QR
Require: A € R™*"
Ensure: U, R
R=A
U = zeros(m,n)
fori=1tondo
x=R(i:m,n)
u = sign(x(1))norm(x)e; + x
u = u/norm(u)
R(i:m,i:n)=R(:m,i:n)—2uu' R(i:m,i:n)
U(i:m,i)=nu
end for
return U, R > U are householder factors and R is the upper triangular matrix of QR

Performance (Householder QR vs CUDA SVD)

1.00E+05
cudaSVDis failed

too large

1.00E+04 because tensor is
1.00E+03

B HOSVD direct cuda SVD
1.00E+02

= HOSVD Householder QR
1.00E+01 II II I I
1.00E+00

<:>

Time (sec.)

Better

\q/ 43@ (,)Q) 63\{1/ )O, 7,»"; NS ’L \rtb (ﬁDQJ
¢ & f17 ¥ o W 7
DA RN AR RN AR

Figure 3.5: Householder QR method can solve large tensor
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3.5 Modified Block QR

The main idea of Block QR is to compute the block-wise householder factors. We ean

update the matrix by block-wise factors, and it is more efficient in GPU. ":T

Theorem 3.5.1. A series householder matrix can be a form of (I + WY ")

Proof. PV =1 + ﬁiu(i)u(")T =1+ vOu® " is the matrix from one householder factor.

P is composed of a series PO
P=PUPO__p0 — (1 +vWy® )1+ voau® Ty (I +vu® "y
We show that (I+ WY ) (I+uv’) = (I+ WY ), for Y, W € R"™* andu, v € R"¥!

IT+WYDIT+vu")=T+WY ' +(IT+WY")(vu')
=TI+ W, (I+WY V)Y, u’

I+ WY

where W = [W, (I+ WY 'v)] e R™*FDand Y = [V, u] € R™**+D
We do it recursively on the series of P(i), so we can get P = (I + WY) for some
WY O

In algorithm H line [L3], there are two Mat-vec operations. However, the Blas-2 opera-
tions are slow in GPU, so we modify a little part of these codes to make it more powerful.
In algorithm [, there are only one Mat-Mat operation (line [L0) out of for-loop and one
Mat-Vec operation (line [14) in for-loop.
We replace r level-2 operation with one level 3 operation. It is more suitable in GPU than
the original one.
By using extra device memory, modified Block QR (Figure B.4(b)) combines several

Householder factors into two matrices to increase the memory throughput. Modified

14
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Algorithm 4 Block QR

Require: A, r
Ensure: Q, R
Q=1
2: for k=1:n/r, s=(k-1)r+1 do

3 for j=1:r do

4 u=s+7—1

5 [V, B8] = house(A(u : m,u))

6: Alu:myu:s+r—1) =T+ Bvw)A(u:m,u:s+r—1)
. V(.J) = [zeros(j — 1, 1); v},b(j) = 5

8 end for

9: Y =V(1:end,1)

10: W =b(1)V(1:end,1)

11: for j=2:r do

12: v=V(,j)

13: z=(T+WY")v

14: W =[W, b(jz,Y =[Y, v]

15: end for

16: A(s:m,s+r:n)=T +YW")A(s:m,s+7:n)
17: Q(1l:m,s:m)=Q(1:m,s:m)(I+WY")

18: end for

Algorithm 5 Modified Block QR

Require: A/ R

Ensure: Q, R

Q=1

2: for k=1:n/r, s=(k-1)r+1 do

3: for j=1:r do

4: u=s+7—1

5: [v, 5] = house(A(u : m,u))

6: Aw:mu:s+r—1)= T +pBvw )A(u:m,u:s+r—1)
% V(o)) = [zeros(j — 1,1); v, b(j) = 8

8: end for

9: Y=V

1: C=V'V

11: W =b(1)V(1:end,1)

12: for j=2:r do

13: v=V(,j)

14: z=v+W=xC(1:j—1,7)

15: W =W, b(jz,Y =Y, V|

16: end for

17: A(s:m,s+r:n)=T+YW)A(s:m,s+r:n)
18: Q(l:m,s:m)=Q(l:m,s:m)(I+WY")

19: end for

15
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Block QR has the more blas-3 operation than Householder QR. Not surprisingly, Modi-
fied Block QR is faster than Householder QR. Also, we only need some Column"bld'éks_ of
the matrix in GPU memory, so we can also solve larger data. However, when;t;]:.l_ﬁ:mlatnx

== ||

ufthizs the
W &

is tall, the corresponding block used in modified Block QR is too skinny: t(lpl

compute units fully and reduces the overall performance (much like the Household QR

case).

3.6 Tall Skinny QR

____________ \N_—_-———

Figure 3.6: solve upper triangular matrix by TSQR

We can only compute the upper triangular matrix of QR factorization in Figure .3, so we
show how to solve it by tall skinny QR in Figure B.6. How to solve Q matrix by TSQR

and more details are shown in [3].

TSQR is more suitable for this problem than Block QR because it splits the rows to
avoid the above situation. It divides the matrix into several square blocks in a column.
To solve the QR problem, we solve the QR factorization for two adjacent blocks indepen-
dently and combine them. Inductively, it forms the whole process.

We explored using Tall Skinny QR - TSQR (Figure B.4(c)) to overcome the throughput is-

sues. Moreover, we do not need to solve Q of QR by TSQR, so we reduce many operations

16
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to achieve better performance. Modified Block QR and TSQR significantly improve the
(il o

1.00E+05

1.00E+04

1.00E+01

1.00E+00

Performance

Rank of problem has small o
influence on performance B HOSVD a SVD
B HOSVD Householder QR
m HOSVD TSQR
I HOSVD BlockQR
Il s
© Q s
7@ 7{](’3 2V 7(0\ 2 ' 7%\ 7 7 > Better
& & G & '3 v ¥ > ¥ ¥ o
) ({9 N N \Q'L N \Qq, v "],Qb‘ q,Qb( q,gb( >

Figure 3.7: Performance of HOSVD with QR methods

Modified Block QR and TSQR improve performance over the Householder QR and

cuSolver SVD methods. However, HOSVD’s performance is independent of the rank.

Even if we want just a small rank approximation of the tensor, we need to spend similar

time computing it like computing full rank approximation.

Therefore, we introduce the STHOSVD method that can further improve the performance,

and reduce the overall work when the rank is smaller by calculating the Tensor-Times

Matrix (TTM) step within the inner loop.

Low Rank Effort
compared with 1024->1024 compared with 2048->1024
2.5

Better

B HOSVD BlockQR
= STHOSVD BlockQR

Figure 3.8: STHOSVD vs HOSVD with different rank
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3.7 Gram Method

Besides QR methods we also use Gram method followed by eigenvalue_;.\;.l.

solve the problem (Figure B.9(a)). In this process, we multiply the matrt_bl? g 1

with smaller problem size (Figure B.9(b)).

A X |AMT —=Gram—| M —Eig~>{ X x| A x| X*

oo
7

X is leading singular matrix

(a) Gram flow (b) Gram

Figure 3.9: Gram method

The block multiplications used in Gram method are independent, so we can interleave
the matrix transfer with computation to increase efficiency, and then combine it with the

STHOSVD method to increase performance. The Performance of STHOSVD is shown
in Figure

STHOSVD Performance
m STHOSVD MKL SVD

1.00E+03 B STHOSVD direct cuda

SVD
1.00E+02 B STHOSVD BlockQR
STHOSVD Gram

W STHOSVD BlockQR
with 2 GPUs
I | B STHOSVD Gram with
I 2 GPUs
S S R K S
U X N~ N Q% ¥ N
7"\ 7‘1, ,,"[, 7‘0 N a %)

7 e
© © J ; W v
q:’-) rf? 63\(1’ 6\(1' \61/ N

1.00E+01

Time (Sec.)

1.00E+00

1.00E-01 I

]
Q) > ©
§ v A
7 Ay A

" o o o o o Better
FY KK

Figure 3.10: STHOSVD: Gram method is the fastest algorithm
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3.8 Error

We generate the dense tensor with random numbers whose condition ng‘igp

lower accuracy.

1.00E-01
1.00E-03
1.00E-05
1.00E-07
1.00E-09
1.00E-11
1.00E-13
1.00E-15

Relative Error

cc,
»

Accuracy

‘I“ (T ‘||| mEEE I‘II ““ I“ HEEE
’\

,,
%
N4

A
b(
& »

N7

7 i
@\ 3

& v
'f? R\ \9'”

B HOSVD TSQR
B STHOSVD MKL SVD
ESTHOSVD CUDA SVD
W STHOSVD BlockQR
STHOSVD Gram
& Better

Figure 3.11: Gram and QR methods have similar accuracy
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Chapter 4

Implementation

4.1 Transpose

For the QR methods, the transpose of the matrix we need to consider. However, when we
store the matrix row-major in CPU, we can do the transpose implicitly. In the memory,
the data is stored as sequential, that is, A is stored as A;1 A2 A3 A1pAoy - Any
(row-major) in CPU memory. When we move the data to GPU sequential, the ordering of
elements is still the same. The function provided by NVIDIA is for column-major so that

the function will see the transpose of A

In GPU view, such as Figure #.1],

Ay Ay - A A, AL, - A]y
Ap Ap - Amp _ A2T1 A;—2 A2TM :AT
|Aiv Aon - Aun _AEl Ayy o A;M_
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Memory

A (row-major) v
____________ )

=

€« >

(1oleus-|00){)uBA

D il o

Figure 4.1: the view on different major

Similarly, we can get back the V' ' back to GPU without transpose.

Remark. In cuSolver 8, 9.0, 9.1, 9.2, the routine cusolverDn<t>gesvd returns VinotV

for real number.

4.2 CUDA Stream

We use CUDA stream on GPU to schedule the works. The different streams are *almost’
independent, so the GPU can do several small tasks at the same time if they can. The
stream thought is also between different GPU. If there is no constraint, the streams in
different GPUs are really independent. In Section §.3, we use two GPU to do the updating
step at the same time. For BlockQR, Housholder QR Blas-2 operation, we also use several

streams to do it.

Remark. The streams mentioned here are not the default stream.
Whether the function can be run simultaneously in several streams of the same GPU de-

pends on the number of SM function using, or data movement, etc.
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4.3

Multiple GPUs

1) Build Householder Block Y
E Dependence: 'Update' must be after '‘Build'
' with same number
Y
1 | Update Matrix

GPUO (1|1 |1 |1 | ----- 1 1 2|2

GPU 1 1011 ----- 1112

Figure 4.2: the idea of blockQR multigpu

Householder QR (Figure B3.4(a)) and Block QR (Figure B.4(b)):

We implement Householder QR and Block QR block-wise. The information also
updates block-wise. These methods update simultaneously on multiple GPUs. We
make one GPU update fewer blocks than the other GPUs and solve QR factorization
of the next block when other GPUs still update the remaining blocks. We show the
idea in Figure #.2. With this schedule, the next round updating step does not need

to wait for the QR factorization.

TSQR (Figure B.4(c)):
We split a matrix into several tall and skinny blocks by the number of GPUs. We use
TSQR to solve each block, so it is an independent process. And then we combine

the results together in a single matrix and apply TSQR method on this matrix.

Gram method (Figure B.9(b)):
We split the matrix into several small blocks. For each block, we only need to
calculate the product of its transpose and itself. The operations in each block are

independent so that we can assign those works to multiple GPUs equally.
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Scalability
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Figure 4.3: Scalability of multiple GPUs
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Chapter 5

Conclusion

We study and optimize four methods - Householder QR, Modified Block QR, TSQR,
and Gram method - to solve the SVD step in HOSVD and STHOSVD. QR methods im-
plemented by the vector-wise or the block-wise algorithm can solve the GPU memory
problems. Among these QR methods, TSQR is the fastest one. TSQR can ignore the
computing Q step, and it uses row block which is more suitable for our problems.

We also use another algorithm, Gram method. Among them, Gram method is the fastest
algorithm and the Simplest to implement, and provides comparable accuracy in less time
when the condition number of the tensor is small.

Although QR methods are slower than Gram method, in the case that the condition num-
ber of the original tensor is large, it may provide higher accuracy.

For the overall performance, we show it in Figure 5. 1| or figure in https: //goo.gl/QsovD1.
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All Performance
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Figure 5.1: All Performance
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Part 11

Contour Integral based Eigenvalue

Decomposition
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Chapter 6

Introduction

Solving eigenvalue problems is an important part of many applications. Those matrices
are often large and sparse but the eigenpairs only are required in the region of interest.
Several solvers can solve the eigenpairs in selected regions such as FEAST and CIRR.
FEAST is a density-matrix-based algorithm proposed by Polizzi [27] [26], [19]. CIRR is
the Raleigh-Ritz-type approach of the contour integral eigensolver proposed by Ikegami
and Sakurai [29], [[12], [13], [16]. These eigensolvers are extended to solve non-Hermitian

eigenvalue problems. The numerical analysis are shown in [[16] and [26]

These eigensolvers require inputs of columns of the initial subspace. If the initial
subspace is too small, it can not solve the eigenpairs in the region of interest. There are
some algorithms for estimating the number of eigenpairs in certain region in [5], [6], and
[24]. We use the estimated number of the eigenpairs as the number of columns of ini-
tial subspace with the scale (we use 1.5 as the scale). That is, #{cols of subspace} =
[scale(1.5) x #{estimation}|. The estimated number is only used to build the initial sub-
space. Moreover, FEAST also estimates the number of the eigenpairs in second loop [26],

and it uses its estimated result in stopping criterion.

Partition of the region is a crucial part of solving generalized eigenvalue problems
by the eigensolver based on contour integral. The eigensolver based on contour integral

is a powerful tool to solve the whole eigenpairs in a given region for generalized eigen-
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value problem. In some applications, there are many eigenpairs in the region. It increases
the difficulty of the problem. We can separate the original region into several sub-t€gions
whose union is the original one. However, it will solve some eigenpairs repeatedly in their
intersections. Thus, the deflating technique is needed to avoid these problems Based on
deflating technique, we introduced a divide-and-conquer method on the elgensolver based

on contour integral.

The deflating technique can remove those repeated eigenpairs we have solved. The
matrices are sparse, so we can explicitly form the deflated matrices. It will turn the ma-
trices into dense matrices. We can use Woodbury Identity Theorem to solve the linear
systems without building matrices explicitly, but it will increase the number of linear sys-
tems [[7]. Locking technique [31], [28] is known as an implicit deflating technique. It may
lead the convergence problem [31]], but it can decrease the number of linear systems by
removing solved vector out of the searching base. In [39], they show how to apply locking

technique in FEAST for solving Hermitian standard eigenvalue problems.

This paper discusses the dividing-and-conquer method with locking technique based
on FEAST for solving Hermitian generalized eigenvalue problems and shows how to ap-
ply the locking technique to generalized eigenvalue problems with some condition and
discuss the performance between different kinds of partition, such as auto-partition and
pre-knowledge partition. We choose the PENTF cases from [9] as our testing data. We
show the benefits of locking, and the fact that partition is helpful when solving much larger

problems and sometimes accelerate the solving process.

The notations used in this part of this thesis are as follows. The regular letters or Latin
letters such as a, «, denotes the scalar. The bold lower case letters, such as v, denotes the

vectors. The bold uppercase letters, such as A, denotes the matrix. We show the detail in

the Table
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a, o scaler

v vector

A matrix =
v; the i-th element of vector :
AjjorA;; the (i, j) elemtent of matrix

A, the 1-th column vector of matrix

A the i-th matrix A

Ay specified the column of matrix.

Table 6.1: Notation in CI part of this thesis
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Chapter 7

Preliminary

7.1 Eigensolver based on Contour Integral

We consider a circle in the complex plane, and we call the boundary I" and the interior €2
such as Figure [7.1. Eigensolver based on Contour Integral computes some equations on
the quadrature points to get the basis of the eigenpairs in the 2. After building the basis,
we project the original matrix pairs on this basis to form a smaller generalized eigenvalue
problem than the original one. Then we solve its eigenpairs, and we can reconstruct the
eigenpairs in the interior €2 of the original matrix pair A, B. We will introduce some

algorithm in later.

Image axis

r

Real axis

Figure 7.1: Circle on complex plane
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7.2 Quadrature rules

We need to calculate the equations of the contour integral numerically. Thus,#ve¢ introduce:

some quadrature rules show how to build up x, w of P quadratic points foi k:;:’;l -

It is gotten from [39]

midpoint rule:

2k —1
X et
k 2P
1
Wi :F

Gauss-Chebyshev rule for the first kind:

1 2k —1
xp =-(1+ cos(( i

2 2P )
W, = 2 sin(@]{:z%)ﬂ)

* Gauss-Chebyshev rule for the second kind:

1 T
=—(1
X = 5(1+cos(5o)
Wy = 2n sin( hm )
A T |
* Gauss-Legendre rule:
tr +1
X =
" 2
1
W, =

(1 =6 (Lp (1))

where ¢, is the k-th root of the pth Legendre polynomial Lp(z)

Among these quadratic rule, the Gauss-Legendre rule (Section [7.2) is popular. MKL

FEAST and our implementation use this rule.

Remark. For using Section [7.2, we need to compute the point z on the circle boundary T
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Wi < ———
2

By the way, we implement the complex Hermitian version on the eigensolver. The quadratic
point of the lower part is conjugate with those point of the upper part, and weight is not

changed.

35

doi:10.6342/NTU201803532



36

doi:10.6342/NTU201803532



Chapter 8

Theorem

8.1 Deflation

The original generalized eigenvalue problem is given by
Ax = ABx

If all eigenvectors are B-orthonormal, we can use the following deflation technique.

Let a set {y}, is B-orthonormal, i.e. ,

y;By; =

Collect those eigenvectors we have solved in S.
y is an eigenvector. Ay = \By
Consider A = A + O'B(Z v )B™.

vesS

Ify € S, then Ay = Ay + O'B(Z v )B*'y = ABy + 0By = (A + o) By.
yeSs
IfY ¢ S, then Ay = Ay + 0B() _vv*)B'y = ABy + 0 = ABy.
vesS

By applying such deflation technique, the eigenvectors belonging to S can be removed

from S
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8.2 Theorem

The method can be applied to these problems which satisfy the following,conditions:

4. :"‘.‘u 1

Condition 8.2.1.

V{\, x} eigenpairs, Ax = ABx <= A"x = \"B"x (8.1)

vx,y, (x, By) = (Bx,y) (8.2)

Theorem 8.2.2. If Ax = A\Bx and A*x = \'B’X, then the eigenvectors with distinct

eigenvalues are B-orthogonal.

Proof. Write Ax = ABx and Ay = By, which A # p

(y, AX) = y*"ABx = \y"Bx
(y; Ax) = (A%y, x)
(A%y,x) = (1" B"y,x) = y"Bux = uy" Bx
0= (y,Ax) — (A"y,x) = (A — p)y"Bx

A # 1, s0y*Bx = 0. i.e. they are B-orthogonal.

Note that, in this argument, condition(2) are not required. [

Theorem 8.2.3. Ax = ABx, A*x = \N'B™x, and (x, By) = (Bx,y). The eigenvec-
tors with identical eigenvalues can be reformulated as B-orthogonal eigenvectors with

the same eigenvalues.

Proof. By collecting independent eigenvectors with identical eigenvalues, we can recon-

struct an orthonormal eigenvector with the same eigenvalue via linear combination.

y= zr: a;x")
i=1

Ay = AZT: a;xV = ZT: a; Ax?) = XT: a;ABx" = \B z’”: a;x¥ = ABy
i=1 i=1 i=1 i=1
38
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Thus, the eigenvalue of a linear combination of eigenvectors remains the same
One can re-scale them to make it B-orthonormal. For example, x and y are-eigenvectors

with same eigenvalue. Assume (x, By) = k is not B-orthonormal. we dengte = -+ /x.
";,"-o,

Then,
(x,By) = (x, By — kx)) = (x, By) — (x,kx) =k — k=0
(y, Bx) = ((y — kx), Bx) = {y, Bx) — (kx,x) = (atBx,y) —k=k -k =0 N

Theorem 8.2.4. Ax = ABx, A*x = \*"B*x and (x, By) = (BX,y). One can construct

a collection of B-orthogonal eigenvectors.

Proof. Under the Condition B.2.1], this is the direct conclusion from previous theorems.

]

Theorem 8.2.5. B is and Hermitian matrix and B = LL*. If A = LU DU*L*, where
U is a unitary matrix and D is a diagnol matrix, this matrix pair (A, (B)) satisfied our

conditions. Thatis, LY AL*"' is a normal matrix.

Proof.
Ax = ABx
LMDM*L*x = ALL*x
(LM)D(M*L*)x = A\(LM)(M*L"*)x
Disadiagnalmatrix, solarethediagnalvalue
A*x = uB*x
LMD*M*L*x = uLL*z
D*isadiagnalmatrix, soparethediagnalvalue
Thus, p is conjugate of A O

8.3 Cases

1. A is a symmetric matrix, and B is a symmetric positive definite matrix.
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2. A is a Hermitian matrix, and B is a Hermitian positive definite matrix.

3. B is a Hermitian positive definite matrix, and L' AL*"" is a normal paldtrix

. .. : . | R
These cases satisfy our condition. The eigenvalues can be complex in some Cldse_%.-
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Chapter 9

Algorithm

Denote

N
p(A, B,z,w)Q = Zwi(ziB — A)"'Bq
i=1

,where z and w are quadratic points shown in Section

9.1 KEstimation

We choose the estimation method shown in [(]] becasue its linear systems are similar with
those of FEAST(Algorithm [). Thus, we can reuse the implementation of solving the

linear systems.

Algorithm 6 estimate the number of eigenvalue in the circle in [6]
Require: A, B,z,w
Ensure: the estimated number of eigenvalue in the circle

1: Initial the random matrix: @

2: Approximate subspace projection: Y <« p(A, B,z,w)Q

1
3: Calculate the trace: FQTY

9.2 FEAST

The Algorithm [7 is declared in [26]. We use this algorithm as our main eigensolver.
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Algorithm 7 FEAST
Require: Q. A, B,z w
Ensure: Q" AP
1: Setk + 1
: Approximate subspace projection Y(k) — p(A, B,z,w)Q(k_l) (B
) | >

: Form reduced system: A <— Yy Ay ® B( ) — Y( BY ¥

® _ BYExWAY for A®, x™

: Set QW YW x ™
- Set AW = A(k)

2

3

4: Solve eigenproblem: A X
5

6

7: Setk <+ k+1

9.3 Locking Technique

The locking technique is shown in [28] and the subspace iteration with locking is discussed
in [39], suggesting the case of the algorithm when A is a Hermitian matrix and B is identity.

Here, we generalize such algorithm for generalized eigenvalue problem. It can apply to the

Algorithm 8 Subspace iteration with locking method

Require: Q¥ Az, w
Ensure: Q%) A®
I: Setk <+ 1,7+ 0

2: Approximate subspace projection: Y(k) — [Qg-k_l), p(A 1 z W)Qgs:;)]

3: Orthonormalize the column vectors of Y(k) = [Y Ym J} into Y(k) (first j
columns will be invariant such that Y*) = [ng), Y( } which Y Q§k‘l),
Y, =L -l ety

4: Form reduced system: AY (ng)_j)*AYgf)_]

5: Solve eigenproblem:A(k)X *_ X (k)f\(k) for A(k), X *)

6 Set QP « [QV v, X" }

7. Set AW = A(k)

8: Test the eigenvalues for convergence. Let i.,,, be the number of newly converged
eigenvalues. Set j < 7 + icono-

9: Change the eigenvectors ordering in Q"™ to make Qg.k) are the converged eignevec-
tors.

10: Setk + k+1

problem with the condition Condition B.2.1. The first j, column of QY isthe eigenvectors

solved in the previous sub-regions.
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9.4 FEAST with locking on general propose

Algorithm 9 FEAST with locking
Require: Q" A, B, z,w, j,
Ensure: Q) A%

1: Setk < 1,5 < 7

2: Approximate subspace projection: Y(k) — [Qg-k_l),p(A B,z W)ng:;)}

k) (k)

3: B-orthonormalize the column vectors of Y(k) = [Y Y ] into Y™ (first j

m—j

columns will be invariant such that Y*) = Yg.k), Yﬁ,’fi j} , which Y§.k) = Q§k*1),

an ) = Y( ) ng—l)(Bng—1)>* C
4: Form reduced system A(k) e (Ygf)_ )*AYm s B(k) — (Ygf)_J)*BYgf)_j

5: Solve elgenproblemA X =B X A for A", X
6 Set Q¥ « [Q¥ Vv, JX"”}

7. Set AW = A(k)

8: Test the eigenvalues for convergence. Let i.,,, be the number of newly converged
eigenvalues Set j < 7 + icone-

9: Change the eigenvectors ordering in Q™ to make Qg-k) are the converged eigenvec-
tors.

10: Setk < k+1

When the matrices pairs A, B satisfied our condition shown before, we can use Algo-

rithm [ to solve its generalized eigenvalue problems.

9.5 Processing Flow

We show a flexible flow in Figure P.1|, we use this flow to solve the pentacene application

problem.
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Yes
Add the converged eigenvectors

Compute the result

check whether the
subspace is

Figure 9.1: the processing flow
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Chapter 10

Implementation

10.1 Linear Solver

The critical part is the step for solving the linear systems, so the fast linear system is
helpful for the eigensolver based on contour integral. There are many libraries to solve
linear systems. For sparse iterative solver, MAGMA provides the solution on the GPU,
Paralution, and Petsc provides the solution on the CPU. For sparse direct solver, MUMPS,
PARDISO also provide the solution on CPU. Among them, we choose MKL Pardiso as
our solver because MKL Pardiso is robust direct solver and it is faster than other methods
in this application.

MKL Pardiso (Parallel Direct Sparse Solver) has three part to solve linear systems.
1. Analysis: Fill-reduction analysis and symbolic factorization
2. Factorize: Numerical factorization
3. Solve: Forward and Backward solve including optional iterative refinement

First, in the solve part, MKL pardiso allows us to solve transpose/hermitian part without
analyzing and factorization. It is very suitable for our application because the matrices of
the upper part and lower part are Hermitian. It can reduce almost half of solving time.

Second, because MKL pardiso is a direct sparse solver, we can store the factorization in the

first loop. Then, we can only do solving part in later loops. The factorization needs much
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memory, so it can not be used in huge matrices. For example, storing the factorization is
fine in PENTF20400, PENTF98736, and PENTF 183600, but it fails in PENTE734400:
MKL pardiso reduce the solving time by storing the factorization can make ys\foeils on

the partition.

10.2 Data Structure

In the beginning time, we implement the eigensolver on GPU by MAGMA. However, we
have tried different iterative solvers for PENTF application, but their performance is not
faster than MKL pardiso due to the matrix structure. For now, we focus on the version
on CPU which is done on MKL. We write some wrapper to handle the data structure by
MAGMA. If we find some suitable iterative solver or fast direct solver on GPU, we can
move on the GPU version very quickly.

We use the CSR to store the sparse data such as A, B, and column-major to store the dense
data such as random matrices, eigenvectors. Because the function provided by NVIDIA
almost only support the column-major function, so we use column-major to reduce the

work which moving to GPU version.

10.3 Partition List

We will introduce partition in Chapter [L1l, we have several partition methods. Some of
them depend on the pre-knowledge, and others depend on the estimation. For more quickly
developing, we use MATLAB to estimate the partition from the previous result, so we
need to use files to store the information. We store the center, radius, estimated number
and whether the circle is split. Storing whether the circle is split is important because one
of the algorithms needs the information to decide the residual setting. We can use it re-
peatedly and keep that the program result comes from the same list. Another benefit of the

partition list, we can draw the circle picture easily in MATLAB not C++ like Figure [11.1]
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and Figure
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Chapter 11

Partition

We can use some small sub-regions to cover the given region and solve these small sub-
regions directly. A pitfall of the deflation technique is that eigenpairs in the intersection
will repeatedly be computed. To avoid such problem, one can move those eigenpairs

outside these regions.

11.1 Partition and Estimation

We use two strategies, which are auto-partition and pre-knowledge partition, to divide the
region into sub-regions. Auto partition only depends on the estimated number of eigen-
pairs, so the partition maybe is not very good. Pre-knowledge partition depends on the
eigenvalue distribution of smaller cases. We estimate the number of eigenpairs in each
sub-region. The sub-regions are not overlapped in Figure [[1.1], but the sub-regions are

overlapped in Figure [11.2).

The strategies for partition:

1. Auto partition:
Calculate the estimation of the number of the eigenpairs in the region. When the
estimated number of eigenpairs in the region is larger than the allowance, divide the
region into sub-region uniformly. Check whether the estimated number of eigen-
pairs in each sub-regions are smaller than the allowance. Repeat this process until

the estimated number of eigenpairs in all sub-regions are smaller than the allowance.
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2. Pre-knowlege partition:
These cases of different sizes have similar eigenvalue distribution. Thus, weUse the
distribution of smaller cases to estimate the distribution of larger ones, M_Igreover,
we can know the exact number of eigenpairs in [-0.42, -0.4]. There is a g_ép ;'1‘.%1“[-:0.43,
-0.42]. We only use the estimated number of eigenpairs in [-0.48, -0.43I].. Combine
the information of the number of eigenpairs in each interval and the eigenvalue

distribution of smaller cases to get a proper partition.

11.2 Conquering Partition

Figure [11.1] shows the partition we compute, the number after method is the max esti-
mated number in each circle. The legends in Figure [I1.1 shows ’(center) radius esti-

mated number (actual number)’. The strategies for overlapped partition:

1. scale(1.1):
When we use auto partition strategy to compute the partition, we scale the radius of
the middle circles by 1.1 when dividing the circle. It causes each circle will overlap

with its neighborhood.

2. conquer_s:
We found that FEAST can not solve every eigenpair in some regions with the small
number of eigenpairs. We delete the region with the smallest number of eigenpairs

and add the whole region to get the lost eigenpairs.

3. conquer m:
First, we order the sub-regions from the least to the largest according to the estimate
of eigenpairs. Then we delete the first n-th sub-regions such that the sum of the
deleted is the largest number that smaller than the allowance.
In Figure [11.2], we show the overlapping partition. In scale(1.1) cases, we use the arrow
following by the text to specify the number in the intersection. The conquer s and con-
quer_m partitions come from the previous no-overlapping partition with deleting some

circles and add the original circle to conquer all sub-circles.
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Partition Time (sec)

20400 23.4

98736: one 176.7
98736: auto(750) | 1966.8

98736: auto(1000) | 1427.2

183600: one 396.2
183600: auto(750) 9457.3
183600: auto(1000) 8150.8

734400: one 2880.2

Table 11.1: the computing time of generating list

When we use the pre-knowledge partition, we only compute the estimation of the

whole region. It is another benefit in the pre-knowledge partition.

o0 PENTF20400 00,  PENTF98736 auto(750) 004,  PENTFO8736 auto(1000)

00 o0z ——(-0.47500, ©) 0.00500: 354.4 ( 345)
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o0 o2 00 ——C0.42500, 0) 0.00500: 393.6 C 399)
— Co.41875, 0) 0.00125: 732.8 € 730)
— Co.1625, 0 0.00125: 592.9 ( 599
oo 00t o0 ——Co.nzs0, 0) 0.0a50: 700 C 72)
%48 046 044 0s2 04 %48 046 044 0@ 04 48 046 04+ 042 04 |——(-0.40500, 0) 0.00500: 0.0 C 0)
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Figure 11.1: Partition
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Figure 11.2: Overlapped Partition
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Chapter 12

Results

12.1 Application

We use PENTF matrices as our testing cases. PENTF stems from a two-dimensional thin-
film (TF) of disordered pentacene (PEN), and it is a famous organic molecule. A typical
target range of eigenvalues is [—0.4, —0.48]. Pentacene is one of most famous organic
molecules, in particular, for the organic transistor, and can be found in [8]. In [25], they
show the shows the experimental measurement of the participation ratio (PR) value, and
it is important for device property. The all eigenpairs of PENTF cases are computed by

EigenKernel [|10, 15, 32] and the results are also shown in [9]. We know the exact number
the size of matrices

102 '
All the matrix data stem from the electronic state calculations of pentacene thin films.

of eigenpairs in [—0.43, —0.4], and it is

The difference between them is the number of molecules in the calculated system. The
eigenvalue distribution is similar to among the matrix data when the value is normalized
by the matrix size. Consequently, the result of a smaller system can be used as the pre-
knowledge for a larger system. Since systematic research from small systems into large
systems is general in computational material science, the use of the preknowledge for large

systems is fruitful among many researches.
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(a) PENTF98736 (b) PENTF183600

Figure 12.1: participation ratio

12.2 Environment

We run this code on the Reedbush whose CPUs are Intel Xeon E5-2695v4 (Broadwell-EP)
with 36 threads and 2.1 GHz, and the ram is 256GB. We run the code with full threads
(36) on one CPU.

The testing matrices can be found in [9], and we choose the PENTF cases of the sizes
20400, 98736, 183600.

The given region is [—0.48, —0.4]

There are 606, 2922 and 5487 eigenpairs in [—0.48, —0.4] of PENTF 20400, PENTF
98736, and PENTF 183600. We set the residual is 1072 in the eigensolver based on
contour integral. The correct answers are computed by the mini-application of EigenKer-
nel (https://github.com /eigenkernel)[|10, 15, 32] that uses the dense-matrix solver algo-
rithm in ScaLAPACK. We plot the eigenvalue - participation ratio by correct answer and

our solver.

12.3 MKL FEAST vs FEAST vs FEAST with locking

Our implementation is similar to the algorithm of MKL FEAST. We compare the time
and the number of iteration of solving the problem in [-0.48, -0.4]. We do not know the
detail of the implementation of MKL, so the time performance of ours and MKL’s are not
comparable. We show our base implementation is viable. We also compare with FEAST

with locking to show that locking technique provides some benefits when those eigenpairs
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have different convergence rate.

| :_-,.,_ {
A

time (sec) PENTF 20400 | PENTF 98736 | PENTF 183'6_0_|U )
MKL FEAST 534.7 16023.6 failed .
FEAST 196.8 7215.3 failed
FEAST LOCK 102.2 5650.9 failed

Table 12.1: Performance in one region

PENTF 20400: benefit of locking technique

rrrrrrrrrr

(2) PENTF20400

PENTF 98736: benefit of locking technique

1400
— 1200

1000

28342834

—— niar

(b) PENTF98736

Figure 12.2: the benefit of locking technique

i-th iteration | MKL FEAST | FEAST | FEAST LOCK
0 2.51E-03 1.99E-03 1.99E-03
1 2.02E-06 1.78E-06 1.78E-06
2 1.48E-09 1.42E-09 1.42E-09
3 1.82E-12 1.59E-12 1.59E-12
4 3.32E-14 2.69E-14 | 1.93E-14 (1E-12)

Table 12.2: PENTF 20400: max-residual
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i-th iteration | MKL FEAST | FEAST | FEAST_LOCK
0 STSE-03 | 4.93E-03 | 4.93E-03
I 428E-06 | 378E-06 | 378E-06 .| [
2 327609 | 310809 | 319800 || ||
3 482E-12 | 492E-12 |  492E-12
4 1.53E-13 | 1.09E-13 | 1.07E-13 (1E-12)

Table 12.3: PENTF 98736: max-residual

The maximum residual of each iteration step is similar. All of them solve the same
number of converged eigenpairs in [-0.48, -0.4]. Although our implementation is faster

than MKL?’s, it shows that our implementation can be a baseline.

12.4 Locking Effect

.....

i
0
2500 3000 3500 4000 4500 (] 500 1000 1500 2000 2500
# {columns of RHS} dimension

(a) linear systems (b) reduced eigenvalue problem

Figure 12.3: PENTF98736: detail performance

Computing time per quadratic point 2 Computing time of solving reduced general eigenvalue problem

(a) linear systems (b) reduced eigenvalue problem

Figure 12.4: PENTF183600: detail performance
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12.5 Dividing Partition

Figure 12.5: Performance

PENTF 98736 Performance PENTF 183600 Perfoemance,
12000 40000 il

= 10000 __ 35000

g $ 30000
T 8000 T e
¢ 2 25000
6000 00
2 4000 g 15000
g % 10000
8 2000 S 000
0 ]

uto (750) 0 (1000) re (750) e (1000) uto (750) auto (1000)  (1000)

partitior

MFEAST WFEAST_LOCK M FEAST (storels) M FEAST_LOCK(storels) WFEAST MFEAST_LOCK M FEAST (storels) M FEAST_LOCK (storels)

(a) PENTF 98736 (b) PENTF 183600

Note. EigenKernel spends 8.7 hours(31320 secs) solving PENTG183600 with 32 nodes
of Reedbush.

It fails when we use one interval [-0.48, -0.4] to solve PENTF 183600. However, when we
divide the interval into several sub-regions, we can solve this problem easily. In PENTF
98736 case, the computing time of pre-knowledge partition with four methods is shorter
than computing time of one partition, but the auto partition the two methods which store
the result of matrix factorization by MKL pardiso are faster than one partition’s.

The factorization is a heavy overhead in each iteration, so we also implement the algo-
rithms which store the matrix factorization by MKL pardiso. Although it needs more
memory to store the information, it can reduce the repeating work in each iteration. The
speed of FEAST and FEAST LOCK provided in the different partition are faster than

solving one region.

12.6 Conquering Partition

Locking technique also works successfully on this overlapping cases. That is, we scale
the radius of the middle circle to make each sub-regions has an intersection with its neigh-
borhood. We do not solve the eigenvector done before again. This method can be used
when we doubt the eigenpairs near the boundary of the circle. Furthermore, we can use a

bigger circle to cover the smaller circle for picking up the lost eigenpairs.
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Dividing can make us solve the larger problem and sometimes accelerate the solving pro-
cess, but it sometimes fails in sub-regions. For example, in the fourth circle of-auto par=
tition (750) of PENTF98736, FEAST run it in 10 iterations, but there arg nd ei_gbenpairs
converged. ‘ "

Conquering can help us to solve those lost eigenpairs. We introduce the conqﬁer method
in the previous section. The conquer_s can get the lost eigenpairs successfully. The con-
quer_m get the issue of locking technique, it can not solve all lost eigenpairs due to the
locking eigenpairs numerical error. We can solve the sub-region with higher precision
(107'3), and then we solve the conquering part, which is the whole region, with 107'2. Tt

can avoid the locking technique convergence problem if the process can arrive the desire

residual in each circle.

PENTF 98736 Partition Converged eigenpairs
auto(750) 2922
auto(1000) 2893

conquer_s(1000) 2922
conquer_m(750) 2192
conquer_s(750) 2922
conquer_m(1000) 2631
scale(1.1)(750) 3040
scale(1.1)(1000) 2893
conquer_s(750)(different error) 2922
conquer_m(750)(different error) 2922
conquer_s(1000)(different error) 2922
conquer_m(1000)(different error) 2922

In auto(1000) method of PENTF98736, the eigensolver based on Contour Integral does
not solve all eigenpairs(2922). However, we can use the conquer method to pick up the

missing eigenpairs.
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Chapter 13

Conclusion

We declare FEAST with the locking technique on the generalized eigenvalue problems
under the conditions. The locking technique is helpful inside the FEAST, and it can re-
duce the computing time of solving linear systems and compute the reduced eigenproblem
when some eigenpairs arrive the required residual early.

Dividing the partition can solve the large problem which fails on solving in only one re-
gion and sometimes can accelerate the whole process. Due to the smaller number of the
eigenpairs in each circle than the given region, the solving time in each circle is less than
one in the given region. Dividing do not ensure that the FEAST can solve all eigenpairs
in sub-regions.

Conquering is based on the locking technique, and we use it to pick up the lost eigenpairs.
FEAST might not find all eigenpairs in each sub-region by dividing, so we use a bigger
circle to cover the given region and compute the lost eigenpairs.

Pre-knowledge is important for solving the eigenvalue problems. Pre-knowledge can al-
low us only to estimate the number of eigenpairs in the given region, but we get the ex-
cellent partition. Moreover, pre-knowledge partition only contains the smallest number of
sub-regions, so we do not compute the factorization many times. Thus, we get the benefits
of pre-knowledge on both of estimation and solving part.

We introduce the strategies for dividing and conquer with locking technique, and they
work on PENTF cases well. Although the convergence problems in locking technique or

FEAST, we can use different regions to make the results better based on those eigenpairs
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we solved without the expensive cost.
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