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Abstract

In 1995, Windham came out with an idea of weighted distribution in his
thesis, Robustifying Model Fitting, and he used the idea to find a mean esti-
mator when there are outliers in the original data. There is a tuning parameter
in this estimator, and selecting the parameter will affect the mean estimate in
the same data. In the same thesis, he also suggested a criterion of selecting
the tuning parameter, but we found out that this criterion wasn’t doing well
in some simulations. Considering the problem, we propose another criterion
which can derive a better mean estimator. Besides, we can also apply this

method to clustering problem.

Keywords: robust estimate, influence function, gamma-divergence, cluster-

ing
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Chapter 1

Introduction

1.1 What is Robust?

Maximum likelihood estimate (MLE) or method of moments are most common way to
estimate parameter. Under some regularity conditions, maximum likelihood estimator is
consistent. That is, the probability of the estimator converging to the true parameter is 1,
as the number of samples goes to infinity. However, finite sample or outliers may hinder
the consistent property of the estimate. We can think this through the fundamental spirit of
maximizing the likelihood. The likelihood function is defined as the product of the density
of the observed data (assume i.1.d.) including outliers. Considering this, it is unreasonable
to maximize the likelihood for those outlier terms. And if there are more outliers or the
outliers are further far away from the true data, the influence on the estimator become
larger. For example, considering a normal distribution model, the maximum likelihood
estimator for mean is the sample mean. This estimator can become arbitrary large if we
add distant data points in the sample (Figure 1.1). Thus, we say that sample mean is not
robust. Another common mean estimator, median, needs over half of the data points to
have effect on the estimator, hence is robust. We may want to know how many portions
of data can influence the estimator, or how much a data point influence the estimator, thus

following are some measurements often used for quantify robustness.
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Figure 1.1: median, mean, robustified mean

Measurement of Robustness

¢ Influence function (Hampel, 1968) is defined as

[F(: T, F)  tim DL = )F + 0}~ T(F)

e—0 £

Y

where F' is the distribution function, 7'(F') is the parameter estimator, and 0, (u) is
a heaviside step function, which is 0 when u < z, and is 1 otherwise.
This definition means that we perturbate the distribution at a point x, and have in-

terest in the variation rate of the estimator.

» Gross-error sensitivity is defined as

Y(T,F) =sup|[[F(z; T, F)|,
~v*(T, F) is the supreme of the absolute value of influence function, which measures
the worst influence a data point can make on the estomator.

2
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* Breakdown point is defined as
e* =inf{e : sup |T'(F) — T'(F.)| = oo},

where F. = (1 — ¢)F + €0,.

Let’s give an example. Suppose F'is the distribution, then sample mean can be expressed

as T(F') = [ udF. Hence the influence function of T'(F’) is

[T, F) = lim A= 9F + 0.} = T(F)

e—0 £

. Jud((1—e)F +¢d,) — [udF

= lim
e—0 )
dd, — dF
T R St K — 2~ T(F)
e—0 g

The gross-error sensitivity is
VT, F) = sup [ F(z; T, F)|| = sup ||z — T(F)|| = o0,

which is the worst case in the view of robustness.

And the breakdown point of sample mean is

e =inf{e: sgp |T(F) —T(F.)| = oo} = inf{e : sup|e(x — T(F))| = o0} =0,

T

which is also the worst case.
Now, we figure out that sample mean is not robust, so next section is some ideas to get

robust.

1.2 How to get Robust?

One way to get robust is to improve maximum likelithood estimator, since it is maximum

likelihood type, we called it M-estimator.
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1.2.1 M-estimator

* MLE: min ) —log f(z;; ), where f is the density function.

Generalized MLE: min » | p(z;; 0), where p can be any function.

* If p(z; 0) is differentiable with respect to 6, then the M-estimator is to solve

Er[y(x;0)] =

where 1 (z; ) = 2 8”;9 is the score function.

* The influence function of the M-estimator
Let T'(F') be the M-estimator with Eg[¢(x; T(F))] = 0, for all distributions F.
Hence,

Ep.[¢p(z; T(F))] = 0

To derive influence function, take derivative with respect to ¢,
s Er [z T(FL))] =0
= L [(u; T(F.))d((1 — e)F(u) + €d,) =0

If the integration and differentiation can be interchanged, then

= [ £ (w T(F.))d((1 — ) F(u) +2d,)} = 0
= [ ({0 T(F))}d((1 — &) F(u) + &6,) + ¢ (u; T(F))d(L{(1 — &) F(u) + £d,})) =
= [ (5w 0))o=rr)dF-(u) - Z[T(F)] + ¢(u; T(FL))d(6, — F(u))) =0
= [ (5510w 0)lo=r(m)dF (u) - Z[T(F))e=o + ¢ (u; T(F))d(8, — F(u))) =
Note that 2 [T'(F.)].—o = I F(z;T, F) and
J (T (F))d(, — F(u)) = t(z; T(F)), we have

. _ Y(z;T(F))
[F(@;T,F) = — [ &5 (w0)lo=r(r)dF (u)
Figure 1.2 shows various score functions of location estimators 6, and 6 = 0.
Huber estimator (1964) is an M-estimator with score function ¢y (x; #) = max(—k, min(k, z—

6)), the black line is for £ = 1. And Windham estimator (1995) is also an M-estimator

with ¢.(x;0) = e+ Lexp(—§(z — 0)*)(x — 0), the red curve is for ¢ = 0.5 and blue
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curve is for ¢ = 1.

For different function p(x; ) or ¥ (z; ), the estimator derived has different robustness.
This property can be implicated by Figure 1.2, traditional score function of MLE ¢ (z; 0) =
x — 0, the dashed line, counts every point = and going to arbitrary large when = goes to

infinity, while other robustified estimators don’t.

SCORE FUNCTION

~ 4
/  non-robust estimator

_ — Huber-estimator
with k=1

\» . Windham-estimator

— ——_with c=0.5

Figure 1.2: Score function of estimator, assuming the location parameter is 0.

1.2.2 Weighted data

Another way to get robust is to weight the data such that the point more likely to happen
has higher weight, and less likely to happen has lower weight. So, thinking a weight with
such property, one can immediately came up with density function, and Windham gave an
extra exponent ¢ to the power of the density function. For example, data {xy, zo, ..., 2, }
are from normal distribution /' with mean 0 and unknown variance 6, then its weight

function is

w(zi; 0) = K¢(z:;0),

where ¢ 1s the normal density function with mean 0 in the model, ¢ is a fixed exponent
term, K is a constant so that the sum of weight is 1.

Note that weighting density is to change the frequency of data points, not the value of data.
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Hence, the weighted sample variance is

v = Zw(mi; 0)x?
And the weighted population variance is

vt = /xzw*(x;9)¢(x; 0)dzx,

where

w*(z;0) = K*¢(x;0), (1.1)

K* = [[ ¢°(x;0)dF]™! = Ep[¢°(x;0)]! is a constant. In this model dF' = ¢(x;0)dx,
hence [w*(z;0)dF = [ w*(z;0)¢(x;0)dr = 1. Notice that w*(x; 0)p(x; ), called the
weighted density function, and is same as the normal density with mean 0 and variance
v* = 0/(c + 1). If the model is correct, v* and v should be close. Thus, using these
relations, we can derive the robust estimate of parameter 6.

Also, there is a exponent term ¢, which can adjust weight and hence called tuning param-
eter. Windham (1995)[3] studied in how to select this parameter and called this method
Robust Model Fitting. In this thesis, we propose another method of selection and do re-

search with it.

1.3 Why need to do this question?

Past robust model, such as Huber estimate (1964)[2], Windham (1995)[3] estimate, and
Akifumi Notsu, Shinto Eguchi (2016)[1] Gamma-clust robust estimate, there are tuning
parameters. Tuning parameters will affect the robustness of the model (Figure 1.2). In
Windham’s model, parameter ¢ determines the weight of each point. Selection of ¢ is im-
portant when doing clustering analysis, since larger the ¢ becomes, more robust the model
will be, and number of clusts will closer to the number of data points; on the contrary,
smaller the ¢ becomes, less robust the model will be, and number of clusts will go to 1.

In general, there is a reasonable interval to choose the parameter, and usually is selected

6
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subjectively. By using influence function and Fisher information, we give a objective

selection criterion, and more details can be seen in chapter 3.
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Chapter 2

Literature Review

2.1 Normal Robust Model

We use a simple example to elaborate Windham’s iterative algorithm estimates. Assume
there are 400 samples {z1, z, ..., T400}, and among of them, there are 340 samples are
from N(u,0?), p = 0,0% = 1 and the rest are outliers around py* = 7. We want to

estimate ;. and variance o2,

* First step : Find initials.

Use sample mean and sample variance (MLE in normal distribution) as initials.

&I

f=7=099, 6% = 1S (z;, — )% =7.19

» Second step : Weight data.
w; = w(ws, i1, 0%) = K¢(zy; 1, 6%), ¢ is chosen to be 0.37, ¢ is normal density

400 i q
i wiis 1.

function, and K is a constant such that >
Similarly, we use MLE on the weighted data, and get,

* Third step : Find the non-weighted parameters such that we can get 77 and 52 in
second step after weighting.
That is, if the model is correct, which is satisfied normal distribution with den-

sity ¢(x; p, 0%) assumption, then the weighted density is K*¢“™!(z; i, 02), which

9
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Iteration i 52
0.993392 7.191821
0.4594806 5.380773
0.2499072 3.751013

0.09685292  2.415905

-0.01083447 1.445184

-0.05552865 1.044782

-0.06715192 0.9457484

-0.07040669 0.9195676

-0.07137085 0.912215

O 00 3 N i B W N —

Table 2.1: Estimates for /1 and 62.

is ¢(x;pu,0%/(c + 1)). Thus, we can revise the new parameters to ji, = m =

0.45, 63 = 1.37§* = 5.38.

* Fourth step : Repeat step 1 to 3, until the estimates converge. In other words, replace

fi and 6% by new estimates /i, and 62 until they converge (Table 2.1).

2.2  General Description

We now use mathematical way to describe the example above. In the beginning, we ob-
serve that there are n one dimension data, {1, xs, ..., z,,} from the distribution F', and its
empirical distribution is 7. T'(F) is a parameter estimator, and T'(F') = (Z, L5 (w;—x)?)
is the maximum likelihood case. And note that 7'( F') satisfies Er[¢(x; T'(F'))] = 0, where
1 is the score function of 7'(F'). Moreover, Windham defined weighted distribution as
dF,.(z) = w*(x;t)dF (), where w*(x;t) = K*g°(x;t), g is the density in the model,
K* = {Ep[g°(x;t)]} ", and here we assume g is normal. If we plug F into F, then

~

dF, (x) = w*(z;t)dF (x), where w* (z;t) = K*¢°(x;t), and K* = {Ez[g°(z; )]} L.

10
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Hence, the second step is,

T(F,,) = (1, 8%) = ( / zdF,,, / (z —1h)2dF,,)
= / W (x;t)xdF, / W (x — m)2dF)

N NS TS S O B

= (Z W5 sz(% - m)Q)a

where w; = w(x;;t) = %
Next, we want to know the difference of the estimates between the weighted model and

non-weighted one. Hence, assume that the normal density of F' is g(x; i, 0%), We have,

J 9 @y p, 0?)xde
[ 9=t (s p,02)dr

/w*(x;,u,o*Q)xdF =

[ @no) o= mfar = [w ot - pidr

[ (@, 0?) (@ — p)?da
gt (s p,0?)dx

From the formula above, we know that mean is unchanged and the variance is multiplied
by (chr_l) in the weighted model. Therefore, a function 7 is defined to transform the esti-

mator between weighted and non-weighted distribution,
(ma §2) = T(la+> 6'—2&-) = (ﬂ+7 63—/(1 + C))

(fur,6%) = 77" (1, 8%) = (1, (1 + €)57)

~

For N > 0,19 =T(F),
(N = 7Y T(F, )}

11
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is an iterative procedure. And the Windham robustified estimate (WRE) T,(F') is hence

defined as Tc(ﬁ’ )= 0, where 0 is the estimate from the last iteration.

2.3 Selection Criterion

T.isasolution of Ep[w*(z;0)1(x; 7(0))] = 0, hence is an M-estimator, the corresponding
score function is

Ve(w;0) = w*(x;0)(x, 7(0)) (2.1)

Let h(t) = 7~ Y{T(F.,)}, if the process converges, we will have 1(#) = 6. Hence,

Ep, [lr; {h(t)}]] = 0

Take derivative with respect to ¢, and derive the convergence rate 2/ (¢).

0

B gl T{h(O)})] = 0

= 2 Bl (@: )fa; T{h(H] =0

= el (i) vlai (O + uGast) ol (o} )] =0

O(z;7(h(t))) 07 (h(1)) Oh(t)
or(n(t))  on(t) ot

= Bplew (z:£)(2 log g(z; ) 7(h(t)))] + Erlw® ;1)

ot |=0

where 2w (z;t) = cw* (z;t) (2 log g(; t))

When it is about to converge, i.e. h(t) = t,

1(0) = B [ PN B [0l (0) 5 (og i)

 cEp[§(log g(a;t))te(; 1)]

- sl e 1)\ OV (5T or
Epfw* (z; ) 2525 250

_ —cEp[g; (log g(x:1))ve(w; 1)]
Erli(z;t)] — Erlew*(x;t)2 (log g(x; ) (z; 7(1))]

_ —cEp[§(log g(a; t))e(a; )] Ep[l ;1)) !

I — cEp[Z(log g(a; t))e(; )] Ep [y (; 1))

= cB(t){I +cB(t)} 1,

12

doi:10.6342/N'TU201900783



Since

OY(x; 7(t)
TT, (22)

ilast) = 5o ) = cu (ait) (5 Tog gl () +u” (e )

ot

where B(t) = —Ep[£ (log g(x;t))¢.(; 1) Er[v,(z;t)] ", which is related to influence

function. In fact,

B{T.(F)} = Ep|—Ep[VL(x; t)|i=1.)] " Ve(a; To(F)) - %(10g9($§ ) li=1.(7)]

= Ep[IF(2;T,, F)s(z; T.(F))],

where [ F(x;T., F') = —Er[YL(2; t) et ()] "e(2; T.(F)) is the influence function and
s(z; T.(F)) = £ (log g(x;t))|s=r.(r) is the score function.

According to Cauchy—Schwarz inequality,
{Ep[s*(a; T(F)) Ep[[F*(2; T, F)]} ' < B{T(F)}

And Windham noted that the left hand side is just the asymptotic relative efficiency, which
is the reciprocal of the Fisher information times the asymptotic variance. Hence, he used

B2 as a criterion for choosing ¢, which is

p(c) = B{T.(F)}
By I/(t) = cB(t){I + ¢B(t)} 1,

pc) = (c/H(t) = ¢)?
Thus, the tuning parameter c is chosen by

¢ = argmax p(c)

13
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. . . (N) _g(N=1) .
In simulation, the convergence rate h'(t) can be estimated by ”l(tjv,l)#ﬁ‘)l, and this 1s the

method Windham used.

2.4 ~-estimate and Weighted Robustified estimate

2.4.1 Some Notes about y-clust

 ~-divergence
Like K-L divergence, is a measure of the difference between two probability distri-

butions.

* ~y-Ccross entropy
Suppose {x1, z, ..., x,} are from the distribution with density f. And there is a
density gy we assumed that it is the model density with § unknown. The ~y-cross

entropy d.(f, go) is defined as

1
1+~

4, (f.g0) = —%log{ / 9(z:0)" f(2)dx} + —— log / g(z;0)"dx

d,(f, gs) can be empirically estimated by

N 1 1 n 1
d(f:90) = _§1°g{; > glwi0)} + T 10g/9(x;9)1“dx,
=1

where f is the empirical pdf.
The small value of y-cross entropy means two distributions are close, so the robust

estimator 57 can be defined by minimizing d. ( 1, gg), 1.e.

A~

éﬁ{ = argngndy(fag@)

We substitute gy to g(x; u, 2), where ¢ is a p-variate normal density function.

X 1 1 &
dy(f, g(z; 1, %)) = —;log{ﬁ > glwipm D)+ log/g(x;m 2) ! da

147
14
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= e ) — (5 gl B P [ glain, ) )
n

Note that

/ g(w; 1, %) = / {(2m) E(der) b exp (5 (e — )78 — )}
= (27r)*%(1 + )72 (detD) "3

_ o (Fgen D) 29“““’ {/ gl p, ) e} T
= 3 gl B0 E (14 7) H(dets) E) o

x Z g\ Li; ,U> detZ) 2(1+’Y)

Thus, we derive a function of v which is likelihood function in y-divergence sense.

* ~v-utility function

Ly (1, 5) = (dety) 757 Y " g(x;; 1, 5)?

=1

Hence, the robust estimator is to maximize L., (s, )

2.4.2 Weighted Distribution

To maximize ~y-utility function, we take derivatives with respect to ¢ and set it be 0. Here,

g(z; 1, 0?) is univariate normal density.

2

0 0 %
@Lv(u, %) = o > 9 (@i p,0%)(0%) 20 =0

15
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= azgw(%‘;ﬂaﬁ) =0
op

- 9g(wi; p, 0
=) 9 (@i 0®) <0u )y

= 57 (@i o) (@i — 1) =

297(%;#702)%
Z 97(1’“ lua 02)

= [ =

Similarly, take derivatives w.r.t. o2,

a 2 a 2 2 L
o7l (1:0%) = 55 3 g (@i 1,0%) (0) T = 0
2 2 ) )
1 2y ! 2 2\ 3015 -1 o 09(xi5 1, 07)
= 50 L 2 K iy Iy 2(1+y) 7 is My — 2 =
2(1+7)(0) DY g (@i, 0%) 4 (07) 705 Y g7 (@i, 0%) 53

g Loy o L 0\ 09(Tip,o®)
ingv(%%a)ﬂLU ng (i3 1,0 )T—O

and since
) 2 o
5’9(33 L;’J ) = 882(27T02)5e( o
o o
1,1 (@—p)? ) S — )2 a2
- (2ﬂ)7§(_§)<02)7%€7 202+ (271')2(02)2—(:;(0_2’[;2) 67%
Lo 1o (s 2 ) o (2 — p)?
:_5(0-) 9(%#;0)"‘9(%#70)W
We have,

2 V(.- 2 1 Ti — 2 B
mng(mi;ma )+Zg (T p, 0 )(_é_l_%)_()

L S ot = g s 0t B
1+~ o?
> g (@i p, %) (2 — p)?
Zg“’(:p,, s 0_2)

=62 =(1+7)

We figure out that the estimator we derived from the aspect of y-divergence is exactly a

Windham robustified estimate.

16
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Chapter 3

Our Selection Criterion

In this chapter, we propose another criterion to choose c¢. From chapter two, we knew that
the criterion B2 is related to convergence rate of the estimates and hence can be easily
calculated. However, if we look into it carefully, the true criterion is { E(s*) Ep (1 F?)} 1
rather than its upper bound B~2. Therefore, our selection criterion of the tuning parameter
cis,

¢ = argmcaX{EF(sz(x; T.))Ep(IF*(z; T, F))}

The following are some reasons that we prefer using { Er(s*Er(1F?))} ! (denoted sIF2)

as criterion:
« The true criterion is { Er(s%) Er (I F?)}~! rather than its upper bound B2,

* In the same model, the selection of ¢ is stable, since we calculated the criterion

directly.

The MSE of the estimator is smaller.

« If ¢ is large, then p(c) = (¢/h/(t) — c)? becomes large. That is, p tends to choose

larger c.

Although the convergence rate is easy to compute, it’s unstable.
In each section we discuss and calculate the criterion sIF2 under various model distri-
bution gy (). The numerical performance is provided in chapter 4.
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3.1 gy is univariate normal, 6 = 1

The distribution density function gg(x) = g(z; 1) in this model is univariate normal with
unknown mean p and variance 1.

Fromeq. (1.1) w*(z; ) = K*g%(x; 7(p)) and fromeq. (2.1) the(; 1) = w* (x5 p) v (z; 7(1)),
where 7(p) = pand (x; ) =z —

First, the score function is

0 1 (x — p)?
“n _ —
é’u{og\/ﬁ 5 J=rop

The Fisher information is

Second, since T,.(F) is an M-estimator, its influence function can be written as

[F(2;T,, F) = —Ep[l(2; 1) yero(r)] " e(@; To(F))

= —Eplew”(; To(F)) (v — T.(F))* — w*(z; Te(F))] " w" (2 To(F) (v — T.(F))
w*(a; To(F))(x — Te(F))
(

1 — cEp[w*(z; T.(F))(z — T.(F))?]
g )= T~ ()
= [F*(x;T,, F) = (1 cBrlw (@ T(F))(z — Tu(F)])?

From eq. (2.2), ¥ (x; 1) = cw*(z; p)(z — p)? — w* (23 p)

Therefore, the asymptotic variance is

Epw(a; To(F)) (x — T.(F))?]

Be(TF (T F)) = (1 (o 1)) o = TP

~

EA(IF(z;T,, F)) = n S w? (i To(F)) (21 — To(F))?
F o (1 — e w(ws T(F)) (2 — To(F))2)?

18
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And the asymptotic relative efficiency is
{Bp(s*(2: T(F)) Ep(IF? (2 T, F))}

= (1= wles TE) (i~ T E) YA (0Tl F)? 3w (s T B)) (=T F)) )

Hence, we derived the criterion sIF2 in the model of distribution gy () is univariate normal

with unknown mean y and variance 1.

3.2 gy is bivariate normal, 6 = u

The distribution density function gg(x) = g(x, 1) in this model is bivariate normal with
unknown mean p and variance Z,, where 7, is a 2 by 2 identity matrix.

The Fisher information matrix is

Ep(s*(wip) = Epl(x — p) (@ — )] = 3 350 (w0 — p) (@i — )"

Robust Model Fitting part :

Epl(z; p)] = Eplew* (z; p) (2 — p)(z — )" + w*(2; p)(—Z2)] (from eq. (2.2))

= cEp[w*(z; p)(x — p)(z — p)'] = I

Ep[vi(z; p)] = e 3 wl@s, p)(z; — p) (@i — p)" — I

And the influence function is

IF(2;, 1., F) = —Ep[Vu(z; 1) =)~ (s Te(F))

Hence,

LF?(2; Te, F) = = Ep Y@ ) lu=r. )] ™ Ce(@; 1) (= Ep (s w)l =)~ be(z; Te(F))) "
= Eple(w; )=t (r)) " ela; To(F)e(; Te(F)) T Eple(w; 1) =t (r)]

Note that

Ep[e(z; To(F)e(z; Te(F))T] = Ep[w(z — To(F)) (w*(z — Te(F)))"]

Eplte(w; To(F)e(2; To(F))'] = 2w} (2 — T(F) (@i = To(F))",

where w; is the weight for the i-th data. We have

Ef[IF*(x; T, F)]

A

= (e wi(e; — T(F)) (2 — T(F)" = )7 (3 wi(w; — T(F) (i — T(F))")

19

doi:10.6342/N'TU201900783



(e wilw; = T(F))(x: = To(F))" = T,) !
Finally, we derive the formula of { F[s?|Ez[IF?]}~" and we choose the reciprocal of

the product of the largest eigenvalue of Ez[s*(z; T.(F))] and E[IF2(x; T,, F)] as our

criterion.

3.3 gy is univariate normal, 0 = (1, 0?)7

The distribution density function gs(z) = g(x, (11, 0*)T) in this model is univariate nor-
mal with unknown mean y and variance 0.

The Fisher information matrix is

Er(s*(2:0))y; = Erls(x;0)(s(x:0)")]i; = Er[(55; log g(x:6)) (55 log g(:6))]
Here, 0 = (u, o)™

Hence,

: (mfu)( 1y (I*/Z)Q)

- o2 20

Ep(s(z;0)(s(z; Q»T) = Lr (z—p) 1 (z—p)* (z—p)?
() (e R

sawo=| "
(z — p)? = o?
Robust Model Fitting part :
w(2;0) = 2= exp(— 35 (z — p1)?)
Vol ) = v (@ (i) = wii@o) |
(v —p)? =73

Er[ie(z; 0)]

_ aw*(2;0) (2 — ) ez (3 0)(z — p1)

- F

gt (@ 0|z — p)* — 5] gmw(@:0)[(@ — p)? - 5]

A B
C D
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We know

@w (x;0) = cw*(x;0) s
and
O o o (@ )
ww (x;0) = cw*(x;0) 5
Thus,

A= L (2;0)(x — p) = cw (z:0) 2 — w(z;0)

B = gsuw*(w;0)(x — p) = cw* (w; 0) L4

0 204
* o2 * x—p)3 T— *
C = Fw(@;0)[(x — p)* = Fgl = cw (;0) (U4 — 54) — 2w (2:6) (2 — )
* o2 * x—p)t x—p)2 w* (x;0
D = g (wi (e = ) = 5] = cw (s ) 552 — itly) — =t

Hence, from the formula before

TF2 (s T F) = — Beltb(a: 0oy ] 4 ToF)) (— Bl (: Ol o] (s To(F))T
— Bl (:0)o—ru(p ]~ el To(F) e To(F))T Bl 6) i)

Thus, we derive the formula of { Er[s*| Ep[I F?]} ! and choose the reciprocal of the prod-

uct of the largest eigenvalue of Er[s*(z; T.(F))] and Er[IF?(x; T,, F')] as our criterion.

3.4 gyis qGaussian, 0 = p

3.4.1 Some Notes about qGaussian

* [-power model pdf (qGaussian):

_1 p Ty —1 /B
x;p, 2) = cg(det2ny) 2{l — ———— (= — X (x —

fole: 1, 9) = esldet2mD) 51 = g — )8 (@ — )
;where 8 > —2/(p+2),z € R?
As 3 — 0, fg converges to normal density.
fo(z; 1, ) = limg o fo(z; 1, ¥)

. _1 _ 1
= limg o ¢4[|27]| "H{1 — g (v — ) =7 (@ — )} Y7

= co||2nD| "2 exp(—3(z — p)"S (& — p)), which is N (i, X)

And when —2/(p +2) < 5 < 0, f3 is t-distribution.
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* 7y-Cross entropy

In section 2.4.1, we have given the form of empirical y-cross entropy d. ( f . 98)

. 1 1 & 1
d.(f,gs) = —= log{~ SO} + 1/ -0)7d
((Frge) = = V0B 3 o7} + 5 log [ g(a:6)" e

,where f is the empirical pdf.

Hence, we substitute gy to f3,

d’Y(f? fﬁ(l’,,u, E))

=——log{ Zfﬁ (i )} + £ 7log / Folws i, 5) e

R 1 <& 1
= O — (23 Bl DN [ Solasn, e}

note that

/fg(l‘; p, X)) da

14y
= / 1J”(dethE)_*{l — ﬁ(m — )Y N — )} da
p
L+
Cg
:/ (det2my) /2 k:p/Qcﬁ/ 14 (det2mkX) ™ 1/2
Cp/(1+7)
p/A+7) T (11 A
1— — EY) (x — dz
1+
Cy
— (det2my) /2 kP2 / fo/4) (25 1, KX)da
CB/(1+7)
1+~
— B (det2rx) 2R/,
CB/(14+)
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B/(1+7)

where k£ =

2+(p+2)8/(1+y) __

2/6+(p+2)

B
2+(p+2)8

2(14+)/B+(p+2)

= eI (S s M [ Salein D) e} T

1+'y

1S

o Y i,

Cﬂ/(1+
Y)(dets) =@

= Lﬁy’Y(/% Z)

(detx) "/ (——

k

277

)p/2} 1+7

Hence, the robust estimator is to maximize Lg (4, 2)

* ~-utility function (similar to likelihood function)

LB?’Y(M’ Z) =

3.4.2 Weighted Distribution

(dets) 70+ > falwip )

=1

To maximize this, take derivatives with respect to y, and consider x € RP, where p = 1.

0 2
- ((ﬁ)w Zf;(:zi;u,az)(xi;u,a?))
6
_ 2(1+7)'y Z Yxi g, 0 fg(xi; 1, 0%)
1 1 B (x;— p)? i1 g 2
= 2(1+7>
’YZfﬂ Z'l,/i, (Cﬁ\/—ﬁ 2+35 o2 }-1— 2+350_2< ,u))
B (i —p)? F\1-8 B 1 g2 xmi—p
—= 2(1+’Y> —
’)/Zf xl?:“? (Cﬁm{ 2+36 0_2 }+> Cﬁ(\/m) 2+36 0_2
2 202 1
= (o%)20%) 7P (s o) (s — o ’
Let the result equal to 0, we have
i = ng_ﬁ(xi;ﬂaUZ)xi
> f17 (@i p, 0?)
23
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Hence, we can define a weighted distribution

dFg¢(z) = w;’;ﬂ(x; t)dF(x) with w,’gﬁ(x; t) = fg_ﬁ(a:;t)/Ep[fg_B(x;t)]

Then we calculate the weighted variance

/fg_ﬁ(x;u,02)(x — p)*dF

_ c 1 o ﬁ (x_:u)Q 1/8\y—pB+1 "
_/(6\/%02{1 2+ (2+p)8 (0)? SRl
oL g B @) gesysy,
= [ O o T

B B (@ = 1)? -sr1ys
= /Constant{l TIT TR () Jat dx

5 1 B
2+ 2+p)B  2/B+2+p)  20-B+ 1B+ (2+p) 2y +2+4pB
_2+(2+P)502
2y +2+pp

(

)

2y +2+pB 2 f3 (w5, 0%) (2 — p)?

BT EECES R Sy TP

This result is same as in Local Fixed-Point Algortithm (Akifumi Notsu, Shinto Eguchi,
2016)[1].

3.4.3 Applied to gamma-clust

We applied the result to gamma-clust, and assume that the distribution density function
go(z) = fs(x; ) in this model is univariate qGaussian with unknown mean y and variance

1.
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First, the score function is,

() = ﬁ{bg Folas 1)}

g ,
sllog =+ < tox{1 = Lo = )]

1 sl —p)

T - -}

_ 2 (z —p)
2438 {1 — ;25 (x — )}y

Hence the Fisher information is,

Bl e) = g e

{1- 2+3B(

And the influence function is,

[F (2T, F) = = Ep[Wu(a; )| u=r(m)] " e(; To(F))
= —Bp[((w (x5 1)) (s p) + w*(w; )" (5 10)) | p=ro ()~ w" (23 Te(F))ih (a3 T(F))
= —Ep[(cw"(; u)(% log fs)(z — 1) — W (w; ) lu=r.(p)] 0" (2 Te( F)) (2 — To(F))
w*(a; T.(F)) (x — Te(F))

. ((E*TC(F))2
1 — 2+3,8EF[ (,CU, Tc<F)) {172f35 (xch(F))Q}'F]

Similar to Section 3.1, the empirical asymptotic relative efficiency is,

{Bp(s*(2: T(F)) Ep(IF? (2 T, F))}

_ 2 (i = T(F))? > w? (wi; To(F)) (2 Tc(F))f 1
D e e A EATReary o e o

Thus, we derived the criterion sIF2 in the model of distribution gy () is univariate qGaus-

sian with unknown mean p and variance 1.
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Chapter 4

Numerical Examples

4.1 One Dimension Case

4.1.1 One component with outliers

In this subsection, we compare two criteria by presenting two examples.

For first example, assume there are 280 samples from N/ (0, 1) which is the main distri-
bution we are going to estimate and 120 samples from N (7,1) which is seemed to be
outliers, and we already know that the variance of the main distribution is 1. The follow-

ing is the result: The y-axis of Figure 4.1(a) means the value of { E(s?)E(1F?)} 1, and

117
%,
®e
. 104
.
.
. 09|
.
. 08|
.

sIF2

00000

020 025 030 035 005 000

010 015 010 015
estimated mean estimated mean

(a) sIF2 criterion (b) rho criterion

Figure 4.1:
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c m rho sIF2 r inverse of IF2
0.10 0.355485 0.054209 0.020318 0.300456 118.5937
020 0.044493 0.484657 0.035632 0.223171 224.6873
0.27 0.015466 0.723932 0.036972 0.240890 2349016
0.28 0.013881 0.745662 0.036986 0.244859 235.0853
0.29 0.012623 0.764607 0.036973 0.249052 235.0815
0.30 0.011633 0.781335 0.036938 0.253393 2349166
040 0.009357 0.867237 0.035837 0.300468 228.0527
0.50 0.011366 0.888907 0.034169 0.346544 217.3251
1.00 0.015714 0.870179 0.025893 0.517375 164.4990
2.00 -0.002410 0.877856 0.016394 0.680981 104.6453
3.00 -0.023187 0.973124 0.012213 0.752545 78.3862
4.00 -0.032000 1.064666 0.009778 0.794940 62.9035

Table 4.1: result of first example. r is the convergence rate in the 20th iteration.

the y-axis of Figure 4.1(b) means Windham’s criterion p. And the x-axis of both figures
(m) is the mean estimate each for a different ¢, from 0.1 to 4 with distance 0.01 and all
estimates iterate for 20 times. Hence, the chosen c is 4.00 for the criterion p and 0.28 for
the criterion sIF2 (Table 4.1).

Next, we do this process for 100 different data with same distribution assumption,
and compare their bias, which is the absolute value of the difference between 0 and the
robustified mean estimates. In Figure 4.2(a), the y-axis is the chosen ¢, circle points stand
for estimates from criterion sIF2 and triangle points for estimates from criterion p. We can
see that the chosen parameter c by criterion sIF2 is much more stable for the parameter
chosen by p. In Figure 4.2(b), it is clear that bias of sIF2 is smaller than of p, since there
are fewer points in the up-left triangle of the figure than those in the down-right triangle

part. We also compute their mean, variance, and mean squared error (Table 4.2).

mean variance MSE
rho 0.064793 0.003796 0.007956
sIF2  0.056344 0.001902 0.005057

Table 4.2: Comparing data in first example

For second example, we assume there are 280 samples from A/ (—1, 1) which is the
main distribution we are going to estimate and 120 samples from A/ (4, 1) which is seemed

to be outliers, and we already know that the variance of the main distribution is 1. The
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following is the result:
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Figure 4.2:

0.20

The y-axis of Figure 4.3(a) means the value of { Fx(s*)Ez(I1F?)} ™', and The y-axis of

Figure 4.3(b) means Windham’s criterion p. And the x-axis of both figures (m) is the mean

estimate each for a different ¢, from 0.1 to 4 with distance 0.01 and all estimates iterate

for 20 times. Hence, the chosen c is 1.12 for the criterion p and 0.5 for the criterion sIF2

(Table 4.3).

|
\

(a) sIF2 criterion

o7 o5 o5
estimated mean

(b) rho criterion

Figure 4.3:

Next, we do this process for 100 different data with same distribution assumption,
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c m rho sIF2 r inverse of IF2
0.10 -0.171572 0.028217 0.021389 0.373163 58.6819
0.30 -0.855458 0.285477 0.051150 0.359583 168.9291
040 -0.934677 0.494710 0.056845 0.362530 192.7951
0.50 -0.971573 0.660704 0.058169 0.380855 199.7947
0.60 -0.990432 0.771304 0.057426 0.405888 198.5343
0.80 -1.005879 0.877478 0.053476 0.460634 185.8748
1.10  -1.009079 0.910806 0.046233 0.535446 160.8778
1.12 -1.008926 0.910903 0.045764 0.539912 159.2387
1.14 -1.008745 0.910869 0.045300 0.544310 157.6129
1.20 -1.008050 0.910123 0.043934 0.557102 152.8232
1.40 -1.004542 0.903702 0.039711 0.595584 137.9662
1.60 -0.999934 0.895686 0.036020 0.628336 124.9419

Table 4.3: result of second example. r is the convergence rate in the 20th iteration.

and compare their bias, which is the absolute value of the difference between —1 and the
robustified mean estimates. In Figure 4.4(a), the y-axis is the chosen ¢, circle points stand
for estimates from criterion sIF2 and triangle points for estimates from criterion p. We can
see that the chosen parameter c by criterion sIF2 is much more stable by criterion p. In
Figure 4.4(b), it is clear that bias of sIF2 is more smaller than of p, since there are fewer

points in the up-left triangle of the figure than those in the down-right triangle part. We

also compute their mean, variance, and mean squared error (Table 4.4).
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mean variance MSE
rho 0.079325 0.004226 0.010477
sIF2  0.063453 0.002000 0.006006

Table 4.4: Comparing data in second example

From the simulations of those two types of mixture distribution data, we find out that
Windham’s robustified estimates can find the mean for the main distribution if two dis-
tributions are not too close, and even can be used to do clustering. And then we use the
criterion sIF2 we suggested to choose the tuning parameter c. So, next subsection is the

process of one dimension clustering.

4.1.2 Five components

Suppose there are 1000 samples, in which 200 from N (—14, 1), 200 from N (—10, 1), 200
from N'(—4,1), 200 from N (0, 1), 200 from N (5, 1). We only know that the variance of
each component is 1.

First, we randomly choose 100 points from data, and let them be the initial points. After
20 times iteration, there are 100 mean estimates for one fixed c. Those estimates converge
to several points. We let ¢ be from 0.2 to 2 with width 0.05, and find out the most common
number of converge points is 5. Then for those ¢ with correct number of converge points,

we use sIF2 criterion to choose c. The result is shown in Figure 4.5 and Table 4.5.

4.2 Two Dimension-One Component with Outliers

We extend data from one dimension to two dimension case.

Now, suppose there are 560 samples from A/((0,0)7', Z,) and 240 samples from N ((3, 3)7, Z,),
and we want to estimate the mean of the main distribution. We let c be from 0.3 to 3 with
step 0.01. Figure 4.6 shows the result. The estimated mean is (0.010235,0.074160) and

the chosen ¢ is 0.55.
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Figure 4.5: Red curve is the estimated density.

C mi mso ms3 my ms sIF2y sIF2y sIF23 sIF2, sIF2;
0.60 -13.838 -10.092 -3.791 -0.313 4.829 434 1.160 .859 814 904
0.65 -13.878 -10.057 -3.849 -0.272 4.835 472 1.299 1.029 .930 .899
0.70 -13.908 -10.030 -3.893 -0.239 4.839 497 1.409 1.171 1.025 .886
095 -13.982 -9.962 -4.012 -0.143 4.838 .511 1.652 1.523 1.247 773
1.00 -13.989 -9.955 -4.025 -0.131 4.836 .501 1.663 1.547 1.256 .747
1.05 -13.994 -9949 -4.036 -0.121 4.833 490 1.667 1.563 1.259 .721
1.10  -13.999 -9945 -4.046 -0.111 4.831 478 1.665 1.570 1.255 .695
1.20 -14.006 -9.939 -4.063 -0.096 4.825 451 1.648 1.570 1234 .645
140 -14.012 -9933 -4.086 -0.072 4811 .395 1.584 1.525 1.156 .553
1.80 -14.009 -9.934 -4111 -0.037 4.783 .300 1.417 1.374 947 402
2.00 -14.002 -9937 -4118 -0.025 4.769 .263 1.336 1.293 .841 341

Table 4.5: Result of 1-dim clustering. m; and sI F'2; are estimated mean and criterion of group 7

4.3 Variance Unknown

We now back to one dimension data but variance is unknown.

Now, suppose there are 340 samples from N (0, 1) and 60 samples from N (4, 0.5), and we

want to estimate the mean and variance of the main distribution. We let ¢ be from 0.3 to

3 with step 0.01. Figure 4.7 shows the result. The estimated mean is 0.027701, estimated

variance is 0.988843 and the chosen c is 0.86.
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Figure 4.6: Result of 2-dim data. (a) mean of the first dimension and sIF2. (b) scatter plot
and the estimated mean (red triangle).

4.4 qGaussian Model

We give example of using qGaussian model to estimate mean.

=0

From the formula above, it is similar to normal distribution case with exponent ¢ = v — f3.
Note that qGaussian density is a function of 3, so if /3 is fixed, we can use the asymptotic
efficiency criterion in 3.4.3 to choose 7.

Suppose there are 400 samples, in which 280 samples from N (0, 1) and 120 samples from
N(5,1), and we already know the variance of the qGaussian model is 1. Table 4.6 shows

the result:

B 0 0.2 0.3 0.4 0.5 0.6

mean 0.0363 -0.0083 -0.0293 -0.0710 0.0210 0.0107
chosen vy 0.52 1.08 1.62 2.96 0.94 1.21
choseny— 3 0.52 0.88 1.32 2.56 0.44 0.61

Table 4.6: Result of qGaussain model. The sample mean of the main distribution is 0.0331.

Note that for different 3, the v we chosen ¢ = v — 3 will be very different. And the
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Figure 4.7: Variance unknown simulation. (a) estimated mean and sIF2. (b) estimated
variance and sIF2.

tail of qGaussian density will decay to 0, which is different from normal density, may be
an advantage on robustness or clustering.

As soon as we derive the qGaussain robustified estimate fi, there are points with 0 weight.
For those of non-zero weight, we calculate the sample mean ji;,;,,, , and compare to the
qGaussain robustified estimate /i we derived from the start. We run the estimated proce-
dure for 100 times with 8 = 0.5, « from 0.55 to 3.5 with step 0.01, and calculate the mean,

variance, and mean squared error of these two robustified estimators.

mean variance MSE
I 0.15259 0.012274 0.035434
ftrim 0.21052 0.007867 0.052107
distance is 3.5
I 0.05403 0.006732 0.009584
ftrim 0.08278 0.005074 0.011876
distance is 4
I 0.02413 0.005352 0.005880
ftrim 0.02483 0.004776 0.005344
distance is 5
I -0.00173 0.006118 0.006060
Ltrim -0.00099 0.005405 0.005351

distance is 6

Table 4.7: Comparing /i and iz, With different distance of two populations.

We find out that fi;,.,, is better, but if we change the data to 280 samples from N (0, 1)

and 120 samples from N (4, 1), the result will be on the contrary. We simulate different
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cases with different distance of two populations in Table 4.7.
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